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Abstract

Graph Signal Processing (GSP), as the field concerned with the extension of classical

signal processing concepts to the graph domain, is still at the beginning on the path

toward providing a generalized theory of signal processing. As such, this thesis aspires to

conceive the theory of sparse representations on graphs by traversing the cornerstones of

wavelet and sampling theory on graphs.

Beginning with the novel topic of graph spline wavelet theory, we introduce families of

spline and e-spline wavelets, and associated filterbanks on circulant graphs, which lever-

age an inherent vanishing moment property of circulant graph Laplacian matrices (and

their parameterized generalizations), for the reproduction and annihilation of (exponen-

tial) polynomial signals. Further, these families are shown to provide a stepping stone

to generalized graph wavelet designs with adaptive (annihilation) properties. Circulant

graphs, which serve as building blocks, facilitate intuitively equivalent signal processing

concepts and operations, such that insights can be leveraged for and extended to more

complex scenarios, including arbitrary undirected graphs, time-varying graphs, as well as

associated signals with space- and time-variant properties, all the while retaining the focus

on inducing sparse representations.

Further, we shift from sparsity-inducing to sparsity-leveraging theory and present a novel

sampling and graph coarsening framework for (wavelet-)sparse graph signals, inspired by

Finite Rate of Innovation (FRI) theory and directly building upon (graph) spline wavelet

theory. At its core, the introduced Graph-FRI-framework states that any K-sparse signal

residing on the vertices of a circulant graph can be sampled and perfectly reconstructed

from its dimensionality-reduced graph spectral representation of minimum size 2K, while

the structure of an associated coarsened graph is simultaneously inferred. Extensions to

arbitrary graphs can be enforced via suitable approximation schemes.

Eventually, gained insights are unified in a graph-based image approximation framework

which further leverages graph partitioning and re-labelling techniques for a maximally

sparse graph wavelet representation.
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S = {si}i Set S with elements si

S{ Complement of set S

z̄, z∗ Complex Conjugate of z ∈ C
[a, b] Closed Interval: {x ∈ R : a ≤ x ≤ b}
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[a, b) Partially closed Interval: {x ∈ R : a ≤ x < b}
C∞([a, b]) space of infinitely differentiable continuous functions over [a, b]

Cp([a, b]) space of continuous functions with p continuous derivatives over [a, b]

n mod N n modulo N

(i+ j)N i+ j modulo N

f(t) ≷ a f(t) > a or f(t) < a, for function f : R→ R and a ∈ R

Vectors and Matrices

x ∈ CN (or ~x ∈ CN ) vector or discrete-time signal of dimension N

x(i) or xi i-th entry of vector x

||x||2 l2-norm of vector x, ||x||2 =
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i=1 |xi|2
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◦ Hadamard (entrywise) product
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Signal Processing Notation

x(t) continuous-time signal
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∫ +∞
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Graph Notation
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D degree matrix
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Chapter 1

Introduction

1.1 Motivation and Objectives

Graphs, as high-dimensional (and often sparse) dependency structures, have become an

increasingly favorable tool for the representation and processing of large data, as exempli-

fied by i. a. social, transportation and neuronal networks, primarily due to their potential

to capture (geometric) complexity.

The appeal of operating with respect to data encapsulated within the higher-dimensional

dependency structures of a graph lies not only in the potential for superior data repre-

sentation and processing for real-world applications, but also emerges in the development

of a comprehensive mathematical framework, which seeks to extend conventional signal

processing concepts to the graph domain, thus naturally challenging the structural con-

finement of existing frameworks and posing intriguing new questions.

The resultant field of Graph Signal Processing (GSP) can be characterized as the collec-

tive of theoretical and experimental efforts toward a more generalized theory of Signal

Processing (SP), which attempts to leverage the complex connectivity of graphs in order

to facilitate more sophisticated processing of (high-dimensional) data beyond traditional

methods. Nevertheless, the developed underlying theory is still in its infancy and there

is a need for a thorough and rigorous theoretical foundation in order to fully comprehend

and exploit the capabilities of networks.

A graph consists of a set of vertices and a set of edges, whose associated weights char-

acterize the similarity between the two vertices they respectively connect. In its essence,

GSP aspires to use graphs as data representations, whose specific connectivity and edge

weights are imposed by or inferred from the problem and/or data at hand, while further

instilling the notion of an associated graph signal, which maps the data to a finite sequence

of samples such that each sample value corresponds to a vertex in the graph [1].
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Chapter 1. Introduction

The inherent challenge of incorporating and interpreting newly arising data dependencies,

while maintaining equivalencies to classical cases, has given rise to a variety of different

approaches, borrowing notions from i. a. algebraic and spectral graph theory ([2], [3]),

algebraic signal processing theory [4], and general matrix theory [5]; here, it has remained

an open problem to link structural properties of signals and underlying graphs to properties

of graph operators and/or arising transform coefficients [1]. Graph theory and linear

algebra in particular create a productive interplay in that any graph can be represented

by a matrix and thus be subjected to (and benefit from) purely linear algebraic results,

while at the same time, any generic (square) matrix can be interpreted as the connectivity

information of a network, facilitating a geometrically richer approach.

Under this theme, the present thesis aspires to conceive sparsity on graphs from a the-

oretical perspective, which i. a. features the problem of identifying an optimal (graph-

dependent) basis for the sparse representation of a graph signal. Having evolved from

a central issue in the area of classical transform analysis, in light of newly arising data-

dependencies that need to be accommodated and a plethora of techniques and inter-

pretations targeted at variable and, usually application-driven, desirable properties, this

problem remains largely unanswered from a theoretically rigorous perspective. Further,

we delve into the topic of sampling sparse signals on graphs, before eventually tackling

the problem of graph-based sparse image approximation. In the course of this conception,

we create a bridge from spline wavelet to sampling theory on graphs, which further links

to their traditional counterparts in signal processing, on the basis of circulant graphs.

Notions of matrix-bandedness and graph-relabelling additionally play a crucial role.

Sparse graph signals, characterized by a small number of non-zero values relative to the

dimension of the graph, represent a scarcely studied area of GSP, in particular, it remains

unexplored how a sparse representation can be induced via a valid graph operator with

respect to the underlying connectivity of the graph, or put differently, what classes of

signals can be perfectly annihilated on a graph beyond piecewise constant signals. At

the same time, it is of interest to investigate how sparsity on graphs can be leveraged

for dimensionality reduction of the signal and coarsening of the associated graph, i. a. for

efficient data processing and storage.

The proposed theoretical analysis is primarily conducted in an effort to understand sparse

graph signals in the light of the structure and connectivity of graphs and contribute to a

more rigorous theoretical foundation of GSP, while simultaneously developing insight for

possible applications, such as sparse signal- and image-approximation on graphs.

As will be revealed in subsequent chapters, the inherent polynomial and LSI (Linear Shift-

Invariance) quality of circulants gives rise to a range of interesting mathematical properties

which can be leveraged for drawing (intuitive) connections and extensions from SP to GSP

(see Fig. 1.1). In particular, graph operators defined on circulant graphs can be diagonal-
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Polynomial Splines

Figure 1.1: Sparsity on Graphs: Theory and Applications.

ized by the DFT-matrix, which is central to traditional SP, while being well characterized

in the vertex as well as in the spectral graph domain as a result of the regularity of the

graph. Fundamental mathematical properties of the circulant graph Laplacian matrix are

detected and incorporated into novel generalized graph differencing operators, which give

rise to basis functions that are structurally similar to the classical discrete (e-)splines,

thereby inspiring the creation of multilevel wavelet transforms on circulant graphs. The

inherent Fourier characterisation in the spectral graph domain is further leveraged in the

problem of sampling sparse signals on circulant graphs. Inspired by classical Finite Rate of

Innovation theory, the derived framework facilitates the perfect recovery of sparse signals

from a dimensionality reduced spectral representation while simultaneously identifying an

associated coarsened graph; this not only extends the classical framework to a broader

class of signals defined on complex structures beyond the real line, but further charac-

terises the sampled signal through a reduced graph which preserves essential properties of

the original.

1.2 Contributions and Outline of Thesis

In the following, we present an outline of the thesis with its major contributions.

Chapter 2 provides an overview of the general landscape of graph signal processing, com-

mencing with a brief discussion of the most notable works and contributions on traditional

sparse signal processing, followed by basic definitions and concepts from linear algebra and

spectral graph theory, which we will be making use of throughout. Subsequently, we pro-

ceed to state the general problem context of GSP and underlying notions, along with an

overview of recent contributions to wavelet and sampling theory on graphs, and concluding

with a specialized review of circulant graphs.

In Chapter 3, we introduce graph spline wavelet theory on circulant graphs and present a

range of properties and results that derive from the discovered vanishing moment property

of the circulant graph Laplacian, while also drawing connections to traditional spline the-
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ory. We develop novel families of wavelets and associated filterbanks for the analysis and

representation of functions defined on circulant graphs, where we distinguish between the

vertex domain-based graph spline and e-spline wavelet transforms, and the complemen-

tary graph (e-)spline wavelet transforms (derived via spectral factorization), and discuss

their properties and special cases. As such, the theory developed in Ch. 3 serves as the

foundation for subsequent chapters and their contributions.

Chapter 4 seizes the main insights and derived properties of Chapter 3 and appropriates

them for generalized wavelet design on arbitrary undirected graphs targeted at the broader

class of (piecewise) smooth graph signals. The chapter begins with a review and analysis

of a general graph wavelet transform, elucidating how the theory of Ch. 3 constitutes a

special case for circulant graphs, and evolves into the derivation of further graph wavelet

transforms for undirected graphs with distinct annihilation properties. These include the

generalized bandlimiting, space-variant and time-variant graph wavelet transforms as well

as the multi-dimensional graph wavelet transform defined on product graphs. Additional

analysis of the condition number and sparsifying-level of derived constructions is con-

ducted.

Chapter 5 tackles the problem of sparse sampling on graphs by introducing the novel GFRI-

framework on circulant graphs and beyond, inspired by traditional FRI theory and directly

leveraging the developed graph spline wavelet theory. In particular, the perfect recovery

of (wavelet-)sparse signals from a dimensionality-reduced representation is established,

while an associated coarsened graph can be identified; properties and special cases are

discussed, as well as extensions to multi-dimensional sampling, while generalizations to

arbitrary graphs are enforced via suitable approximation schemes. At last, an alternative

approach to the latter is explored in form of (noisy) sampling on circulant graphs with

perturbations.

Eventually, Chapter 6 presents a novel graph-based image processing framework which

employs image (graph) segmentation followed by a variable, sparsity-driven graph wavelet

analysis step for images featuring distinct discontinuities or patterns. More precisely, cir-

culant graph wavelets with variable localization properties are applied on approximations

of the partitioned subgraphs, which represent image regions of homogeneous intensity con-

tent. Further relevant performance-enhancing concepts such as the optimal graph labelling

are discussed, while the superiority of the method compared to traditional tensor product

wavelet bases is illustrated on the basis of real and artificial image patches. In essence,

this final chapter is designed to unify and implement certain gained notions on the theory

of GSP within the concrete application of image processing, thereby directly leveraging

the main strength of GSP to capture, and operate with respect to, the inherent geometry

of given (image) data.
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1.3 Publications

The following papers in press ([6],[7]) and publications ([8], [9], [10], [11]) were produced

over the course of the PhD studies, and are incorporated throughout this thesis, which is

accordingly annotated in footnotes.

Journal Papers (in press)

1. M. S. Kotzagiannidis and P. L. Dragotti, ”Sampling and Reconstruction of Sparse

Signals on Circulant Graphs - An Introduction to Graph-FRI,” Appl. Comput.

Harmon. Anal. (2017), https://doi.org/10.1016/j.acha.2017.10.003, available on

arXiV: http://arxiv.org/abs/1606.08085.

2. M. S. Kotzagiannidis and P. L. Dragotti, ”Splines and Wavelets on Circulant Graphs,”

Appl. Comput. Harmon. Anal. (2017), https://doi.org/10.1016/j.acha.2017.10.002,

available on arXiV: http://arxiv.org/abs/1603.04917.

Conference Papers

3. M. S. Kotzagiannidis and P. L. Dragotti, ”The Graph FRI framework-Spline wavelet

theory and sampling on circulant graphs,” in 2016 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, March 2016,

pp. 6375–6379.

4. M. S. Kotzagiannidis and P. L. Dragotti, ”Higher-order graph wavelets and sparsity

on circulant graphs,” in SPIE Optical Engineering+ Applications. Wavelets and

Sparsity XVI, vol. 9597. San Diego, USA: International Society for Optics and

Photonics, 2015, pp. 95 971E–95 971E-9.

5. M. S. Kotzagiannidis and P. L. Dragotti, ”Sparse graph signal reconstruction on

circulant graphs with perturbations,” in 10th IMA Conference on Mathematics in

Signal Processing, Birmingham, UK, 2014.

6. M. S. Kotzagiannidis and P. L. Dragotti, ”Sparse graph signal reconstruction and

image processing on circulant graphs,” in 2014 IEEE Global Conference on Signal

and Information Processing (GlobalSIP), 2014, pp. 923–927.
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Chapter 2

On Graphs and Sparsity: A Brief

Review

2.1 Sparse Signal Processing

The search for a signal representation that is efficient, and hence sparse, has been largely

thematised in areas such as signal processing and computational harmonic analysis, with

recent efforts merging and going beyond established notions. It is not the purpose of this

thesis to provide a comprehensive review or detailed analysis of classical definitions and

methods in the first place, except in order to specifically motivate a need for and/or draw

comparisons to graph-based theory and methods, and as such, only its rough outlines will

be retraced, whilst referring to more elaborate review works.

A vector f ∈ RN is described as sparse if its l0-pseudo-norm ||f ||0 = #{i : fi 6= 0} is small

relative to the vector-dimension N .

(Sparse) signal approximation in a given basis {un}N−1
n=0 is thus essentially conducted by

projecting a signal (or function) x ∈ RN onto a small number K << N of suitable basis

elements

x ≈
∑

n∈IK(x)

cnun.

The coefficients cn = ũTnx are obtained via the analysis with a (bi-)orthogonal basis

{ũn}N−1
n=0 and IK(x) denotes the set of K indices. In the case of linear approximations,

the latter are selected to correspond to fixed subspaces of lowest possible dimension, while

non-linear approximations consider the best (signal-dependent) spaces, such as the atoms

corresponding to the highest magnitude coefficients for the best K-term approximation,

which take advantage of and capture i. a. some form of regularity of the signal as well

as occurring localized discontinuities [12]. The latter, non-linear approach, in particular,
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signifies an increase in sparsity with more flexibility to achieve the best approximation.

Notably, the discrete-time Fourier transform, as the basis of linear time-invariant operators

with orthogonal atoms {un(x) = einx}n∈Z, emerged as one of the earliest signal transforms

and gained popularity due to its particular efficiency in characterizing globally smooth sig-

nals for i.a. denoising purposes, as an instance of linear approximation [13]. The Discrete

Fourier Transform (DFT) nevertheless falls short of adequately (sparsely) describing sig-

nals with arising discontinuities due to a lack of localization, and invites the approaches of

bases with compact localized support, beginning with the Short Time Fourier Transform

(STFT) or Gabor transform, which consists of windowed waveforms that can be applied

locally, and culminating in the construction of multiscale wavelet transform bases, from the

translations and dilations of localized low-frequency scaling functions and high-frequency

mother wavelets, respectively providing a coarse approximation and detail preservation of

the signal [13]. The class of spline-wavelets, noted for their symmetry, regularity as well

as localization and approximation properties for (piecewise) smooth functions, and char-

acterized by synthesis functions which are higher-order polynomial splines, with variable

design choices, including i.a. compact support (B-spline and biorthogonal spline wavelets),

in particular emerged as superior [14].

In an effort to refine performance, wavelets have been further developed to incorporate

adaptivity to more complex signal properties, such as orientation or translation-invariance

at the sacrifice of critical sampling, in form of i.a. steerable [15] and stationary wavelet

transforms [16]. Eventually, the sparse signal representation problem evolved into the

task of selecting elements from a suitable dictionary, with a plethora of directions for the

design and/or learning of overcomplete dictionaries, which may be analytic on the basis of

mathematical functions, such as curvelets [17], contourlets [18] or bandelets [19], as well

as directly extracted from data based on iterative training algorithms, such as the K-SVD

algorithm [13]. Thereby, the former have i.a. tackled the problem of efficiently characteriz-

ing higher-dimensional signals, such as images, which have one-dimensional, as opposed to

zero-dimensional, smooth discontinuities that cannot be absorbed by traditional wavelet

bases [20], via constructions that are more intricate than their predecessors; in particular,

Chapter 6 will revisit this aspect through the conceptually simpler lens of graph theory.

Moving from a domain which primarily targeted the creation of sparsity to another

which specifically leverages it, we further consider sampling theory, as the bridge between

discrete- and continuous-time signal processing, which has experienced a mathematical

interplay with wavelet theory, and, specifically, the more recent advent of sparse sampling

[21]. Sampling traditionally signifies the discretization of a continuous-time signal to a

sequence of samples whose subsequent interpolation in turn generates a continuous signal.

More generally, it denotes a dimensionality reduction in the discrete domain, such as that

of a finite vector, followed by reconstruction or interpolation (a dimensionality increase),
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and presents a relevant topic in the general investigation of sparsity on the real line, grids

and ultimately graphs.

Traditionally, sampling theory and methods focus on the perfect reconstruction of a

continuous-time signal x(t), which is typically filtered by a selected kernel ϕ(t) before be-

ing uniformly sampled with a sampling period T , from its samples yn = 〈x(t), ϕ(t/T −n)〉.
Its foundation is laid by the Nyquist-Shannon sampling theorem for bandlimited signals

of the form

x(t) =
∑
k∈Z

xksinc(Bt− k)

with samples xk = 〈Bsinc(Bt− k), x(t)〉 and band [−B/2, B/2], which states a sufficient

condition for their perfect reconstruction at a sampling rate that is at least twice the

maximum frequency of B/2 [21]. Yet, it has been established that bandlimitedness is only

a sufficient rather than necessary condition for perfect reconstruction.

Within a more comprehensive sampling framework, certain classes of signals have been

identified, beyond the bandlimited or those confined to fixed subspaces, which possess a

parametric representation with a finite number of degrees of freedom per unit of time, or

Finite Rate of Innovation (FRI), of the form

x(t) =
∑
k′∈Z

K∑
k=1

xk′,kgk(t− tk′)

for known {gk(t)}Kk=1, and free coefficients xk′,k and time-shifts tk′ , and which can be ac-

cordingly sampled and perfectly reconstructed, based on a spectral estimation scheme,

known as the annihilating filter or Prony’s method [22], [23], [24]. One may choose

from a range of different sampling kernels that satisfy the so-called Strang Fix condi-

tions and their generalizations [25], i.e. a linear combination of their shifted versions

can reproduce polynomials or exponentials. The rate of innovation is then established as

ρ = limτ→∞
1
τCx

(
− τ

2 ,
τ
2

)
, with function Cx(ta, tb) counting the number of free parameters

over an interval [ta, tb] [22].

In particular, the sparsity of a signal consisting of K Diracs x(t) =
∑K

k=1 akδ(t− tk), t ∈ R
with tk ∈ [0, τ), is encapsulated in the parameter pairs (or innovations) {ak, tk}Kk=1, which

completely determine the sampling rate of ρ = 2K/τ and signal, as for distinct tk, one

can retrieve x(t) from 2K consecutive values of its transformed samples τm =
∑

n cm,nyn,

for a suitable choice of coefficients cm,n [22]. For instance, consider the samples yn =〈
x(t), ϕ

(
t
T − n

)〉
, n = 0, ..., N−1, obtained through filtering with a kernel ϕ(t) of compact

support that reproduces exponentials; that is ϕ(t) satisfies
∑

n∈Z cm,nϕ(t−n) = eαmt for a

proper choice of coefficients cm,n m = 0, ..., P , and αm ∈ C ([26], [25]). Then the moments

take the form τm =
∑K

k=1 ake
αm

tk
T , which corresponds to the Fourier transformation for

αm = −2πim/N .
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As will be enlarged upon in Chapter 5, the discrete matrix-based nature of the recon-

struction approach, paired with a direct link to circularity in matrices (and hence graphs),

facilitates its appropriation for and extension to the graph setting.

At last, due to our focus on sparse signals on graphs, a comparison with compressive sens-

ing (CS) [27] is imperative. According to CS theory, a sparse signal x ∈ RN can be recov-

ered with high probability from the dimensionality-reduced (sampled) signal y = Ax under

suitable conditions on the rectangular sampling operator A ∈ RM×N with M << N and

sparsity K = ||x||0, by solving an l1-minimization problem, or alternatively, using greedy

reconstruction algorithms [28]. While, in contrast to compressive sensing approaches [29],

the recovery of the sparse vector x in the previous scheme is exact at the critical dimen-

sion of 2K measurements and based on a direct, spectral estimation technique, known

as Prony’s method ([30], [22]), it should be noted that neither requires knowledge of the

locations of the non-zero entries. Further, CS theory can be extended to the recovery

of non-sparse signals x = Dc that have a sparse representation c in properly designed,

overcomplete dictionaries D [31], which has also been addressed in the context of graphs

by training a graph-based dictionary [32]. The sampling framework proposed in Chapter

5 envisions a similar approach in that smooth (wavelet-sparse) graph signals x are filtered

with a (circulant) multilevel graph wavelet transform in order to produce sparse signals

c which can subsequently be sampled; nevertheless, the recovery of x from c ultimately

follows from the invertibility of the wavelet transform.

Contrary to the more recent learning- or optimization-driven approaches, this work pri-

marily focuses on signal representations on graphs that are exactly sparse, following the

derivation of suitable annihilating operators and wavelet transforms. Thereby, the no-

tion of sparsity on graphs, and, in particular, how to induce a sparse representation with

respect to the graph connectivity, is conceived and developed on a fundamental level.

2.2 Graph Signal Processing

Motivated by the need for efficient and sophisticated data processing and representation,

in light of the surge of available information in applications such as social, transportation

or biological networks, as well as by the promise of developing a universal mathematical

framework that goes beyond conventional signal processing, the field of Graph Signal

Processing (GSP) emerged from a wide range of contributions, both novel and established.

Some of the key challenges of this field comprise the identification and/or construction of

the graph which captures the inherent geometry of a given data set (if not otherwise

imposed by the application), the development suitable graph transforms which operate

with respect to the graph structure as well as the application of powerful intuitions and

techniques from traditional signal processing while simultaneously accommodating newly
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arising data dependencies in the irregular graph domain.

At its core, GSP unifies basic concepts from algebraic and spectral graph theory with

(computational) harmonic analysis [1], while linear algebra and convex optimization have

gained an increasingly sustaining role. Spectral graph theory in particular has been in-

strumental in extending mathematical concepts and intuitions from Fourier analysis to

the graph domain, thereby introducing the notion of graph frequency spectra and graph

Fourier transform bases. With the aim of establishing comparable SP properties, opera-

tions and concepts in the graph domain, a breadth of intriguing GSP problems ranging

from simple filtering operations up to more sophisticated constructions of graph wavelet fil-

terbanks ([33], [34], [35], [36], [37]), graph signal interpolation and recovery ([38], [39], [40]),

as well as applications encompassing graph-based image processing ([35], [41]), and semi-

supervised learning ([42], [43]), have been derived in the wake of two elementary model

assumptions for the central graph operator: the (positive semi-definite) graph Laplacian

matrix, and the more generalized graph adjacency matrix. Whereas graph Laplacian-based

approaches are focused on undirected graphs and leverage the associated convenient prop-

erties of positive semi-definite matrices for spectral graph analysis, alternative avenues

have featured both undirected and directed graph scenarios by resorting to the Jordan

normal form of the adjacency matrix.

Apart from their suitability for clustering or filtering operations [1], graphs have further

been employed for the dimensionality reduction of high-dimensional data sets to allow

for localized operations on fewer graph vertices; diffusion maps in particular have been

developed as a manifold learning technique with a random walk interpretation [44].

2.2.1 Graph Theory and Linear Algebra

A graph G = (V,E) is characterized by a set of vertices V = {0, 1, ..., N −1} of cardinality

|V | = N , and a set of edges E = {e0, ..., eM−1}. Its underlying connectivity is captured in

an adjacency matrix A ∈ RN×N with entries

Ai,j =

{
wi,j > 0, if nodes i and j are connected by an edge, (i 6= j)

0, otherwise

for some non-zero weight wi,j and degree matrix D

Di,j =

{
di, if i = j

0, otherwise
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with degree di =
∑

j Ai,j per node i, which give rise to the non-normalized graph Laplacian

matrix

L = D−A.

As a fundamental graph matrix within both algebraic and spectral graph theory, the

graph Laplacian has been subject to extensive investigation, with a number of results

relating to its spectra [3], among others, and as such provides a key operator in the

interpretation as well as implementation of classical signal processing concepts in the

graph domain. Notably, when the graph is constructed via a kernel from a point cloud, L

can be interpreted as a second-order differential operator which, under certain conditions,

converges to the Laplace-Beltrami differential operator on the underlying manifold [45].

The oriented (vertex-edge) incidence matrix S of an unweighted G describes the N ×M -

matrix whose rows and columns are indexed by V and E respectively, i.e. its (i, j)-th

entry is 1 (or −1) if edge ej originates (or terminates) at i; specifically, each edge of G

is assigned an orientation arbitrarily [46]. It is further related to the graph Laplacian

via L = SST , both of which are of the same rank N − k for k connected components,

while for undirected graphs, its unoriented version with (0, 1)-weights also exists [46].

For weighted graphs, equivalently, the incidence matrices are weighted and preceding

statements continue to hold. The operation of ST on a real-valued function f : V → R
with value (ST f)(e) takes the difference of f at the end-points of edge e in the manner of

a discrete first-order differential operator [47]. The relation between ST and L, and their

differential counterparts, can be linked through a discrete version of Greens’s formula [47].

A graph whose vertices all have the same degree d is regular (or d-regular) which trans-

lates to its graph adjacency and Laplacian matrix sharing the same eigenbasis V, with

A = VΓVH and L = dIN − A = V(dIN − Γ)VH . For irregular graphs, the follow-

ing relation can be established between the adjacency spectrum {γi}i and the maximum

degree per node: d̄ ≤ γmax ≤ dmax, with d̄ denoting the average degree per node and

equality γmax = d for the d-regular case [48]. In graph theory, it has been of interest to

characterize special graph classes, such as paths, cycles or trees [2], which also extends to

the probabilistic setting; the Erdős-Rényi model, for instance, describes a popular process

to generate random graphs G(n, p), from a fixed number n of vertices and probability p

for the existence of an edge [49]. A relevant class is that of bipartite graphs, which are

described by a vertex set V = X ∪ Y consisting of two disjoint sets X and Y , such that

no two vertices within the same set are adjacent. Most prominently, the property that

the eigenvalues of a bipartite graph adjacency matrix are symmetric with respect to zero

[50], termed as the spectral folding phenomenon, has motivated various GSP contributions,

including perfect reconstruction graph filterbanks, sampling and approximation schemes

([35], [36]).
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Further of interest is the symmetric normalized graph Laplacian Ln := D−1/2LD−1/2

with eigenvalues λ̃ ∈ [0 2), where λ̃max = 2 if and only if the graph is bipartite. The

random-walk matrix ARW := D−1A denotes another well-known graph matrix, whose

entries ARWi,j represent the transition probability of going from vertex i to j on G, as one

step of a Markov random walk.

In an effort to coin a broader class of graph matrices [47], the generalized graph Laplacian

(or discrete Schrödinger operator) of G defines a symmetric matrix M with entries

Mi,j =


li,j , if nodes i and j are connected by an edge, (i 6= j)

pi,i + li,i, (i = j)

0, otherwise

for weights li,j and potential pi,i; alternatively, it is given by M = L+P for graph Laplacian

L and arbitrary diagonal matrix P.

Despite the fact that graph theory is generally concerned with the study of (pairwise)

relations between objects and arising structures, it provides a substantial interplay with

linear algebra in that any graph can be represented as a matrix and thus be subjected

to (and benefit from) purely linear algebraic results, while at the same time, any generic

(square) matrix can be interpreted as the connectivity information of a network, facili-

tating a geometrically richer approach.1 Many insights in algebraic graph theory, encom-

passing i.a. spectral graph theory, as the field of study focusing on the graph eigenvalues,

hail from matrix theory, with the Perron-Frobenius Theorem for (symmetric) nonnegative

irreducible matrices [47] playing a particularly crucial role. As will become evident, funda-

mental results in this thesis employ the linear algebra perspective, notably when dealing

with graph operators and transforms, nevertheless, specialized notions such as graph cuts

and labelling are leveraged, all the while drawing connections to basic signal processing

concepts.

2.2.2 The Basics of GSP

For the ensuing discussion, we mainly consider graphs, which are undirected, connected,

(un-)weighted, and do not contain any self-loops. A graph signal x is traditionally a real-

valued scalar function defined on the vertices of a graph G of dimension N , with sample

value x(i) at node i, and can be represented as the vector x ∈ RN [1]; in this work, we

extend this definition to include complex-valued graph signals x ∈ CN , for illustration

purposes, while maintaining real weights between connections on G. Time-periodic sig-

nals have been commonly mapped to circular graphs, due to their sequential structure,

but generally, signals can be represented on more complex graph structures, where edges

1This assumes the admission of negative weights and self-loops.
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are not only used to invoke a sense of sequencing, but also i.a. similarity between sample

values.

When G is undirected and connected, the graph Laplacian L is a positive semi-definite

matrix and has a complete set of orthonormal eigenvectors {ul}N−1
l=0 , with corresponding

nonnegative eigenvalues 0 = λ0 < λ1 ≤ · · · ≤ λN−1, constituting a convenient property

that has facilitated key definitions and generalizing steps from traditional SP toward the

field of GSP.

In particular, while the classical Fourier transform characterizes the expansion of a func-

tion f ∈ L2(R)

f̂(ξ) := 〈f, e2πiξt〉 =

∫
R
f(t)e−2πiξtdt (2.1)

in terms of the eigenfunctions of the 1-D Laplace operator −∆(·) = − ∂2

∂t2
, the definition

of an equivalent Graph Fourier Transform (GFT) f̂ of a (vectorized) function f residing

on the vertices of G, entails its representation in terms of the graph Laplacian eigenbasis

U = [u0| · · · |uN−1] such that f̂ = UHf , where H denotes the Hermitian transpose, ex-

tending the concept of the Fourier transform to the graph domain [1]. Its inverse is given

by f(i) =
∑N−1

l=0 f̂(λl)ul(i), with expansion coefficients

f̂(λl) := 〈f ,ul〉 =

N−1∑
i=0

f(i)u∗l (i). (2.2)

Emanating from the classical eigendecomposition of the Laplacian operator, the graph

Laplacian spectrum of a connected graph carries a notion of frequency in that small

eigenvalues correspond to eigenvectors that vary smoothly across the graph (thus directly

reflecting its connectivity), while larger eigenvalues are associated with rapidly oscillating

eigenvectors, justifying its ordering [1]. Here, the eigenvalue λ0 = 0 is associated with the

all-constant u0 = 1√
N

and of multiplicity m0 = 1, signifying the number of its connected

components; alternatively, this is indicated by the so-called Fiedler value (or algebraic

connectivity) of the form λ1 > 0 [51]. Nevertheless, the instance of a complete graph,

whose spectrum consists of only two values, presents a special case where large multiplici-

ties can interfere with this conception of order and a more sophisticated theory is needed.

Fig. 2.1 depicts a sample piecewise-constant graph signal on the unweighted Minnesota

graph (from [52]), which has served as a common model for GSP contributions, both in

the vertex and spectral domain.

A graph (wavelet) filter H in the vertex domain generally describes a linear transform

which takes weighted averages (differences) of components of the input signal x at a vertex

i within its k-hop local neighborhood N(i, k), given by x̃(i) = Hi,ix(i)+
∑

j∈N(i,k)Hi,jx(j)
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(a)

(b)

Figure 2.1: Minnesota Traffic Graph with Graph Signal in the (a) Vertex and (b) Spectral
Domain. The color bar in (a) describes the intensity values of the signal on the graph.

for some coefficients {Hi,j}i,j,∈V ; where applicable, it is expressed as a polynomial in the

graph Laplacian matrix H = h(L) =
∑N−1

k=0 hkL
k for suitable hk (or alternatively, as a

polynomial in the adjacency matrix) [1]. The polynomial form is particularly favored for

spectral domain design techniques since it simultaneously gives rise to an interpretation

in the vertex domain.

Graph spectral filtering of a signal x ∈ RN can be represented as x̃ = h(L)x with

x̃(i) =

N−1∑
l=0

x̂(λl)h(λl)ul(i) (2.3)

or equivalently through the GFT ˆ̃x = h(Λ)x̂ with ˆ̃x(λl) = x̂(λl)h(λl), where frequency

coefficients h(λl) are selected to attenuate or amplify certain frequency contributions.

Hence, when the spectral graph filter is given by a polynomial h(λl) =
∑K

k=0 hkλ
k
l , it is

localized with respect to the vertex domain with

x̃(i) =

N−1∑
j=0

x(j)

K∑
k=0

hk(L
k)i,j , (2.4)

whereby the coefficients of the previous vertex-based transform can now be expressed

as Hi,j =
∑K

k=dG(i,j) hk(L)ki,j , with (Lk)i,j = 0 when the shortest-path distance dG(i, j)

between vertices i, j (minimum number of hops) is greater than k [37]. More specifically,

a graph transform is said to be strictly k-hop localized in the spatial domain of the graph

if the filter coefficients Hi,j are zero beyond the k-hop neighborhood of each node i. Other

classical signal processing notions such as convolution, translation or modulation can be

similarly (directly or indirectly) generalized to the graph setting on the basis of the graph

Laplacian eigenvectors [1].
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Another line of work has sought to broaden the discussion to directed graphs by focusing

on the properties of the graph adjacency matrix instead, deriving fundamental notions on

frequency and sampling on the basis of its Jordan decomposition ([53], [54]).

Since the discussion in this thesis is largely focused on undirected graphs, most of the

results can be easily adapted for different (properly normalized) graph matrices, however,

for consistency, the graph Laplacian-based frequency (GFT) interpretation is adopted

here.

2.2.3 Wavelets and Sparsity on Graphs

The notion of wavelets on graphs presents a promising avenue for the sophisticated analysis

of complex data, which may be captured in form of a graph and underlying graph signal,

beyond classical wavelet theory, due to the potential to operate with respect to the inherent

geometry of the data in a more localised manner.

A range of designs have been proposed, notably including the diffusion wavelet [33], the

biorthogonal and perfect reconstruction filterbank on bipartite graphs ([35], [36]), and the

spectral graph wavelet [37], tailored to satisfy a set (or subset) of properties, which have

evolved from the traditional domain, such as localization in the vertex or spectral graph do-

main, critical sampling and invertibility, along with notions of graph-specific downsampling

and graph-coarsening for a multiscale representation, as well as to facilitate generalizations

to arbitrary graphs, for applications including image processing [1] and wavelet-regularized

semi-supervised learning [55].

More specifically, the diffusion wavelets by Coifman and Maggioni [33] are orthogonalized

basis functions based on compressed representations of (powers of) a diffusion operator,

within a framework that is applicable to both graphs and smooth manifolds. The spectral

graph wavelets by Hammond et al. [37] describe a class of wavelet operators which are

constructed in the graph spectral domain of the graph Laplacian via dilations and transla-

tions of a bandpass kernel. Further, the graph wavelet transform by Crovella and Kolaczyk

(CKWT) [56] constitutes a multiscale design in the vertex domain (of unweighted graphs)

based on the shortest-path distance; here, each wavelet is constant across vertices within

a certain hop-neighborhood from the given center vertex.

A drawback of the aforementioned designs is their overcompleteness. This is remedied

by i.a. lifting- [57] and tree-based [58] designs, as well as the graph wavelet filterbanks

on bipartite graphs by Ortega et al. ([35], [36]). The latter in particular rely on con-

venient properties of bipartite graphs which facilitate intuitive downsampling operations

(by simply retaining either disjoint set) as well as a targeted design of spectral filters

h(λ) for i.a. graph localization and compact support, following similar conditions as reg-

ular domain (circulant) z-transformed filters, and can be generalized to arbitrary graphs
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through a bipartite subgraph decomposition problem. In order to ensure that transforms

are localized in the graph vertex domain, and can thus be expressed as polynomials of the

graph Laplacian as well as provide efficient computation, some works employ a Cheby-

chev approximation for designated kernels, incurring a small reconstruction error ([37],

[35]). Further, the spline-like graph wavelet filterbanks on circulant graphs in [59], [34],

[55], which are further detailed in the next section, describe vertex-localized transforms

which similarly leverage mathematical properties of special graph classes for multiscale

processing. For both the bipartite and circulant graph filterbanks, and contrary to tra-

ditional signal processing notions, the low-and high-pass filtered content is retained by

complementary sets of nodes.

While not necessarily of relevance to all of the above transforms, many of which are redun-

dant, the problem of down-and upsampling a signal on the vertices of a graph is central to

GSP, as the evolution of a key component of discrete multilevel signal transformations and

filterbanks, and poses a particular challenge due to the complex connectivity of graphs.

Along with it arises the problem of identifying a coarsened or reduced graph for subsequent

multilevel operations, requiring a method of assigning suitable edges to a reduced set of

vertices, while ensuring that certain properties of the original graph, among other desirable

or essential ones, are preserved. Unless the graph at hand is highly structured or special,

it remains unclear how to consistently extract a downsampling pattern and solution ap-

proaches vary; for instance, in [60], it is proposed to select vertices based on the polarity

of the components of the largest graph Laplacian eigenvector. Overall, it is usually desir-

able to retain a representative half of the vertex set with connections between nodes in

the retained as well as in the removed set being of relatively low weight [60]. Moreover,

the coarsened graph should preserve essential graph connectivity properties of the original

such as structure or sparsity, while being representative of the latter in both the vertex

and spectral domain. These questions, among further GSP notions, are reviewed in i.a.

[1], [60], while links between the problem of graph coarsening and the more established

(approximate) graph coloring [61], which describes the search for a partition into vertex

subsets of distinct color such that no two adjacent vertices share the same color, as well

as to the dual spectral clustering [62], as the task of partitioning a (similarity) graph into

clusters based on the graph Laplacian eigenvectors, have been discovered.

The topic of sparsity on graphs via wavelet analysis appears as a natural extension to

its foundation in the discrete-time domain, and some works have opened its discussion

through topics such as the wavelet coefficient decay at small scales of graph-regular sig-

nals [63] via the spectral graph wavelet transform, the tight wavelet frame transform on

graphs [64], as well as the overcomplete Laplacian pyramid transform with a spline-like in-

terpolation step [60]. Nevertheless, such approaches so far lacked a concrete graph wavelet

design methodology which targets the annihilation of graph signals, or, alternatively, the

characterization of (classes of) graph signals which can be annihilated by existing con-
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structions.

While established graph wavelet constructions, such as the spectral or tight graph wavelet

([37], [64]) may attain sufficiently (approximate) sparse graph wavelet domain represen-

tations, i.a. for appropriate design choices of the associated wavelet kernel, there is no

concrete (or intuitive) theory on what types of graph signals can be annihilated, beyond

the class of piecewise-constant signals, in particular, based on the properties and connec-

tivity of the graph at hand. Sparsity on graphs has been more tangibly addressed through

the topic of dictionary learning on graphs [32], which considers the problem of identifying

an (overcomplete) basis D under which a given graph signal y can be sparsely represented

as y = Dx. Accordingly, the work in this thesis breaks away from previous efforts, in that

it examines how the connectivity of a graph can be leveraged to induce ‘exact’ sparsity in

data on circulant graphs as well as more complex scenarios, beyond the intuitive example

of the former.

2.2.4 Sampling on Graphs

Further, the topics of signal sampling and reconstruction on graphs have gained a growing

interest within GSP, and in an effort to complement wavelet theory on graphs and provide

context for the proposed bridge between wavelet and sampling theory, a brief overview of

the latter is provided.

Signal recovery on graphs, constituting more broadly the empirical study as opposed to

the analytical framework, has been tackled i.a. under the premise that the given signal is

smooth with respect to the underlying graph, and may be formulated as an optimization

problem within different settings ([40], [32]). In several works ([65], [66], [67], [68]), sam-

pling theory for graphs, providing the specialized and more rigorous theorization of the

former, is explored with predominant regard to the subspace of bandlimited graph sig-

nals under different assumptions; specifically, Anis et al. [67] and Chen et al. [68] provide

two alternative interpretations of bandlimitedness in the graph domain, where, in par-

ticular, the latter employs matrix algebra to establish a linear reconstruction approach,

based on a suitable choice of the retained (and known) sample locations. Moving be-

yond the traditional domain, sampling theory in the context of graphs has furthermore

attempted to address and incorporate graph coarsening, such as by Chen et al. in [68],

also a problem in itself ([69], [70]), which bears the challenge of identifying a meaningful

underlying graph for the sampled signal and has been generally featured to a lesser extent.
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2.3 The Class of Circulant Graphs

Circulant graphs represent a special class of graphs that reveal a set of convenient prop-

erties, which, not least of all, can be leveraged for the preservation of traditional signal

processing concepts and operations. In particular, a circulant graph G is characterized

by a generating set S = {s1, . . . , sM}, with 0 < sk ≤ N/2, whose elements indicate the

existence of an edge between node pairs (i, (i± sk)N ),∀sk ∈ S, where ()N is the mod N

operation; more intuitively, a graph is circulant if its associated adjacency matrix is a cir-

culant matrix under a particular node labelling [59] (see examples in Fig. 2.2). As part of a

sub-class of circulant graphs, the M -connected ring graph G is defined via the generating

set S = {1, ...,M}, such that there exists an edge between nodes i and j, if (i− j)N ≤M
is satisfied; the associated circulant adjacency matrix is banded of bandwidth M . These

graphs are i. a. utilized in the creation of small-world network graphs in the Watts-Strogatz

model [71], prior to randomized edge rewiring, and can be embedded as tessellations in

high-dimensional flat tori2 [72].

The eigenvalues of a circulant graph adjacency matrix of the form

C =



0 c1 · · · cN−2 cN−1

cN−1 0
. . .

. . . cN−2

...
...

. . .
. . .

...

c2 c3
. . .

. . . c1

c1 c2 · · · · · · 0


are given by γj = 0+c1ωj +c2ω

2
j + · · ·+cN−1ω

N−1
j , for ωj = e−

i2πj
N , with a possible choice

of corresponding eigenvectors vj = 1√
N

[1, ωj , ω
2
j , ..., ω

N−1
j ]T , j = 0, ..., N−1. The fact that

the graph Laplacian eigenbasis, or GFT, of a circulant graph can be represented by the

DFT matrix reveals a first major link between classical and graph-based signal processing,

since Fourier and frequency notions are indirectly upheld.

A circulant (adjacency) matrix is symmetric if its first row has the following structure

C0,0:N−1 = [0 c1 c2 ... cN/2−1 cN/2 cN/2−1 ... c2 c1]; for an N × N -matrix with N ∈ 2N,

this entails N/2 degrees of freedom (with c0 = 0, as we do not allow self-loops). Further

noteworthy about general (symmetric) circulant matrices in this context is the occurrence

of eigenvalue multiplicities. While there is no general mathematical rule for the eigenvalue

multiplicity distribution of a circulant (graph) matrix, with an arbitrary generating set,

and it can only be determined by applying an exhaustive search approach, basic results on,

for instance, the occurrence of odd and even multiplicities, such as in [73], can be inferred.

2The analysis of data residing on general geometrical shapes, which can be described by meshes, in par-
ticular, following the inference of corresponding graphs, can thus be conducted with graph-based methods.

43



2.3. The Class of Circulant Graphs

Figure 2.2: Circulant Graphs with generating sets S = {1}, S = {1, 2}, and S = {1, 3}
(from left). c©2017 Elsevier Inc.

Yet, the general intuition remains that a densely connected unweighted circulant graph is

usually associated with large eigenvalue multiplicities, as evidenced by the complete graph

of size N with adjacency spectrum consisting of γ0 = N − 1 and γ1 = ... = γN−1 = −1.

The symmetric, circulant graph Laplacian matrix L, with first row [l0 ... lN−1], can

be further defined through its so-called representer polynomial l(z) =
∑N−1

i=0 liz
i with

z−j = zN−j , which bears a resemblance to the z-transform in SP. For the circulant per-

mutation matrix Π with first row [0 1 0 ...], we obtain L =
∑N−1

i=0 liΠ
i. Every cir-

culant matrix is associated with a representer polynomial [74], which not only provides a

means to accelerate circulant matrix multiplication, thereby unfolding an inherent poly-

nomial quality of circulants, but also establishes a link to their spectral information. In

particular, the polynomial l(z) of a circulant matrix L gives rise to its (unsorted) eigen-

values3 via l(e
2πik
N ) = λk, k = 0, ..., N − 1 [74]. This is not to be confused with its

characteristic polynomial, given by pL(x) = det(xIN − L) =
∏N−1
k=0 (x− λk), which as the

unique monic polynomial of degree N vanishes at the eigenvalues λk, with determinant

det L =
∏N−1
k=0 (

∑N−1
j=0 ω−jk lj) =

∏N−1
k=0 λk [74]. In fact, the roots of pL(x) (eigenvalues of L)

can be easily computed through l(z); this has further inspired a method to solve polyno-

mial equations by first finding a circulant matrix whose characteristic polynomial matches

the former and subsequently recovering the solutions through its representer polynomial

([75], [76]). As another consequence of their relation to polynomials, the product of cir-

culant matrices can be computed by simply evaluating the product of their corresponding

representer polynomials modulo the matrix dimension [77].

2.3.1 Downsampling and Reconnection on Circulant Graphs

Due to their regularity and structure, circulant graphs further lend themselves for defining

meaningful downsampling operations in GSP. As established in [59] by Ekambaram et al.,

one can downsample a given graph signal by 2 on the vertices of G with respect to any

3Hence, analogously to the z-transform which converts a discrete-time signal into a complex frequency
domain representation, the circulant representer polynomial transfers the graph edge weight information
to the spectral graph domain.
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element sk ∈ S. In the simplest scenario, which will also be employed in this work, the

downsampling operation is conducted with respect to the outmost cycle (s1 = 1) of a given

circulant G, i.e. skipping every other labelled node, assuming that the graph at hand is

connected such that s1 ∈ S, and the dimension is N = 2n for n ∈ N, the latter of which

facilitates a multiresolution analysis.

In addition, the same authors introduced a set of vertex-domain localized filters constitut-

ing the ‘spline-like’ graph wavelet filterbank on circulant graphs ([34],[55]), which satisfies

critical sampling and perfect reconstruction properties:

Theorem 2.1 ([34]). The set of low-and high-pass filters, defined on an undirected con-

nected circulant graph with adjacency matrix A and degree d per node, take (weighted)

averages and differences with respect to neighboring nodes at 1-hop distances of a given

graph signal, and can be expressed as:

HLP =
1

2

(
IN +

A

d

)
(2.5)

HHP =
1

2

(
IN −

A

d

)
. (2.6)

The filterbank is critically sampled and invertible as long as at least one node retains the

low-pass component, while the complementary set of nodes retains the high-pass compo-

nents.

The structure of the above filterbank motivated the families of graph spline wavelets which

will be introduced in Chapter 3, and, as will be demonstrated, bear actual spline proper-

ties4.

Multiscale analysis is conducted by iterating the result on the respective downsampled

low-pass branches, in form of coarsened graphs, that may be obtained through suitable

reconnection strategies [55]. In particular, this work will be primarily focused on critically-

sampled filterbanks for which the sampled output can be well-defined on (suitably) coars-

ened graphs so as to control the problem dimensionality for multiscale analysis.

Succeeding the definition of a wavelet transform on a circulant graph, one thus needs

to examine the problem of identifying suitable coarsened graph(s) on the vertices of which

the downsampled low-(and high-)pass-representations of the original graph signal can be

defined, as a means to facilitate the multiresolution decomposition in the graph domain.

In general, it is not straightforward to determine if or how to reconnect the reduced set of

vertices to form a coarsened graph, and the set of desired properties, comprising closure,

4According to [55], the ‘spline-like’ filterbank of Theorem 2.1 derived its name from the linear spline FIR
filters which are equivalent to the graph filters for a simple cycle graph, however, comparable properties
are not mentioned for other graphs.
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preservation of the initial connectivity and spectral characterisation of the graph and/or

graph type, among others, is rather difficult to satisfy entirely, such that priorities need

to be set in keeping with the overall goal to be achieved. In the traditional domain, the

downsampled signal samples are ‘reconnected’ through a simple stacking operation, and

its graph-analogy on a simple cycle would entail the reconnection of 2-hop neighbours;

yet a straightforward graph generalization is hindered by the overall complex connectiv-

ity of a graph, which leaves ambiguity to which extent one generally needs to reconnect

downsampled nodes.

Kron-reduction [70] is a commonly used method for both circulant and arbitrary graphs,

which employs a sub-matrix approximation scheme that takes into account the entire given

graph Laplacian matrix for a well-defined dimensionality-reduced graph-representation.

Nevertheless, it often leads to denser (circulant) graphs, and thus an increased matrix

bandwidth, due to the maximum reconnection. In particular, given the graph Laplacian

matrix L and set Vα of nodes to retain, Kron-reduction evaluates the graph-Laplacian

matrix L̃ of the coarsened graph via

L̃ = L(Vα, Vα)− L(Vα, V
{
α )L(V {α , V

{
α )−1L(Vα, V

{
α )T ,

and is known to preserve circularity under the standard downsampling pattern [55].

Since one of the main objectives in this work is a sparse graph wavelet representation,

and, as derived contributions will show, the obtained sparsity K is related to (and in-

creases with) a border effect from the bandwidth M of the graph (adjacency) matrix,

we favor a graph reconnection method which reduces or maintains M when conducting

multiresolution analysis. For an optimally sparse multilevel graph wavelet representation,

one can therefore resort to two variations, both of which preserve circularity with little

to no reconnection, to determine the coarse graph G̃: (1) nodes are not reconnected, and

existing edges are preserved (with exception of maintaining s = 1 ∈ S to ensure that G̃ is

connected), (2) a subset of nodes are (re-)connected, such that G̃ is identical in structure

to the initial G, i.e. the generating set S is preserved.

While the former approach leads to the sparsest possible option, as given an M -connected

(banded) circulant graph, edges resulting from odd elements in the generating set are

continuously removed, reducing its band, it fails to preserve the global connectivity of

the initial graph, which for the objectives at hand, may be deemed of secondary impor-

tance. In addition, for bipartite circulant graphs it produces the trivial simple cycle. The

latter approach, while inducing a slightly less sparse representation due to the constant

bandwidth, reconnects a subset of nodes, which were initially connected via a path, and

preserves connectivity, through an exact replication in lower dimension, as well as certain

spectral information, which will also be directly proved in Chapter 5. This discussion will

be revisited throughout the course of this work due to its relevance in various aspects of
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GSP.
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Chapter 3

Wavelets & Filterbanks on

Circulant Graphs and Beyond

3.1 Motivation and Objectives

In classical signal processing, one of the central issues within the area of transform analysis

revolves around determining the best (often signal-and/or application-dependent) basis in

which a given signal can be sparsely approximated with high accuracy [78]. While the

standard Fourier basis has been largely preferred for classes of smooth signals, the advent

of wavelet theory has revealed that wavelet bases, which can operate locally and across

existing signal-changes and discontinuities, are more suitable for signals that are piecewise

smooth.

Similarly, one of the fundamental questions in graph signal processing is concerned with

how to build the best (graph-dependent) basis for a signal associated with a graph, yet

in light of the newly arising data-dependencies that need to be incorporated and plethora

of interpretations and techniques tackling variable and, usually data/application-driven,

desirable properties, remains largely unanswered from a theoretically rigorous perspective.

This chapter is dedicated to the topic of graph spline wavelet theory, introducing families of

spline and e-spline wavelets, and associated filterbanks on circulant graphs, which leverage

an inherent vanishing moment property of circulant graph Laplacian matrices, and will

eventually provide a crucial stepping stone to more generalized graph wavelet designs,

sampling theory as well as applications in the following chapters. With sparsity as the

driving concept of this work, the goal of this chapter is to impart intuition behind the

proposed wavelets and their properties on the basis of circulant graphs all the while drawing

connections to their counterparts in the classical domain, before moving to more complex
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scenarios.1

3.2 Families of Spline Wavelets on Circulant Graphs

3.2.1 Vanishing Moments on the Graph

According to general consensus [1], a signal or function x ∈ RN on a graph G = (V,E)

with respective node and edge sets V and E is considered smooth if the samples xi vary

minimally over the graph, i. e. its total variation with respect to neighbouring vertices on

the graph is small.

A set of discrete differential operators, which can be considered as discrete versions of

continuous differential geometry operators, have been defined in order to instil a math-

ematical description of the smoothness of a graph signal with respect to the intrinsic

structure of the underlying graph; nevertheless, it should be noted these graph operators

do not necessarily converge to their continuous versions, e.g. on a manifold, unless addi-

tional assumptions are made [1].

In the style of its counterparts in the continuous setting, let ∂x
∂e |i :=

√
Ai,j(x(j) − x(i))

represent the edge derivative of x with respect to an edge e = (i, j) at vertex i and

∇ix :=
[
{∂x∂e |i}e∈E s. t. e=(i,j), j∈V

]
the graph gradient of x at i [1]. The discrete p-

Dirichlet form of x

Sp(x) :=
1

p

∑
i∈V
||∇ix||p2 =

1

p

∑
i∈V

∑
j∈Ni

Ai,j(x(j)− x(i))2

p/2

provides a concrete measure of global graph signal smoothness by summing over (powers

of) the local variation ||∇ix||2; for p = 1, it characterizes the total variation of a signal

with respect to a graph, and for p = 2, the graph Laplacian quadratic form S2(x) = xTLx,

which in turn gives rise to a semi-norm ||x||L := ||L1/2x||2 =
√

xTLx [63]. Its normalized

form

xTLx

||x||22
=

1

||x||22

N∑
n=1

λn|x̂n|2

has also been associated with the spectral spread of a signal [79].

For an undirected connected graph, an all-constant signal is also an eigenvector of L cor-

responding to λ0 = 0, and signals of the form of low-order graph Laplacian eigenvectors

thus provide concrete examples that minimize the latter while elucidating that smoothness

is understood as a measure within the chosen graph-eigenbasis. In another line of work,

total variation on a graph is adapted for directed graph cases, and the p-Dirichlet form is

1A significant part of the content in this chapter appears in accepted article [7], and in part in publi-
cations [9], [8] and accepted article [6].
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defined as Sp(x) := ||x− 1
|λmax(A)|Ax||pp [40].

Nevertheless, since these measures provide little information on the sparsity level of x

on the graph, such as the l0-norm ||Lx||0, beyond the trivial case, we begin to investigate

annihilation on graphs and broaden the term smooth to encompass signals with a sparse

representation in a designated graph-basis. As such, we begin by considering vanishing

moments of wavelets which annihilate polynomial signals, and thus induce a sparse repre-

sentation.

Traditionally, a high-pass filter h with taps (weights) hk that is orthogonal with respect

to the subspace of polynomials of up to degree N − 1 has N vanishing moments, i. e. it is

characterized by

mn =
∑
k∈Z

hkk
n = 0, for n = 0, ..., N − 1

where mn is the n-th order moment of h. This is equivalent to its z-transform H(z) having

N zeros at z = 1. Ideally, one would like to extend a similar notion to graphs. In [33],

the number of vanishing moments of a scaling function on a graph or manifold are defined

as the number of eigenfunctions of the given diffusion operator T it is orthogonal to, up

to a precision measure. This is further seized on in [80], with graph Laplacian eigenvec-

tors providing the basis for generalized vanishing moments on graphs. Nevertheless, this

definition of vanishing moments on graphs does not accommodate equivalencies between

the graph and Euclidean domains, in particular, for a discrete periodic (time) signal on a

simple cycle, which is considered the transitional base case.

This work mainly adheres to the traditional definition for purposes of illustrating analogies

to the developed spline wavelet theory on circulant graphs, yet annihilation is considered

in a broader sense as the property of a matrix A ∈ RN×N with a nontrivial nullspace

Null(A) = {x ∈ KN |Ax = 0N}, where KN denotes a field of dimension N and the di-

mension of the nullspace indicating the degree (or order) of annihilation.2

In its original conception, a polynomial is a continuous infinitely differentiable function

within a subspace of C∞([a, b]) [81]. When considered in a discrete and finite domain, the

annihilation of the discretized polynomial by a high-pass filter (wavelet) is subject to a

boundary effect dependent on the length of the support of the filter. In order to capture

the ensuing result, which provides the foundation for spline wavelet theory on graphs,

we maintain the standard definition of polynomial (graph) signals as functions which can

be annihilated by a suitable graph differential operator and are similarly subject to a

boundary effect, which is additionally magnified through the number of connections.

Definition 3.1. A graph signal p ∈ RN defined on the vertices of a graph G is (piecewise)

2We refrain from a classification into local and non-local annihilation for now since the definitions are
transitional, as will be clarified later.
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polynomial if its labelled sequence of sample values, with value p(i) at node i, is the

discrete, vectorized version of a standard (piecewise) polynomial, such that p =
∑K

j=1 pj ◦
1[tj ,tj+1), where t1 = 0 and tK+1 = N , with pieces pj(t) =

∑D
d=0 ad,jt

d, j = 1, ...,K, for

t ∈ Z≥0, coefficients ad,j ∈ R, and maximum polynomial degree D = deg(pj(t)).

Lemma 3.1. For an undirected, circulant graph G = (V,E) of dimension N , the asso-

ciated representer polynomial l(z) = l0 +
∑M

i=1 li(z
i + z−i) of graph Laplacian matrix L,

with first row [l0 l1 l2 ... l2 l1], has two vanishing moments. Therefore, the operator L

annihilates up to linear polynomial graph signals (i.e. of up to degree D = 1), subject to a

border effect determined by the bandwidth M of L, provided 2M << N .

Proof. The representer polynomial of L with degree d =
∑M

i=1 2di per node and symmetric

weights di = Aj,(j+i)N , can be expressed as:

l(z) = (−dMz−M − ...− d1z
−1 + d− d1z − ...− dMzM ) =

M∑
i=1

di(z
i − 1)(z−i − 1),

whose factors are divisible by (z±1−1) respectively using the equality zn−1 = (z−1)(1+

z+ ...+ zn−1), thus proving that the matrix L has two vanishing moments. Therefore, for

a sufficiently small M with respect to the dimension N of the graph G, or in other words,

if the adjacency matrix of G is a symmetric, banded circulant matrix of bandwidth M ,

the corresponding L annihilates linear polynomial graph signals on G up to a boundary

effect.

Due to the equivalency between polynomial and matrix multiplication, the property from

Lemma 3.1 can be generalized to 2k vanishing moments for matrix Lk, k ∈ N. In general,

if the rows of the graph Laplacian of an arbitrary (not necessarily undirected) graph have

the above centrosymmetric form (i. e. each node has a symmetric neighborhood), annihila-

tion is maintained, but not carried over to higher order k > 1. The (transposed) oriented

incidence matrix ST of an arbitrary graph has, by default, one vanishing moment, yet it is

only for the previously described special cases that the combination SST = L can produce

two vanishing moments, as a result of neighborhood symmetry.

3.2.2 The Graph Spline Wavelet

Following the interpretation of the graph Laplacian as a high-pass filter, a new range of

graph wavelet bases and filterbanks is introduced, with high-pass filters that can annihilate

higher-order polynomial graph signals for a sparse representation in a graph wavelet basis.

In the first instance, one can generalize the spline-like graph wavelet transform (see Thm.

2.1) to higher order and prove that it remains a valid transform.
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3.2. Families of Spline Wavelets on Circulant Graphs

Theorem 3.1. Given the undirected, and connected circulant graph G = (V,E) of dimen-

sion N , with adjacency matrix A and degree d per node, define the higher-order graph-

spline wavelet transform (HGSWT), composed of the low-and high-pass filters

HLP =
1

2k

(
IN +

A

d

)k
(3.1)

HHP =
1

2k

(
IN −

A

d

)k
(3.2)

whose associated high-pass representer polynomial HHP (z) has 2k vanishing moments.

This filterbank is invertible for any downsampling pattern, as long as at least one node

retains the low-pass component, while the complementary set of nodes retains the high-

pass components.

Proof. See Appendix A.1.

For a graph signal p ∈ RN defined on G, the HGSWT yields

p̃ =

(
1

2
(IN + K)HLP +

1

2
(IN −K)HHP

)
p =

1

2
(IN + K)p̃LP +

1

2
(IN −K)p̃HP

where K is a diagonal sampling matrix, with Ki,i = 1 at i = 0, 2, ..., N − 2 and Ki,i = −1

otherwise, as downsampling is conducted w. r. t. s = 1 ∈ S and even-numbered nodes are

retained. The resulting signals p̃LP , p̃HP ∈ RN represent (coarsened) low-and high-pass

versions of p on G within a k-hop local neighborhood N(i, k), ∀i ∈ V . With increasing

degree of the filterbank, the number of vanishing moments increases, and its filters become

less localized in the vertex domain; in particular, a filter of vanishing moment order 2k is

localized within a k-hop neighborhood. Figure 3.1 plots the low-and high-pass graph filter

functions of the HGSWT at k = 2 and illustrates the spread in the vertex domain for a

sample circulant graph.

A bipartite circulant graph G is characterized by a generating set S which contains only

odd elements sk ∈ S for even dimension |V | = N ; the simple cycle S = {1} is a clear

example. For such graphs, the HGSWT acquires the following interesting property:

Corollary 3.1. When G is an undirected, circulant, bipartite graph, with adjacency matrix

A of bandwidth M , the polynomial representation HLP (z) of the low-pass filter HLP in

Eq. (3.1) can reproduce polynomial graph signals up to order 2k − 1, subject to a border

effect determined by the bandwidth Mk of HLP , provided 2Mk << N .

Proof. Similarly, as in Lemma 3.1, we can express the representer polynomial as

HLP (z) =
1

(2d)k
(dMz

−M + ...+ d1z
−1 + d+ d1z + ...+ dMz

M )k
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Figure 3.1: Localization of the HGSWT filters for k = 2 in the graph vertex domain for
circulant G with S = {1, 2}: shown at vertex v = 5 ∈ V on G (left), and corresponding
graph filter functions at alternate vertices. c©2017 Elsevier Inc.

=

 1

2d

∑
1≤i≤M, i∈2Z++1

di(z
i + 1)(z−i + 1)

k

and note that the RHS factors (z+ 1)k(z−1 + 1)k, since (zi + 1) has a root at z = −1 only

for i ∈ 2Z + 1. According to the Strang-Fix condition ([82], [22]), this is necessary and

sufficient for ensuring the reproduction of polynomials.

3.2.3 The Signless Laplacian

The matrix Q = D + A, while primarily chosen as a low-pass filter due to its averaging

effect between 1-hop connected neighbors, is also known as the signless Laplacian. It has

been featured to a lesser extent than the standard graph Laplacian, however, following

recent interest, the signless Laplacian has been conceived as more convenient among graph

matrices to study graph properties [83], and there exist distinct properties which further

reinforce the previously derived results. In particular, for a connected graph, Q is a positive

semi-definite matrix, whose smallest (simple) eigenvalue is 0 if and only if the graph is

bipartite; further, its multiplicity is equal to the number of connected bipartite components

[84]. A more generalized form of this result has been independently derived in Cor. 3.3

of Sect. 3.3.2. It is further interesting to note that the characteristic polynomials of the

signless and regular Laplacian are the same for a bipartite graph, i. e. their eigenvalues are

the same; as a result of the spectral folding phenomenon, with the addition of circularity,

such that a common eigenbasis exists that reorders the eigenvalues, which are symmetric

around the node degree d, this translates into the reproduction property of Cor. 3.1.

Here we have frequency parameters z = e
2πik
N and −z = e

2πi(k+N/2)
N , k = 0, ..., N − 1, in

HLP (−z) = HHP (z), which induce graph-filter eigenvalues that are shifted by N/2 in their

position within the DFT-ordered spectrum, following the folding A(−z) = −A(z) of the

representer polynomial A(z) of the adjacency matrix A. Another notable property of the
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3.3. Families of E-Spline Wavelets on Circulant Graphs

signless Laplacian is the interpretation of random walks, i. e. the (i, j)-th entry of Qk is

equal to the number of semi-edge walks of length k starting at vertex i and terminating

at j [83].

3.3 Families of E-Spline Wavelets on Circulant Graphs

3.3.1 A Generalized Graph Laplacian Operator

Following the theory of cardinal exponential splines [85] in the classical domain, we iden-

tify an equivalent framework which maintains and extends these properties to the graph

domain to broaden the classes of relevant graph signals and graph wavelets. This pri-

marily requires the definition of a generalized graph difference operator with wide-ranging

annihilation properties.

Definition 3.2. A complex exponential polynomial graph signal y ∈ CN with parameter

α ∈ R, is defined such that node j has sample value y(j) = p(j)eiαj , for polynomial

p ∈ RN of degree deg(p(t)).

Definition 3.3. Let G = (V,E) be an undirected, circulant graph with adjacency matrix

A and degree d =
∑M

j=1 2dj per node with symmetric weights dj = Ai,(j+i)N . Then the

parameterised e-graph Laplacian of G is given by L̃α = D̃α −A, with exponential degree

d̃α =
∑M

j=1 2dj cos(αj).

Hereby, the e-graph Laplacian matrix L̃α = D̃α −A is established as a generalized graph

Laplacian with a parameterised diagonal degree matrix D̃α. The standard graph Laplacian

L can therefore be regarded as a special case of the e-graph Laplacian L̃α for α = 0,

however, with d̃α ≤ d the matrix ceases to be positive semi-definite otherwise.

Lemma 3.2. For an undirected, circulant graph G = (V,E) of dimension N , the associ-

ated representer polynomial l̃(z) = l̃0 +
∑M

i=1 l̃i(z
i + z−i) of the e-graph Laplacian matrix

L̃α, with first row [l̃0 l̃1 l̃2 ... l̃2 l̃1], has two vanishing exponential moments, i. e. the

operator L̃α annihilates complex exponential polynomial graph signals with exponent ±iα
and deg(p(t)) = 0. Unless α = 2πk

N for k ∈ [0, N − 1], this is subject to a border effect

determined by the bandwidth M of L̃α, where 2M << N .

Proof. Consider the representer polynomial l̃(z) of L̃α:

l̃(z) =

M∑
j=1

2dj cos(αj)− dj(zj + z−j) =

M∑
j=1

dj(1− eiαjzj)(1− e−iαjzj)(−z−j)

and note that (1−e∓iαz−1) is a factor of (1−e±iαjzj), which corresponds to two exponential

vanishing moments [85].
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The construction of L̃α with polynomial factors (1− eiαz−1)(1− e−iαz−1) ensures that its

edge weights, and, by extension, those of the graph wavelet filter H, remain symmetric and

real-valued. In other words, symmetry is preserved since vanishing (exponential) moments

occur in pairwise increments of complex conjugates.

While the class of complex exponential polynomial graph signals of the form y(t) =

p(t)eiαt, α ∈ R, which can be represented by trigonometric splines in the traditional

domain [85], is of primary concern, one can transition to further interesting cases e. g.

by letting α = −iβ, β ∈ R. In particular, this results in real exponential polynomials,

which can be represented in terms of hyperbolic functions of the form (cosh(βt), sinh(βt)),

inducing the class of hyperbolic splines [85] on graphs, with redefined e-degree d̃ =∑M
k=1 2dk cos(−iβk) =

∑M
k=1 2dk cosh(βk).

The following remark further elucidates the distinct structure of the e-graph Laplacian:

Remark 3.1. The eigenvalues {λj}N−1
j=0 of a circulant matrix, in particular those of A in

Lemma 3.2, can be expressed as λj =
∑M

k=1 2dk cos
(

2πkj
N

)
, j = 0, ..., N − 1, ordered by

the DFT-matrix as eigenbasis U. When imposing α = 2πj
N and j ∈ [0, N − 1], the e-graph

Laplacian nullspace Null(L̃α) contains the j-th eigenvector uj , where uj represents a

complex exponential graph signal with exponent α = 2πj
N and deg(p(t)) = 0. In particular,

we have d̃α = λj , and for α = 0 this becomes the maximum eigenvalue d̃0 = d = λmax,

whose associated eigenvector is the all-constant umax = 1N , i. e. the nullspace of standard

graph Laplacian L. This facilitates the reinterpretation of the e-graph Laplacian as L̃α =

λjIN −A, for α = 2πj
N and j ∈ [0, N − 1], or more generally, (λjIN −A)uj = 0N , with

L̃α representing the shift of L by λj − d = −λ̃j toward annihilation of uj , where {λ̃j}N−1
j=0

denotes the spectrum of L. Depending on eigenvalue multiplicities, the nullspace of L̃α is

accordingly extended.

In revisiting the discussion on vanishing moments, it becomes evident that the annihi-

lation property of the restricted e-graph Laplacian bears similarities to the definition of

vanishing moments on graphs in [33], that is as the nullspace of a (wavelet) operator. Here,

however, orthogonality is not extended up to a precision metric, with the selected operator

being parametric instead, i. e. the nullspace can be ‘shifted’ to contain (a subset of) its

eigenvectors. The significance of the proposed approach lies in the fact that annihilation

can also be local, and is not restricted to the nullspace of L̃α. This notion will be further

realized for arbitrary graphs in the next chapter.

The e-graph Laplacian (and its counterparts for arbitrary graphs) can be seen as a family

of generalized graph Laplacian matrices M = L + P (see [47]), with P = D̃α − D (or

P = λj(A)IN −D). The graph Laplacian of a connected graph has rank N − 1, while the

e-graph Laplacian has rank N−m if dα = λj(A), j ∈ [0 N−1], where m is the multiplic-

ity of λj(A), and rank N otherwise for dα 6= λj(A), j ∈ [0 N − 1]. Since the (ordered)

eigenvalues of L̃α are no longer nonnegative, their interpretation as graph frequencies

which order the corresponding eigenvectors in terms of the number of their oscillations
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3.3. Families of E-Spline Wavelets on Circulant Graphs

(zero crossings) [1] remains valid, with the only difference that the graph frequency d−λj
of L becomes the new zero or DC-frequency in L̃α = (λjIN −A). Further, the e-graph

Laplacian quadratic form, as a measure of smoothness, though no longer a semi-norm, can

be expressed as S̃α2(x) = xT L̃αx = (d̃α − d)||x||22 + xTLx = (d̃α − d)||x||22 + S2(x).

3.3.2 Graph E-Spline Wavelets

The graph e-spline wavelet filterbank is designed following a similar line as the (higher-

order) graph-spline wavelet filterbank, where the e-graph Laplacian L̃α is employed as the

high-pass filter and its signless version, D̃α+A, as the low-pass filter, respectively subject

to normalization. The parametric form of the filterbank with respect to ~α = (α1, ..., αT ) ∈
RT is achieved via simple convolution of different graph filter functions, resulting in an

invertible transform. This facilitates the expansion of the types of graph signals which can

be reproduced and/or annihilated by a single GWT.

Theorem 3.2. The higher-order graph e-spline wavelet transform (HGESWT) on a con-

nected, undirected circulant graph G, is composed of the low-and high-pass filters

HLP~α =
T∏
n=1

1

2k

(
βnIN +

A

d

)k
(3.3)

HHP~α =

T∏
n=1

1

2k

(
βnIN −

A

d

)k
(3.4)

where A is the adjacency matrix, d the degree per node and parameter βn is given by

βn = d̃αn
d with d̃αn =

∑M
j=1 2dj cos(αnj) and ~α = (α1, ..., αT ). Then the high-pass filter

annihilates complex exponential polynomials (of deg(p(t)) ≤ k − 1) with exponent ±iαn
for n = 1, ..., T . The transform is invertible for any downsampling pattern as long as the

eigenvalues γi of A
d satisfy |βn| 6= |γi|, i = 0, ..., N −1 for n = 1, ..., T , under either of the

sufficient conditions

(i) k ∈ 2N, or

(ii) k ∈ N and βn, T such that ∀γi, f(γi) =
∏T
n=1(β2

n − γ2
i )k > 0 or f(γi) < 0.

If parameters βn, are such that βn = γi, for up to T distinct values, the filterbank continues

to be invertible under the above as long as βn 6= 0 and at least
∑T

i=1mi low-pass components

are retained at nodes in set Vα such that {v+i,k(Vα)}i=T,k=mi
i=1,k=1 (and, if eigenvalue −γi

exists, complement {v−i,k(V {α )}i=T,k=mi
i=1,k=1 ) form linearly independent sets, where mi is the

multiplicity of γi and {v±i,k}mik=1 are the eigenvectors respectively associated with ±γi.

Proof. See Appendix A.2.
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The essential property of the above transform, as captured in the proof, is that invertibil-

ity is governed by the parameters βn; Thm. 3.2 also applies to real exponential polynomial

signals with e-degree of the form d̃iα =
∑M

k=1 2dk cosh(αk), cosh(x) ∈ [1 ∞) ∀x, as pre-

viously mentioned. In particular, whenever the chosen βn coincide with the magnitude(s)

of certain eigenvalues {γi}i of normalized adjacency matrix A
d , it is essential to select a

(valid) downsampling pattern under which the eigenvectors {vi,k}i,k associated with {γi}i
remain linearly independent.3 Naturally, this can become challenging for certain graph

topologies as well as when the number T of such βn is large. Circulant adjacency ma-

trices, in particular, can be shown to exhibit large eigenvalue multiplicities as a result of

regularity and increased graph connectivity.

Example: The normalized adjacency matrix of an unweighted complete (and hence cir-

culant) graph of dimension N has eigenvalues γi = −1
d of multiplicity N−1 and γmax = 1,

which is simple. As such, when downsampling is conducted w. r. t. s = 1, the transform

is invertible for β = 1, but not for β = −1
d . The introduction of distinct edge weights,

however, can remedy this, as the spectrum of a complete weighted (circulant) graph is less

concentrated.

A note on multiresolution: In general, one can iterate on the low-pass branch of either

of the introduced wavelet transforms to obtain a multilevel graph signal representation on

a suitably coarsened graph. However, as a consequence of the non-stationarity (or scale-

dependency) of the latter (see [25] for the traditional case), corresponding adjustments

need to be made to parameters ~α, i. e. we require the parameterization by 2j~α at level

j in order to preserve annihilation properties. Technically, both graph wavelet filterbank

constructions in Thms. 3.1 and 3.2 are ‘non-stationary’ in the sense that the representer

polynomials of their respective graph filters at different levels are not necessarily dilates

of one another, being functions of the graph adjacency matrix. Hence, unless the coars-

ened graph, on which the downsampled low-pass output is defined, bears identical edge

relations to the initial graph (e. g. when the generating sets are identical for bandwidth

B with 2B < N), the representer functions will change with the graph. Nevertheless, the

general outer structure of the filters, as polynomials in the adjacency matrix, may only

change in Thm. 3.2 due to the parameterization by {βi}i.

3.3.3 Special Cases and Discussion

One easily deduces that the HGESWT of Thm. 3.2 ‘converges’ to the HGSWT of Thm.

3.1 as α → 0 and β = d̃α
d → 1, since we have HLPα = HLP and HHPα = HHP for α = 0

resulting from their definition through the e-graph Laplacian, in which case the conditions

3This includes, but is not limited to, the signals which lie in the nullspace of the high-pass filter.
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on invertibility are relaxed.4

The introduced transforms can be applied on any undirected circulant graph G, yet,

there exist some noteworthy property distinctions between the cases of bipartite and non-

bipartite circulant graphs, as well as when |βn| = |γi| is satisfied for some n and i ∈
[0 N − 1]. In particular, the low-pass filter 1

d(Dα + A) is of the form of a parameterized

signless Laplacian. As a consequence of this structural similarity, one can detect similar

reproduction properties for circulant bipartite graphs:

Corollary 3.2. Let G = (V,E) be an undirected, bipartite circulant graph with adjacency

matrix A of bandwidth M , and e-degree d̃α. Then the low-pass filter HLPα in Eq. (3.3)

reproduces complex exponential polynomial graph signals y with exponent ±iα, up to a

border effect determined by the bandwidth Mk of HLPα, provided 2Mk << N .

Proof. The representer polynomial HLPα(z) is of the form

HLPα(z) =
1

(2d)k
(dMz

−M + ...+ d1z
−1 +

M∑
j=1

2dj cos(αj) + d1z
1 + ...+ dMz

M )k

=

 1

2d

M∑
j=1

dj(1 + eiαjzj)(1 + e−iαjzj)(z−j)

k

, j ∈ 2Z+ + 1,

where (1+e∓iαz−1) is a factor of (1+e±iαjzj) if j is odd, i.ė.ṫhe elements in the generating

set of G are odd. This filter therefore satisfies the generalized Strang-Fix conditions for

the reproduction of exponentials [25].

Further, an interesting property pertaining to the low-pass filter, which will be made use

of in further graph wavelet constructions, can be deduced:

Corollary 3.3. Let G = (V,E) be an undirected, circulant graph with adjacency matrix

A and degree d =
∑M

j=1 2dj per node with symmetric weights dj = Ai,(j+i)N . Then the

low-pass filter HLP~α in Eq. (3.3) is invertible unless (i) G is bipartite while βn satisfies

|βn| = |γi| or (ii) βn = −γi, i ∈ [0 N − 1].

Proof. See Appendix A.3.

Note that for a bipartite graph, when {βn}n are of eigenvalue form, both the spline

4We note that invertibility of the wavelet transforms in Thms 3.1 and 3.2 does not require A to
be a circulant matrix. In particular, for the former, it is sufficient that A

d
be replaced by the normalized

adjacency matrix Â = D−1/2AD−1/2 of an undirected connected graph [3], and for the latter, its eigenbasis
V is subject to similar constraints, if chosen parameters βn coincide with the eigenvalues of Â (see Appendix
A.2). Nevertheless, when applying these transforms to non-circulant graphs, (higher-order) vanishing
moments are lost and downsampling may become less intuitive and/or accurate.
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and e-spline wavelet constructions also carry a ‘collateral’ annihilation property in the

low-pass branch as a result of the spectral folding phenomenon, i. e. when HHP annihi-

lates the eigenvector corresponding to βn = γn, then HLP annihilates the eigenvector of

−βn = −γn. In the case of the simple spline filterbank, this translates to u = 1N being

annihilated by the high-pass and ũ, with ũ(i) = 1 for 2i ∈ V and ũ(i) = −1 otherwise, by

the low-pass filter.

The following corollaries capture restrictions on the invertibility of the graph e-spline

wavelet transform for special cases of αn:

Corollary 3.4. The HGESWT ceases to be invertible for any downsampling pattern as

well as fails to reproduce certain graph signals when ∃αi, αj in ~α such that d̃αi = −d̃αj
for d̃αl of the form

∑B
k=1 2dk cos

(
2πkl
N

)
for l ∈ [0 N − 1] and 2B < N , including the case

d̃αi = 0.

Proof. In the case of a general circulant graph, we have, for αi, αj as above, HLPαi
(z) =

−HHPαj
(z), or HLPαi

= −HHPαj
in matrix form and vice versa, which leads to annihila-

tion in the low-pass and reproduction in the high-pass branch.

Further, one cannot demonstrate linear independence of the eigenvectors associated with

corresponding eigenvalues γi, γj , and hence invertibility of the HGESWT, for any down-

sampling pattern, which follows from Thm 3.2 mutatis mutandis; for brevity we refer to

the complete proof in Appendix A.2. When d̃αi = 0, the filterbank reduces to the normal-

ized adjacency matrix A
d up to a sign per row (and its powers), which is singular if A is

singular, while its representer polynomial contains the zero root.

Corollary 3.5. Let γDFT = {γi}i denote the DFT-ordered spectrum of A
d for A

d = VΓVH

with V as the N × N DFT-matrix, and consider the HGESWT, with parameters of the

form βk =
d̃αk
d for αk in ~α. When downsampling is conducted with respect to s = 1 ∈ S,

the HGESWT ceases to be invertible if ∃αi, αj in ~α for
d̃αi
d ,

d̃αj
d ∈ γ

DFT , with respective

multiplicities at positions Mi = {ik}k and Mj = {jk}k in γDFT , and such that some
d̃αi
d = γi is located at position (s+N/2)N , s ∈Mj ∪Mi of the DFT-ordered spectrum (and

vice versa for d̃αj ). When the graph is bipartite, this condition becomes equivalent to that

of Cor. 3.4 for the fixed downsampling pattern.

Proof. Given parameters of the form βi =
d̃αi
d which are contained in the spectrum γDFT

of A
d , we distinguish between the eigenvalues γi (and if existent, −γi) and their multi-

plicities, such that |βi| = |γi|, with corresponding eigenvectors V±γi = {v±i,l}l. Then

the invertibility of the HGESWT is conditional upon the eigenvector sets V±γi respec-

tively being linearly independent after downsampling each vector by 2 to give v+i,l(Vα),

with Vα = {0 : 2 : N − 2} as the set of retained nodes (see also Appendix A.2). Since
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V is the DFT-matrix and V(Vα, 0 : N − 1) = [Ṽ Ṽ] with Ṽ as the DFT of dimension

N/2 (up to a normalization constant), we observe that eigenvector pairs (vk,vk+N/2),

at position k ∈ [0 N − 1] become linearly dependent. We therefore need to ensure that

the parameters {βi}i with |βi| = |γi| are chosen such that the corresponding values of

{γi}i (and multiplicities) respectively do not take the aforementioned positions in the

DFT-ordered spectrum; for existing −γi, the same relation and deductions hold for com-

plement V−γi(V
C
α ) = {v−i,l(V C

α )}l. When the graph is additionally bipartite, we note

that given αi, αj at respective positions i, j, with j = (i + N/2)N , due to the relation

cos
(

2πk(i+N/2)
N

)
= − cos

(
2πki
N

)
for odd k, we have d̃αi = −d̃αj and Cor. 3.4 applies.

3.4 Splines on Graphs

(Exponential) polynomial splines form a subset of the more generalized variational splines

and are commonly characterized as the solutions of certain variational problems ([86],

[87]). More specific to the signal processing community, the classical B-spline of degree

zero β0
+ is represented by the box-function

β0
+(x) =

{
1, x ∈ [0, 1)

0, otherwise

and defined as β0
+(x) = ∆+x

0
+, i. e. through the action of a discrete (finite difference)

operator ∆+{·}, with z-transform (1 − z−1), on the step function x0
+. Simultaneously,

x0
+ = D−1{δ(x)} is the Green’s function of continuous first-order differential operator

D{·} [88]. The spline of degree n is then obtained through (n+ 1)-fold convolution of the

box function β
(0,...,0)
+ = βn+(x) = β0

+ ∗ β0
+ ∗ ... ∗ β0

+(x), and similarly defined through the

higher-order operator ∆n+1
+ {·}, with z-transform (1−z−1)n+1, such that βn+(x) =

∆n+1
+ xn+
n! ,

where xn+ is the one-sided power function [88].

The relation ∆m
+{f} = βm−1

+ ∗Dm{f}, ∀f ∈ S′5 and, more generally, ∆α
+{f} = βα+ ∗ (D−

αI){f} for operator ∆α
+(z) = (1− eαz−1) and exponential spline βα+, with α ∈ C, derives

the spline as the connection between continuous and discrete-time domain operators. In

particular, ∆α
+{·} can be regarded as a discrete approximation of continuous differential

operator (D − αI){·} ([89], [88], [85]). The classical (convolved) discrete splines and e-

splines are depicted in Fig. 3.2. Biorthogonal spline wavelet transforms in the Euclidean

domain are commonly characterized by (dual) scaling functions which represent (combina-

tions of) polynomial splines, with the Cohen-Daubechies-Feauveau wavelet as a prominent

example [88].

In order to motivate a framework of splines in the graph domain, one first takes note

5Here, S′ denotes Schwartz’s class of tempered distributions.
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Figure 3.2: Classical Discrete Polynomial and Exponential Splines.

that the graph Laplacian matrix can be viewed as an approximation of the continuous

Laplacian operator −∇2 via the discrete Laplacian, nevertheless, a brute-force generaliza-

tion of standard definitions and relations is primarily hindered by the fact that the graph

Laplacian is a singular matrix.

In [90], variational splines on graphs, closely adhering to the traditional definition, are de-

termined as the Green’s functions of the approximate graph differential operator (L+εIN )t

for small ε > 0 and t ∈ R+, which minimize the Sobolev norm, of the form (L+ εIN )−tei

for normalized graph Laplacian L and elementary basis vector ei ∈ RN . In another line of

work, Chung et al. [91] describe the Green’s function of a connected graph, without direct

reference to splines, as G =
∑

λj>0
1
λj

uju
H
j , for normalized graph Laplacian eigenvec-

tors uj and associated eigenvalues λj , and propose closed-form expressions for elementary

cases, including the simple cycle graph, which can be further extended to Cartesian graph

products [92]. Here, instead of resorting to approximations, a variation of the pseudo-

inverted graph Laplacian operator is employed.

To substantiate the structural (and intuitive) link between the spline-like properties of

the proposed graph wavelet functions and the traditional B-spline, consider the least con-

nected example of a circulant graph, the simple cycle, which is denoted with GS1=(1). In

particular, the graph-representation of a signal (residing) on the vertices of a simple cycle

graph can be regarded as an analogy to a periodic signal in the discrete-time domain, with

existing edges indicating the sequence of sample values [1].

It appears that the rows and columns of the low-pass filter matrix in Eq. (3.1) of the

HGSWT, given by

HLP :=



0.5 0.25 0 · · · 0 0.25

0.25 0.5 0.25 0 · · · 0
. . .

. . .

. . .
. . .

0.25 0 · · · 0 0.25 0.5



k

,
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Figure 3.3: The HGSWT filter functions at k = 1 for different bipartite circulant graphs,
N = 16. c©2017 Elsevier Inc.

produce the traditional discrete linear spline β̃
(0,0)
+ (t) for k = 1, which extends to the

higher-order polynomial spline of order 2k as a result of convolution/circulant matrix

multiplication. The associated (high-pass) graph Laplacian in Eq. (3.2), not only provides

the stencil approximation of the second order differential operator for certain types of

graphs such as lattices [55], but in the case of a simple cycle (and symmetric circulant

graphs by extension) gains the actual vanishing moment property, thus completing the no-

tion of a spline-wavelet filterbank. Coincidentally, the fact that unweighted lattice graphs

can be expressed as the graph product of two path graphs, which are in turn circulant

up to a missing edge, implies that the inherent vanishing property of a circulant graph

is to some extent preserved via the product operation; this phenomenon will be further

addressed in Sect. 4.5 of the next chapter on graph products.

Bipartite circulant graphs preserve the spline-property most distinctly, since their associ-

ated HGSWT filters retain both the reproduction and annihilation property of traditional

spline-wavelets, as noted in Cor. 3.1, while for all other circulant graph cases, it is only

the high-pass filter. Similarly, the rows and columns of the low-pass filter matrix HLPα in

Eq. (3.3) of the HGESWT (at k = 1) describe a second-order e-spline resulting from the

convolution of two first-order complex conjugate e-splines

HLPα :=



0.5 cos(α) 0.25 0 · · · 0 0.25

0.25 0.5 cos(α) 0.25 0 · · · 0
. . .

. . .

. . .
. . .

0.25 0 · · · 0 0.25 0.5 cos(α)


.

Powers of HLPα thus create classical higher-order polynomial e-spline basis functions, while

multiplication of low-pass filters with different parameters αn, as in Thm 3.2, results in

convolved heterogeneous e-spline basis functions. One deduces from Cor. 3.2 that the

exponential polynomial reproductive properties can be similarly extended to bipartite

circulant graphs.
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Figure 3.4: The HGESWT filter functions (k = 1) for different bipartite circulant graphs
at α = 2π

N , N = 16. c©2017 Elsevier Inc.

e-Spline Continuous Operator Order Graph (e-)Spline Matrix Operator Order

β(0,0)(t) D2{} = d2

dt2
2 (2dIN − L̃0)ei L̃0 2

β(0,..,0)(t) D2n{} = d2n

dt2n
2n (2dIN − L̃0)nei L̃n0 2n

β(iα,−iα)(t) (D − iαI) ∗ (D + iαI){} 2 (2d̃αIN − L̃α)ei L̃α 2

β(iα,−iα,...,iα,−iα)(t) (D − iαI)n ∗ (D + iαI)n{} 2n (2d̃αIN − L̃α)nei L̃nα 2n

β(iα1,−iα1,...,iαm,−iαm)(t)
∏m
t=1(D − iαtI)n ∗ (D + iαtI)n{} 2mn

∏m
t=1(2d̃αtIN − L̃αt)

nei
∏m
t=1 L̃nαt 2mn

Table 3.1: Continuous e-Spline and Graph e-Spline Definitions in Comparison. c©2017
Elsevier Inc.

Hence, for a bipartite circulant graph, the i-column of the generalized low-pass operator

(d̃αIN + A)ei = (2d̃αIN − L̃α)ei, which is coincidentally a generalized form of the similar

signless Laplacian, for e-degree d̃α =
∑M

k=1 2dk cos(αk), can be interpreted as a convolution

of the discrete (e-)spline β̃
(iα,−iα)
+ (t) of order 2 with a function φG(t), which depends on the

connectivity of the graph at hand. Thereby, a link to graphs is established and the notion

of a graph-spline which converges to the classical discrete spline as GS → GS1=(1) for an

arbitrary circulant bipartite graph GS with generating set S, becomes more concrete. In

Figures 3.3 and 3.4, the low-and high-pass functions of the HGSWT and HGESWT are

respectively compared for different bipartite graph examples which represent second-order

graph (e-)splines, with the simple cycle case corresponding to the traditional (e-)spline.

In summary, the functions (2d̃αIN − L̃α)ei reveal spline-characteristics through their re-

production properties of (exponential) polynomials in form of convolutions of discrete

(e-)spline basis functions on graphs, and hence structural similarity with classical coun-

terparts, as well as through their description through a suitable differential operator, i. e.

the parameterised graph Laplacian L̃α (and more distinctly, its signless counterpart), thus

motivating the use of spline-terminology; however, it should be clarified that the analogy

is not exact in that these do not constitute Green’s functions of L̃α. On top of that, the

graph spline property can be interpreted more broadly in a GWT as the dual synthesis

low-pass filter that is created through orthogonality to (a variation of) the e-graph Lapla-

cian in the analysis high-pass branch (or vice versa), though the resulting function is not

necessarily a classical polynomial as will be discussed in Sect. 3.5.
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The variational graph splines of the form (L+ εIN )−tei, t > 0 [90] inherit certain proper-

ties for (exponential) polynomial reproduction when L is circulant, however, contrary to

the introduced spline constructions, this is only approximate, while the functions them-

selves are not well-characterized on the graph nor compactly supported to i. a. facilitate

local annihilation, and therefore of lesser interest as basis functions for graph wavelets6.

The classes of spline-like functions on bipartite circulant graphs and their classical contin-

uous counterparts are summarized and compared in Table 3.1 in relation to order, with

the symmetrization βn(x) = βn+
(
x+ n+1

2

)
.

3.4.1 The Directed Graph Spline

While the emphasis is on undirected graphs with real-valued node degrees and (symmet-

ric) graph filters, we undertake a brief excursion to discuss special properties of directed

circulant graphs, as they supply crucial insights that complete the previously discussed

theory. In particular, the collective of results pertaining to vanishing moments of graph

operators can be naturally extended to the case when A is the adjacency matrix of a di-

rected circulant graph ~GS , and the associated graph Laplacian is replaced by a first-order

(normalized) difference operator of the form S = IN − A
d . Let ~GS be defined such that

edge (i, (i+sk)N ) is directed from node i to (i+sk)N , for sk ∈ S. Due to degree-regularity

(i. e. the in-and out-degrees of each node are the same) and circularity, A maintains the

DFT-matrix as its basis.

A simple variation of previous proofs reveals that the representer polynomial of opera-

tor S possesses one vanishing moment, while the degree-parameterised S̃±α = d̃±α
d IN − A

d ,

featuring the, now complex, e-degree d̃±α =
∑M

k=1 dke
±iαk, per node, possesses one vanish-

ing exponential moment, i. e. S̃±α respectively annihilate exponential graph signals with

exponent ±iα. The same generalizations apply for higher-order k and combinations of

basis functions. Equivalently, the low-pass filters HLP±α = 1
2k

(
d̃±α
d IN + A

d

)k
on directed

bipartite circulant graphs retain ‘adapted’ reproduction properties, whereby (linear com-

binations of) the rows of HLP±α (at k = 1) reproduce exponentials with reversed exponent

∓iα (and vice versa for the columns).

It can be further shown that invertibility of the graph spline wavelet filterbank construction

in Thm 3.1 remains intact for directed graphs at k = 1, as by the Perron Frobenius Thm.

[93] for nonnegative matrices, A
d maintains an (albeit complex) spectrum with |γi| < γmax

and γmax = 1 of multiplicity 1 with eigenvector 1N ; here A is required to be primitive,

i. e. Ak > 0 for some k ∈ N to ensure |γi| < γmax (Thm. 1.7, [93]). Otherwise, invertibility

6An invertible graph wavelet transform may be designed to have analysis filters as a variation of
HLP/HP = (L + εIN )±t, as can be easily shown to be consequence of the generalized proof (see next
chapter), however, an additional drawback for this type of (dense) construction is instability due to large
condition numbers with the filters being close to singular.
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of the transform for all remaining graph cases, following proper normalization, depends

on the downsampling pattern and requires that the ‘downsampled’ eigenvectors associated

with γi and −γi (for |γi| = 1) form linearly independent sets respectively, yet is less evi-

dent. The proof of the graph e-spline wavelet transform (see Thm. 3.2) may be extended

to accommodate directed graphs under further restrictions.

Directed graphs have been featured to a lesser extent in spectral graph theory. In partic-

ular, their treatment is complicated by the fact that the corresponding graph Laplacian

matrices are no longer Hermitian, i. e. their eigenvalues (graph frequencies) are complex

and the existence of an orthonormal eigenbasis (or general eigendecomposition) is not

guaranteed. However in [94], the combinatorial graph Laplacian of a directed graph is

defined as a symmetrization via the probability transition matrix P. When the graph is

directed, strongly connected and circulant, this translates into ~L = IN − A+AH

2d , which is

equivalent to the normalized graph Laplacian of its undirected graph-counterpart. On the

basis of this definition, one can express the undirected normalized e-graph Laplacian via

the decomposition

L̃α =
d̃α
2d

IN −
A + AH

2d
=

S̃α + S̃Hα
2

=
S̃−α + S̃H−α

2
,

with d̃α = d̃+α+ d̃−α. Consequentially, the annihilation property of the e-graph Laplacian

on a directed circulant graph is preserved through the Hermitian transpose, where d̃+α

serves a dual function as the degree which annihilates complex exponentials with exponent

+iα on the graph of A and −iα on the graph of AH (and vice versa for d̃−α). Tying in

with the previous discussion on graph spline similarities and analogies, the undirected

graph Laplacian operator is a graph extension of a traditional second-order derivative

operator, giving rise to graph spline-like functions and associated wavelets in degree steps

of 2, which suggests that the directed first-order graph difference operator S̃α provides

an extension to the traditional first-order differential operator. For the directed cycle,

one therefore ascertains a comprehensive analogy with the traditional spline and e-spline

definitions. Nevertheless, it should be distinguished that the graph operators S2k and Lk

for α = 0, albeit possessing the same number of vanishing moments, do not describe the

same graph.

3.5 Complementary Graph Wavelets

Since the classical operation of circularly convolving a discrete-time signal with a filter

can be defined as the matrix-vector product between a circulant matrix and the given

signal-vector, the traditional technique of spectral factorisation in the z-domain is directly

extendable to circulant graphs and establishes a convenient analogy to the graph domain.
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3.5.1 The Bipartite Semi-IIR Graph Filterbank

Prior to broadening the range of graph wavelet constructions, further analysis of the char-

acteristic structure of current derivations is conducted. The case of a bipartite circulant

graph is of particular interest due to its dual vanishing moment property. Contrary to

standard biorthogonal wavelet filterbanks, the proposed graph spline wavelet construc-

tions only exhibit well-defined analysis filters, while their corresponding synthesis filters

are not concretely characterized. Consider the general analysis matrix of a circulant graph

wavelet transform

W =

[
Ψ↓2HLP

Φ↓2HHP

]
,

with downsampling matrices Ψ↓2,Φ↓2 ∈ RN/2×N , which respectively retain even and odd

numbered nodes such that

Ψ↓2(i, j) =

{
1, j = 2i− 1

0, otherwise
Φ↓2(i, j) =

{
1, j = 2i

0, otherwise

and graph-based low-and high-pass filters HLP ,HHP , whose respective representer poly-

nomials are given by HLP (z), HHP (z). Since W is invertible, and contains two sets

of basis functions, their corresponding duals, denoted by H̃LP (z), H̃HP (z) are formed in

W−1 =
[
(Ψ↓2H̃LP )T (Φ↓2H̃HP )T

]
, by design of a biorthogonal system [95]. In general,

the following relations hold for i, j ∈ {LP,HP}

Hi(z)H̃i(z) +Hi(−z)H̃i(−z) = 2 (3.5)

Hi(z)H̃j(z) +Hi(−z)H̃j(−z) = 0, i 6= j (3.6)

with HHP (z) = zHLP (−z) emerging from the current constructions when the graph

is bipartite and circulant7; by substitution into the above, it becomes apparent that

H̃HP (z) = z−1H̃LP (−z) must equivalently hold for the dual pair.

In particular, the synthesis filters can be explicitly derived from the perfect reconstruction

condition [78] on the modulation matrices Hi(z)H̃i(z) = 2I

(
HLP (z) HHP (z)

HLP (−z) HHP (−z)

)(
H̃LP (z) H̃LP (−z)
H̃HP (z) H̃HP (−z)

)
=

(
2 0

0 2

)
. (3.7)

Following inversion of the analysis matrix, and substituting HHP (z) = zHLP (−z), we

obtain (
H̃LP (z) H̃LP (−z)
H̃HP (z) H̃HP (−z)

)
=

2

D(z)

(
HHP (−z) −HHP (z)

−HLP (−z) HLP (z)

)
7In an abuse of notation, we incorporate a shift z, equivalently to the traditional z-transform, to signify

that odd-numbered rows retain the high-pass component.
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with determinant D(z) = HHP (−z)HLP (z) − HHP (z)HLP (−z) = −z(HLP (z)HLP (z) +

HLP (−z)HLP (−z)) 6= 0 and D(z) = −D(−z). The resulting synthesis filters are thus

given by

H̃LP (z) =
HHP (−z)2
D(z)

=
2HLP (z)

HLP (z)HLP (z) +HLP (−z)HLP (−z)

and

H̃HP (z) = −HLP (−z)2
D(z)

=
2z−1HLP (−z)

HLP (z)HLP (z) +HLP (−z)HLP (−z)
,

confirming the relation H̃HP (z) = z−1H̃LP (−z).
The derived synthesis filters now describe rational functions whose zeros and poles are

respectively the zeros of the numerator and denominator [81], which entails that the van-

ishing moments of the analysis filters are, in fact, preserved. Here, the order of the

polynomial in the denominator clearly exceeds that of the numerator. In classical SP,

these type of filters with typically exponentially decaying coefficients are known to induce

an infinite impulse response (IIR) and occur i. a. in semi-orthogonal filterbanks [78].

3.5.2 Design and Discussion

At last, a generalized approach is presented for the tailored design of circulant graph

wavelet filterbanks, whose vertex-localized (analysis) low-pass filters can acquire repro-

duction properties, while the high-pass filter is maintained as is.

In previous transforms, both low-and high-pass filters are well-defined in the analysis do-

main and have compact support of the same length 2Mk + 1, based on the given graph

bandwidth, yet, as a result, lack a concrete representation of their synthesis filters whose

support is comparatively larger (exponentially decaying). Further, dual vanishing mo-

ments emerge, by design, only for bipartite circulant graphs. In light of this, a new

class of graph wavelet filterbanks is developed through traditional spectral factorization

techniques, ordinarily employed for the creation of biorthogonal perfect reconstruction

filterbanks, and more recently used within a variation in [36] to create bipartite spectral

graph filters, to implement the desired properties. These novel transforms are composed

of well-defined analysis and synthesis filters of compact support and can be related to

the previous filterbanks via a symmetric circulant transformation filter C in the low-pass

branch, depending on the invertibility of the low-pass filters in Eqs. (3.1) and (3.3).

As a result of spectral factorization, it can be ensured that the graph filter matrices in

both the analysis and synthesis branch are of finite and balanced bandwidth for 2Mk < N .

Nevertheless, as a limitation of this type of filterbank, only the standard alternating down-

sampling pattern for circulant graphs, which samples every other node, can be enforced,

contrary to the preceding constructions.
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Graph Spline

Consider the case of a simple spline for α = 0. Given analysis high-pass filter HHP (z) =
l(z)k

(2d)k
with 2k vanishing moments, the synthesis lowpass filter is determined as H̃LP (z) =

HHP (−z) and thus, analysis lowpass filter HLP (z) can be derived from the biorthogonality

relations of a traditional filterbank [95], with P (z) = HLP (z)H̃LP (z) subject to the con-

straint of the half-band condition8 P (z)+P (−z) = 2. By additionally imposing symmetry

(for an undirected graph) on the resulting filter HLP (z) =
∑T

i=0 ri(z
i + z−i), one arrives

at the equality

P (z) = 1+
L∑
i=0

p2i+1(z2i+1+z−(2i+1)) =
1

(2d)k

(
d−

M∑
i=1

(−1)idi(z
i + z−i)

)k( T∑
i=0

ri(z
i + z−i)

)
(3.8)

where P (z) is a polynomial of odd powers. One may additionally impose that anal-

ysis and synthesis filters have an equal number of vanishing moments 2k, by setting

HLP (z) = (z + 1)k(z−1 + 1)kR(z), where R(z) is the polynomial to be determined.

At k = 1, the highest degree of each side of Eq. (3.8) is 2L + 1 = M + T , result-

ing in a linear system with L + 1 constraints p2n = 0, n = 1, ..., L, and p0 = 1, and

T + 1 unknowns ri, i = 0, ..., T . In order to obtain a unique solution, we require

L = T = M+T−1
2 , or T = M − 1. At higher-order with k > 1, the constraints change as

follows: T = L = Mk+T−1
2 , or T = Mk− 1. For both synthesis and analysis filters to have

an equal number of vanishing moments, we further need to include the additional factor

(z + 1)k(z−1 + 1)k for HHP (z) = 1
(2d)k

l(z)k, and require T = Mk + k − 1.

The necessary existence of a complementary analysis low-pass filter for a given high-pass

filter on a graph G, follows from the Bézout theorem:

Theorem 3.3 (Bézout [25]). Given C(z) ∈ R[z], there exists a polynomial D(z) ∈ R[z]

such that

C(z)D(z) + C(−z)D(−z) = 2

if and only if C(z) has neither zero as a root, nor a pair of opposite roots. In this case, there

exists a unique polynomial D0(z) ∈ R[z] satisfying the above and such that degD0(z) ≤
C(z)− 1. The set of all polynomials D(z) ∈ R[z] that satisfy the above is

{D0(z) + zλ(z2)C(−z), λ(z) ∈ R[z]}.

It can be directly observed that graph Laplacian-based filter C(z) = HHP (−z) cannot

8Since the general set up of the proposed graph filterbanks is such that even-numbered nodes retain the
low-pass and odd-numbered nodes the high-pass component, one is technically considering orthogonality
between the shifted zHHP (z) and its dual H̃LP (z) = −z−1((−z)HHP (−z)), but this notation is omitted
for simplicity.
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have a zero root since d =
∑M

i=1 2di > 0 (as graph weights are nonnegative di ≥ 0). If the

generating set S of the graph at hand consists of only even elements, C(z) contains pairs

of opposing roots such that HHP (−z) = HHP (z); however, G is assumed to be connected

with s = 1 ∈ S, so this cannot occur.9

One can equivalently resort to spectral factorization on bipartite circulant graphs, however,

since both P (z) and HHP (z) are odd degree polynomials, R(z) is required to be of higher

degree T than the remaining factor in P (z) in order to produce a non-trivial solution; the

resulting underdetermined linear system can be uniquely solved by imposing additional

constraints on the coefficients ri (such as roots at z = −1).

The proposed biorthogonal graph spline wavelet constructions for circulant graphs are

captured in the following theorem:

Theorem 3.4. Given the undirected, and connected circulant graph G = (V,E) of dimen-

sion N , with adjacency matrix A and degree d per node, define the higher-order ‘comple-

mentary’ graph-spline wavelet transform (HCGSWT) via the set of analysis filters:

HLP,an
(∗)
= CH̄LP =

1

2k
C

(
IN +

A

d

)k
(3.9)

HHP,an =
1

2k

(
IN −

A

d

)k
(3.10)

and the set of synthesis filters:

HLP,syn = c1HHP,an ◦ IHP (3.11)

HHP,syn = c2HLP,an ◦ ILP (3.12)

where HLP,an is the solution to the system from Eq. (3.8) under specified constraints, with

coefficient matrix C arising from the relation HLP,anH̄
−1
LP when H̄LP is invertible (see

Cor. 3.3). Here, ◦ is the Hadamard product, ci, i ∈ {1, 2} are normalization coefficients,

and ILP/HP circulant indicator matrices with first row of the form [1 − 1 1 − 1 ...].

Proof. Follows from above discussion.

As a result of spectral factorization, the shape and vertex spread of HLP,an does not

directly coincide with the adjacency matrix of the graph (and its powers), but rather en-

compasses a subset Si ⊆ N(i, k̃) of vertices, per node i within its k̃-hop local neighborhood,

for some k̃ dependent on the initial constraints on HLP,an(z).

To establish a structural link to the analysis branch of the HGSWT in Thm 3.1, and

in particular, to the (adjacency matrix-based) low-pass graph filter H̄LP of Eq. (3.1), a

9This is a phenomenon one would however observe for the adjacency matrix of a bipartite circulant
graph with power k = 2N, since the diagonals are zero.
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3.5. Complementary Graph Wavelets

transitional graph filter is formed with the symmetric circulant coefficient matrix C in (∗),
which is determined via matrix inversion of H̄LP (when G is non-bipartite, see Cor. 3.3

for α = 0).

Given initial graph signal p ∈ RN and its GWT-representation p̃ ∈ RN from Sect. 3.2,

the synthesis stage can thus be explicitly expressed as follows:(
1

2
((IN + K)HLP,syn)T +

1

2
((IN −K)HHP,syn)T

)
p̃ = p,

for Ki,i = 1 at even-numbered positions and Ki,i = −1 otherwise.

Graph E-spline

The process is analogous for the graph e-spline case and we further proceed to create

complementary graph e-spline filterbanks with filters that can reproduce and annihilate

signals within the generalized class of complex exponential polynomials.

According to (Thm. 1, [25]), a scaling function Hj(z) at level j can reproduce a function

of the form P (t)eγmt, where degP (t) ≤ (Lm − 1) for multiplicity Lm of γm, if and only if

the former is divisible by the term R2j~γ(z), ∀j ≤ j0−1, where R~γ(z) =
∏M
m=1(1+eγmz−1),

with ~γ = (γ1, ..., γM )T ∈ CM , and Hj(z) has no roots of opposite sign, i. e. Hj(z) satisfies

the generalized Strang-Fix conditions for suitable ~γ.

Mirroring the constructions of Thm. 3.4, analysis lowpass filter HLPα(z) is determined

from analysis high-pass filter HHPα(z) = l̃α(z)
2d with 2 vanishing exponential moments,

and can be expressed as an extension of Eq. (3.3) via coefficient matrix C (subject to

constraints, see Cor. 3.3). By imposing the constraints of Bézout’s Thm. [25], and setting

P (z) = HLPα(z)HHPα(−z), the previous equality takes the form

P (z) = 1+

L∑
i=0

p2i+1(z2i+1+z−(2i+1)) =
1

2d

(
d̃α −

M∑
i=1

(−1)idi(z
i + z−i)

)(
T∑
i=0

ri(z
i + z−i)

)
(3.13)

whose emerging linear system can be solved for unknown symmetric coefficients ri of

HLPα(z), in a similar fashion as discussed for Eq. (3.8).

Moreover, one may impose HLPα(z) = (z+ eiα)(1 + e−iαz−1)R(z), with unknown polyno-

mial R(z), for the analysis and synthesis filters to have (an equal number of) vanishing

moments. Generalizations to multiple parameters ~α = (α1, ..., αT ) and higher order k > 1

are realized by defining the high-pass filter HHP~α(z) =
∏T
n=1

1
(2d)k

l̃αn(z)k (as in Thm. 3.2),

and HLP~α(z) =
∏T
n=1(z + 2 cos(αn) + z−1)kR(z), however, a solution R(z) exists only if

the remainder term in P (z) does not contain zero and/or opposing roots [25].

The existence of a suitable low-pass filter HLP~α,an which completes the above filterbank is

conditional upon the representer polynomial HHP~α,an(z) of HHP~α,an yielding no opposing
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or zero roots for given ~α, thereby satisfying Bézout’s Theorem ([7], [25]). For instance,

opposing roots occur for the case e−iα = −eiα, at α = π/2, 3π/2, and one cannot create

filterbanks for these parameters.

Similarly, a multiresolution representation of the filterbank can be realized if real-valued

filters exist, which maintain their reproduction/annihilation properties up to a certain

level j ≤ J − 1. In the Euclidean domain, the filters of a non-stationary biorthogonal

exponential wavelet filterbank with exponents ~α = (α1, ..., αT ) do not contain roots of

opposite sign nor the zero root at level j, as long as there are no distinct α, α′ in ~α that

satisfy 2j(α− α′) = i(2k+ 1)π, for some j ≤ J − 1 and k ∈ Z [25]; otherwise, a multilevel

representation is only possible up to a finite level J − 1, when this condition ceases to

be fulfilled. This result becomes particularly relevant when considering multi-parameter

graph e-spline wavelet filterbanks. As an extension of the latter, one can further deduce

from Cor. 3.5 on the HGESWT conditions on the existence of a complementary filterbank,

given a parameterized high-pass filter. The discussed approach gives rise to the following

filterbank:

Theorem 3.5. Given the undirected, and connected circulant graph G = (V,E) of di-

mension N , with adjacency matrix A and degree d per node, we define the higher-order

‘complementary’ graph e-spline wavelet transform (HCGESWT) via the set of analysis

filters:

HLP~α,an
(∗)
= CH̄LP~α = C

T∏
n=1

1

2k

(
βnIN +

A

d

)k
(3.14)

HHP~α,an =

T∏
n=1

1

2k

(
βnIN −

A

d

)k
(3.15)

and the set of synthesis filters:

HLP~α,syn = c1HHP~α,an ◦ IHP (3.16)

HHP~α,syn = c2HLP~α,an ◦ ILP (3.17)

where HLP~α,an is the solution to the system from Eq. (3.13) for ~α under specified con-

straints, with coefficient matrix C arising from the relation HLP~α,anH̄
−1
LP~α

where applicable

(see Cor. 3.3). Here, ci, i ∈ {1, 2} are normalization coefficients, and ILP/HP are circulant

indicator matrices with first row of the form [1 − 1 1 − 1 ...].

At ~α = 0, this coincides with the previous graph spline wavelet filterbank.

While the proposed design is applicable to bipartite circulant graphs, it is less relevant,

as the transform given in Thm. 3.2 already provides the desired reproduction properties,

except when compactly supported synthesis filters are desired. As an interesting aside,
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however, for a bipartite circulant graph, the special case from Cor. 3.4 in Sect. 3.3.3 can

be further extended to provide scenarios which violate Bézout’s Thm. and hence the

existence of a complementary filterbank construction when downsampling is conducted

with respect to s = 1 ∈ S. Specifically, when ∃αi, αj in ~α such that d̃αi = −d̃αj for d̃α,

the representer polynomial of the high-pass filter product HHPαi
HHPαj

contains opposing

roots due to HHPαj
(z) = −HHPαi

(−z). We will further revisit this discussion in Ch. 5 on

sampling.

3.6 Computational Experiments

The proposed graph wavelet designs are exemplified and assessed in the following experi-

ments, which compare their non-linear approximation performance for smooth signals in

both clean and noisy states; these primarily serve an illustrative purpose as opposed to

providing a comprehensive numerical study, in light of the variation present for different

choices of graphs.

Let signals reside on the circulant graph of dimension N = |V | = 210 = 1024 and gener-

ating set S = (1, 2), and consider 5 levels of the graph (e-)spline wavelet transform (see

Thms. 3.1 and 3.2) in comparison with complementary GWT constructions (see Thms. 3.4

and 3.5), which feature the same analysis high-pass filter, suitably parameterized to anni-

hilate the signal x at hand, and a variable low-pass filter. The HCGESWT is presented

in two variations with either dual or unilateral (on the analysis side) vanishing moments,

denoted with the suffixes M.M and M.0 respectively for number of vanishing moments M .

The wavelet atoms (rows) have been normalized to length 1 and reconnection is conducted

by retaining the same generating set.

The non-linear approximation of a graph signal x ∈ RN within a given graph basis is de-

fined as x̂ =
∑

k∈IK wkŵk, for graph wavelet coefficients {wk}k and basis functions {ŵk}k
of the inverse GWT, where IK is the index set of the K-largest magnitude coefficients wk.

In the presence of white Gaussian noise n, x is recovered from the graph wavelet represen-

tation w̃ of x̃ = x + n via hard thresholding by setting a prescribed number T = N −K
of the smallest graph wavelet coefficients to zero and subsequently applying the inverse

transformation. In the treated examples, this is done at several different levels of noise,

for a fixed percentage close (or equal) to the sparsifying threshold, i. e. minimum number

of non-zero graph wavelet coefficients required for perfect reconstruction, of either of the

transforms.10 The reconstruction error is measured in dB via SNR = 10 log10
||x||22
||x̂−x||22

and,

10This assumes that the type and order of the clean signal is known, however, the exact threshold level
can also be directly computed from the parameters of the transform.
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in the noisy case, averaged over 10 trials per noise level; perfect reconstruction is indi-

cated via a large plateaued value SNR > 200 dB, as per MATLAB’s numerical precision.

Performance of the transforms is then assessed with respect to the fraction of retained

non-zero wavelet coefficients K/N , and, in the noiseless case, sparsity K can be explicitly

stated through a formula, given in Cor. 5.1 of subsequent Sect. 5.1.3.

Figure 3.5 shows the performance for a linear polynomial graph signal, and it becomes

apparent that best performance under noise is achieved by the complementary construction

with dual vanishing moments, while all transforms exhibit the same sparsity (efficiency)

level in the clean state.

Figure 3.5: Comparison of NLA (lower left) and denoising performance (lower right) for
a linear polynomial (top).

In addition, we consider the same linear polynomial graph signal on a slightly more con-

nected circulant graph with S = (1, 2, 3, 4), which reveals a shift in performance, partic-

ularly noting that the matrix-based transform outperforms the complementary construc-

tions under noise, which in turn prove destructive as a result of an increased bandwidth

(see Fig. 3.6).

In Figure 3.7, we consider the graph e-spline based constructions for a sinusoidal graph

signal, which due to lack of a border effect, are equally efficient when there is no noise,

while the dual complementary construction again prevails in the noisy scenario. At last,

Fig. 3.8 presents a sum of sinusoidals, which is best represented under noise by the dual

complementary e-spline transform, while the matrix-based construction suffers a distinct

drop in performance, indicating a higher susceptibility to noise at higher order.

Table 4.1 lists the condition numbers of the specified multilevel graph wavelet matrices,

which provide an indication, although not a universal explanation, for the observed per-

formances under noise. While the tailored complementary designs possess a consistently
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Figure 3.6: Comparison of NLA (lower left) and denoising performance (lower right) for
a linear polynomial (top) on a circulant graph with S = (1, 2, 3, 4).

lower condition number, in keeping with their mostly superior/solid performance, the

purely graph matrix-based designs gain large condition numbers as the number of param-

eters increase, which proves destructive. This downside will be further investigated (and

partially remedied) in the next chapter.

Graph Generating Set Type Order Parameters ~α Cond. No

{1, 2} HGSWT k = 1 0 14.98

HCGSWT 2.0 13.13

HCGSWT 2.2 13.00

HGESWT k = 1 2π4
N 19.60

HCGESWT 2.0 12.93

HCGESWT 2.2 13.58

HGESWT k = 1
(

2π1
N , 2π5

N

)
331.69

HCGESWT 4.0 41.47

HCGESWT 4.4 49.37

{1, 2, 3, 4} HGSWT k = 1 0 16.07

HCGSWT 2.0 35.16

HCGSWT 2.2 16.03

Table 3.2: Condition Numbers of the GWTs.

Nevertheless, performance also depends on the graph topology, whereby an increase in the

number of connections (or graph band) may similarly contribute to decrease in perfor-

mance (at any order); it would appear that among the graph matrix-based constructions,

the condition number of the simple spline is less dramatically affected by an increase in

connections (which will also be proved in Ch. 4 for bipartite graphs).

The individual (normalized) graph filter-functions for selected cases (at level 1) are de-

picted in Figs. 3.9 – 3.11. One expectedly observes that with an increase in the number

of parameters (or order) and graph connectivity, the graph filter functions (especially in
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Figure 3.7: Comparison of NLA (lower left) and denoising performance (lower right) for
a sinusoidal with (α = 2π4

N ) (top).

the synthesis domain) become less smooth.

To summarize, this chapter has introduced a range of novel graph (e-)spline wavelet trans-

forms on circulant graphs, and provided a comprehensive analysis of their properties and

implications for both spectral graph theory and GSP as well as established their link to

traditional signal processing on the basis of the theory of circulants.
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Figure 3.8: Comparison of NLA (lower left) and denoising performance (lower right) for
a sum of sinusoidals with (α1 = 2π1

N , α2 = 2π5
N ) (top). c©2017 Elsevier Inc.

Figure 3.9: Comparison of Graph-filter functions: analysis low-pass (top), synthesis low-
and high-pass (from left) at one level for the linear spline constructions on the graph with
S = (1, 2).
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Figure 3.10: Comparison of Graph-filter functions: analysis low-pass (top), synthesis low-
and high-pass (from left) at one level for the linear spline constructions on the graph with
S = (1, 2, 3, 4).

Figure 3.11: Comparison of Graph-filter functions: analysis low-pass (top), synthesis low-
and high-pass (from left) at one level for the convolved e-spline constructions on the graph
with S = (1, 2).
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Chapter 4

Generalized and Adaptive

Wavelets on Graphs

Following a discussion which was largely focused on circulant graphs, what has transpired

is that a number of key ideas and properties actually have widespread relevance, and as

such the present chapter is designed to expand upon how the established structure of the

graph wavelet transform (GWT) can be leveraged for more complex scenarios, including

non-circulant arbitrary undirected graphs, a set (or system) of graphs, as well as associ-

ated signals with space-and time-variant properties, all the while retaining the focus on

inducing sparse representations.

We will begin with an analysis and review of the graph wavelet transform in order to

demonstrate its implications, and summarize how the proposed designs constitute spe-

cial cases of a more general matrix-based filterbank notion when the graph at hand is of

a regular structure. Subsequently, the discussion shifts to a range of novel designs, en-

compassing (i) generalized bandlimiting, (ii) space-variant, and (iii) time-variant graph

wavelet transforms. In the latter instance, this may entail the cases of a fixed signal over a

graph that changes over time, where topological information is fused through the sum or

product of graph-filters at different time instants in order to capture the evolution of the

graph structure, as well as a time-varying signal over a fixed (multi-dimensional) graph,

realized through graph product operations within a multi-dimensional scheme.
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4.1 Generalized Bandlimiting Graph Wavelet Transforms

4.1.1 The GWT in Perspective

In the following, we review the graph wavelet transform from a linear algebraic perspective

and make connections to existing and proposed variations. This a priori necessitates the

specification of a graph shift-operator :

Note on the shift operator: For circulant graphs, which are LSI, the graph shift-

operator is given by the powers of the circulant permutation matrix Π with first row

[0 1 0 ...], equivalent to the classical time-shift [55]. In order to determine the trans-

lations of a given signal with respect to the structural irregularity of an arbitrary graph,

one requires the definition of an appropriate shift-operator underlying all graph filtering

operations. Within several GSP works, a generalized graph-shift operator is described as a

linear transformation with local (topological) significance, which may take the form of any

graph matrix; filters that are polynomials in the shift-operator are thus deemed to be shift-

invariant with respect to the graph. In [54], graph operations derive from the adjacency

matrix and its Jordan decomposition A = VJV−1, admitting extensions to directed graphs,

and as such filters are deemed shift-invariant on the graph if and only if they constitute

polynomials in A; here it is required that the minimal and characteristic polynomial of A

are equal, which entails that each distinct eigenvalue is associated with a single Jordan

block Ji. In another line of work, shift operators are defined as having the same eigenbasis

as the graph matrix at hand, yet their eigenvalues are complex exponential phase shifts,

having been created to facilitate the preservation of the energy of the signal [96]. All of

these operators are based in some form on a common graph-eigenbasis which ensures that

resulting (filter-) matrices commute, as a defining property for many relevant transforms.

Hermitian matrices, along with real skew-symmetric matrices, form a subset of normal

matrices, which are unitarily diagonalizable. As such, normal matrices commute if they

are simultaneously unitarily diagonalizable (Thm. 2.5.5, [97]), while their product is also

normal. Therefore, a shift-invariant operator (filter) on an undirected graph may take any

form, beyond being polynomial in a designated graph matrix1, provided it is diagonaliz-

able by the same graph eigenbasis, and hence commutes with the graph matrix.

Let HLP and HHP denote generic graph filters on an undirected graph G = (V,E) with

|V | = N , whose sole restriction is their shift-invariance with respect to the normalized

graph Laplacian matrix wlog2 Ln = UΛUH , i. e. they share the same eigenbasis U, and

1Note that the polynomial formulation may be advantageous, though not always necessary, for other
properties such as localization in the vertex domain [1].

2While transforms are further on expressed in terms of the normalized adjacency matrix as the central
operator, the graph Laplacian-based perspective is adopted here to draw connections to existing work.
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K a suitable downsampling matrix, with Ki,i = 1 for retained nodes and Ki,i = −1

otherwise. In a generalization of Thms. 3.1 and 3.2, the graph wavelet transform

W =
1

2
(IN + K)HLP +

1

2
(IN −K)HHP

is invertible for any K as long as the sufficient condition λLP,iλHP,i ≷ 0,∀i ∈ [0 N − 1]

on the graph filter eigenvalues is satisfied, where λk,i denotes the i-th eigenvalue of the

filter decomposition Hk = UΛkU
H . In particular, by assuming that the nullspace of W,

represented by z = Ur for some r ∈ CN , is non-empty and setting Wz = 0N , one arrives

at the equality

U(ΛLP + ΛHP )r = −KU(ΛLP −ΛHP )r,

which, following l2-normalization and subsequent squaring of both sides, results in∑N−1
i=0 |r(i)|2λLP,iλHP,i = 0 and, hence, r = 0N under suitable restrictions on the eigen-

values. If the spectral product becomes zero for certain i, invertibility can be further

guaranteed as long as essentially the corresponding eigenvector(s) remain linearly inde-

pendent after downsampling by a suitably chosen pattern K.

As such, analysis filter-functions of the form HLP (1−λ) = HHP (−(1−λ)) =
∏
n(βn+(1−

λ))k introduced within previous circulant constructions and expressed with respect to the

normalized graph Laplacian, present only a subset of valid possibilities; in particular, as

long as the constant-sign requirement is satisfied for {HLP (1−λi)HHP (1−λi)}i, one may

i. a. combine analysis low-and high-pass filters of different order k or parameter β, beyond

circulant graphs, for a desired frequency response. More generally, filters may adopt the

form HLP =
∑N−1

i=0 siL
i
n and HHP =

∑N−1
i=0 s̃iL

i
n subject to(

N−1∑
i=0

siλ
i
j

)(
N−1∑
i=0

s̃iλ
i
j

)
≷ 0, ∀j ∈ [0 N − 1],

while the coefficients {si, s̃i}N−1
i=0 need not be inter-related; alternatively, one may define

the filters with respect to the adjacency matrix, and, in case of regularity and/or normal-

ization, these graph matrices are interchangeable due to a common eigenbasis.

For synthesis filters H̃LP and H̃HP , the overall transfer function T of a critically-sampled

perfect reconstruction filterbank then yields

T =
1

2
(H̃LPHLP + H̃HPHHP )︸ ︷︷ ︸

T1

+
1

2
(H̃LPKHLP − H̃HPKHHP )︸ ︷︷ ︸

T2

. (4.1)

One can achieve perfect reconstruction (PR) with T = IN by e. g. setting T1 = cIN , c ∈ R,

and T2 = 0N,N , and accordingly deriving conditions on the individual filters. When the

graph filters are restricted to a function h(· ) of graph Laplacian L, with representation
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H = h(L) =
∑

λi∈λ(L) h(λi)Pλi , for spectrum λ(L) of L and projection-matrix Pλi = uiu
H
i

corresponding to λi, their design can be tailored to satisfy the PR condition directly in

the spectral domain. The previous relations thus simplify to T1 = 1
2

∑N−1
j=0 (λ̃LP,jλLP,j +

λ̃HP,jλHP,j)Pλj and T2 = 1
2

∑N−1
i=0

∑N−1
j=0 (λ̃HP,iλHP,j − λ̃LP,iλLP,j)PλiKPλj .

In the case of a bipartite graph, the spectral folding property of the graph-eigenvalues,

along with the distinct bipartite downsampling pattern K, which retains vertices of one

disjoint set, and the relation PλPγ = δλγPλ for Kronecker delta δij , facilitate the further

simplification of T2 = 1
2

∑N−1
i=0 (λ̃HP,iλHP,N−i − λ̃LP,iλLP,N−i)KPλN−i , which translates

into the set of PR conditions for i ∈ [0 N − 1]

λ̃LP,iλLP,i + λ̃HP,iλHP,i = c2, c ∈ R

λ̃LP,iλLP,N−i − λ̃HP,iλHP,N−i = 0

as is demonstrated as part of the bipartite graph filterbank by Ortega et al. [35]. The

filter eigenvalues may be tailored to satisfy the above relations, i. a. through the spectral

design of a QMF or biorthogonal filterbank, under the assumption that these are given by

(polynomial) functions in a graph matrix with λh = h(λ) ([35], [36]).

The above system resembles the form of classical perfect reconstruction and anti-aliasing

conditions, as seen in Eq. (3.7) of Sect. 3.5.1, however, only when the graph at hand is

circulant and the filter eigenvalues invoked in the z-domain of representer polynomials

HLP/HP (z) (as well as the downsampling pattern fixed with respect to s = 1 ∈ S), there

is an exact analogy, as elucidated in Sect. 3.5.

According to circulant matrix theory [75], the latter are defined as functions of the roots

of unity, and give rise to the corresponding filter-eigenvalues at position k of the DFT-

ordered spectrum for z = e
2πik
N ; the decisive difference with bipartite filter constructions

is that the representer polynomial of circulants is directly defined in the vertex domain,

as opposed to the spectral domain as a function of a graph matrix, and by extension, its

eigenvalues. Hence, in case of circularity, one may resort to the complementary PR design

proposed in Sect. 3.5.2 by fixing one filter and imposing desired properties on its dual.

If the graph is both bipartite and circulant, special scenarios such as the introduced semi-

IIR graph-filterbank arise, and, more significantly, properties from either design strategy

may be leveraged. Moreover, the bipartite downsampling pattern coincides with that of a

circulant graph, if taken with respect to the outmost cycle. While in the bipartite graph

case, the filter-eigenvalues h(λ) are given as a function h(· ) of the graph Laplacian eigen-

values λ, for a circulant graph, the eigenvalues are induced via the representer-polynomial

H(z) as a function of the roots of unity; hence for a circulant bipartite graph, one can

easily switch between the two via transformation λ(z) =
∑

j∈2Z++1 dj(−zj + 2− z−j) for

weights dj = Ai,(j+i)N in h(λ(z)).
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Overall, it is for the aforementioned special cases that synthesis filters can be explicitly

stated and/or derived from a given set of analysis filters. When the graph at hand has nei-

ther of the preceding properties, the spectral system resulting from Eq. (4.1) remains valid,

but it is less straightforward to tailor its design and determine explicit synthesis filters,

particularly considering the absence of a definitive downsampling scheme. The general fil-

terbank structure is preserved through inverse W−1 = 1
2H̃T

LP (IN + K) + 1
2H̃T

HP (IN −K),

which consists of two sets of basis functions, yet it is unclear how they are related to the

graph, beyond the fact that they may be interpreted to preserve shift-invariance in certain

cases. The synthesis filters H̃LP/HP before downsampling are not uniquely defined from

the inverse, unless there is a distinct underlying structure and sampling pattern, such as

for the circulant case.

4.1.2 Generalized Vanishing Moments

In an effort to challenge the annihilation property of previously developed transforms

beyond (exponential) polynomials, and accommodate more general types of signals as

well as graphs, one can make the general observation that any filter of the form

H = (γ(A)IN−A) for symmetric A and eigenvalue γ(A) is bandlimiting, i. e. it annihilates

selected signals of banded frequency support by attenuating their content outside that

support. The inherent technique of successive nulling of the eigenvalues of a linear graph

operator has also been employed for average-consensus in multi-agent systems [98], albeit

with the objective to restrict an initial signal to a fixed (eigen-)subspace.

In particular, any generalized graph filter that is defined as a polynomial in the adjacency

matrix H =
∑N−1

i=0 hiAi, and is thus shift-invariant with respect to A, with HA = AH,

can alternatively be expressed in the factorized form H = h̃0
∏N−1
i=1 (h̃iIN−A) for hi, h̃i ∈ C

according to the Fundamental Thm. of Algebra, and hence tailored to attenuate certain

frequencies by setting its coefficients h̃i = γk equal to the eigenvalues {γk}k of A. If A is

circulant and banded of bandwidth M , annihilation can prominently be further expanded

to localized form for generic e-degree h̃i =
∑M

k=1 2dk cos(αnk) and some αn ∈ R.

As already noted in Ch. 3, both the spline and e-spline graph wavelet transforms do not

require circularity (albeit they do require symmetry) for invertibility, which prompts the

creation of a generalized (higher-order) bandlimiting graph wavelet transform, following

the notion of a nullspace-shifted high-pass operator à la Rmk 3.1:

Corollary 4.1. Given the undirected graph G with symmetric normalized adjacency ma-

trix An, we define the higher-order bandlimiting graph wavelet transform (HBGWT), com-

posed of the low-and high-pass filters:

HLP =
T∏
n=1

1

2k
(γnIN + An)k (4.2)
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HHP =
T∏
n=1

1

2k
(γnIN −An)k (4.3)

where HHP annihilates bandlimited graph signals associated with eigenvalues {γn}Tn=1.

This filterbank is invertible, subject to equivalent restrictions on the downsampling pattern

and parameters, as in Thms 3.1 and 3.2.

The above transform may further be expressed in terms of any equivalent (symmetric)

graph shift-operator (or generalized graph Laplacian) that need not be the adjacency

matrix; in the case when normalized graph adjacency matrix eigenvalues γn are replaced

by other constants, invertibility conditions may be accordingly relaxed.

According to the Perron-Frobenius Thm. γmax(An) = 1 has multiplicity 1 for a connected

undirected graph (Thm. 2.22, [47]), which simplifies the preceding Corollary (and equiva-

lent Theorems) when γn = 1,∀n, since in that case only at least one low-pass component

needs to be retained to guarantee invertibility. However, connectivity is generally not a re-

quirement, provided linear independence of the downsampled eigenvectors (corresponding

to γn) is upheld for larger multiplicities (and multiple eigenvalues) for a suitable down-

sampling pattern.

While the higher order invoked by powers k > 1 is in this case less meaningful than

the higher order vanishing moments of a circulant graph, it nevertheless grants a related

interpretation, according to which an increase in order k, leads to an increase in the space

of functions which can be approximately annihilated, in the spirit of the vanishing mo-

ments of a diffusion operator by Coifman et al. [33]. In particular, for those γj(An) that

are close to selected graph frequencies {γn}n, or rather, for certain eigenvalues of HHP that

are close to zero, the corresponding eigenvector uj is accordingly smooth with respect to

the graph, i. e. closer to annihilation. For k >> 1, the eigenvalues of HHP become smaller

and concentrate more densely around zero (i. a. as a result of normalization), such that

(γn(An)IN −An)kuj ≈ 0N for some γj ≈ γn.

Further, when the graph at hand is bipartite, the filter-structure of the HBGWT is af-

fected by the spectral folding phenomenon, as previously noted for bipartite circulant

transforms in Sect. 3.3.3, which entails that graph signals bandlimited to frequency −γn
are annihilated in the low-pass branch and maintained in the high-pass branch.

We adopt the following definition for the class of bandlimited graph signals, while noting

that the characterisation of a ‘band’ has been interpreted differently in other work, such

as through a cut-off value [67] as opposed to a fixed number of frequencies [68].

Definition 4.1. A graph signal x ∈ CN is bandlimited with respect to graph basis U with

bandwidth K if it has the form x =
∑K

i=1 aiui, where ui is the i-th (ordered) eigenvector

of an appropriately chosen (un-)normalized graph matrix, for coefficients ai ∈ C.
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While conventionally the graph Laplacian eigenbasis is chosen as a basis U, one may also

consider the eigenvectors of the (normalized) adjacency matrix, as done in [68]. One can

extend this definition to comprise arbitrary (sparse) linear combinations of basis vectors,

up to a permutation, without the restriction to a single ordered graph frequency band,

which we term generalized bandlimited.

At last, in an effort to allow for directionality in edges, consider an extension of the GWT

to classes of graphs with normal adjacency matrices, which may include asymmetry, and

hence direction:

Remark 4.1. As previously noted, normal matrices, admitting the relation AAH = AHA,

form a generalized class of matrices, comprising i. a. unitary, Hermitian and skew-Hermitian

matrices, which are diagonalizable by a unitary basis U [97]. It can be shown that Cor.

4.1 with γn = 1 (or Thm. 3.1) for k = 1 is extendable to nonnegative normal matrices

under further restrictions; leveraging Perron-Frobenius theory, here, An is required to be

primitive so that |γi| < γmax, with γmax = 1 under proper normalization, and the proof

carries over, otherwise, invertibility depends on the downsampling pattern. In particular,

a directed circulant matrix is normal, and the already discussed conditions apply equiva-

lently (see Sect. 3.4.1).

Real skew-symmetric matrices on the other hand, defined through AT = −A, possess

exclusively purely imaginary eigenvalues (in conjugate pairs) [97], which, if imposed as

transform parameters {γn}n, uphold Cor. 4.1, leaving the simplifications due to symmetry

in the proof(s) unchanged, as imaginary terms are cancelled out; this further extends to

arbitrary purely imaginary parameters.

Following Rmk. 4.1, note that any square matrix A can be expressed as the sum of

symmetric and antisymmetric parts in A = Asym+Aasym = 1
2(A+AT )+ 1

2(A−AT ) [97].

Given an arbitrary directed graph with adjacency matrix A, one may conduct operations

with respect to both a symmetrized Asym and anti-symmetrized version Aasym, which

possibly contains negative weights, of A separately and subsequently average (or merge)

the results. In particular, for normalized Aasym,n = 1
|γmax|Aasym, where γmax is the largest

magnitude eigenvalue of Aasym
3, the proposed bandlimiting graph wavelet transform is

provably invertible for either matrix class, without incurring further restrictions due to

the complex eigenvalues of arbitrary unsymmetric matrices or resorting to the less flexible

Jordan decomposition; here, Cor. 4.1 applies directly to the latter for purely imaginary

parameters {γi}i.4

3This normalization ensures that the spectrum γ̃(Aasym,n) of Aasym,n is bounded with |γ̃| ≤ 1,
which in the case of nonnegative matrices, would be otherwise facilitated by the symmetric normalized
D−1/2AD−1/2 or random-walk normalized form D−1A, as per the Gerschgorin Circle Theorem [5].

4In particular, the symmetry of the spectrum of a skew-symmetric matrix, containing purely imaginary
pairs of complex conjugates (including 0), is similar to the (real) spectrum symmetry of a bipartite graph
with respect to zero. As such, for special cases |βn| = |γi(Aasym,n)|, the proof of Thm. 3.2 (and Cor. 4.1)
continues to hold.
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The case of γ = 1 (as per Thm. 3.1), continues to hold for properly normalized skew-

symmetric matrices when k = 1, however, one incurs the restriction that invertibil-

ity depends on the linear independence of downsampled eigenvectors corresponding to

|γi(Aasym,n)| = 1 since Perron Frobenius theory is not applicable.

4.1.3 Generalizations to Random Walk

When dealing with non-regular connected undirected graphs, it may be desirable for the

(spline-)GWT to retain orthogonality with respect to constant signals, however, as a

consequence of the normalization of the adjacency matrix to the form An = D−1/2AD−1/2,

the high-pass filter Ln = IN − An instead only annihilates signals of the form D1/21N ,

as the eigenvector in its nullspace. In this case, An may be replaced by the random-walk

normalized version D−1A; while the latter is consequentially not symmetric in general and

hence does not necessarily possess an orthonormal eigenbasis, it is similar to the former,

i. e. they share the same eigenvalues.

If a transform in An is invertible, it must also be invertible under the same conditions for

D−1A, which can be shown by applying a simple transformation to the filters of the form

HLP/HP =
∏
n(βnIN ±D−1/2AD−1/2)k for some coefficients βn:

HLP/HP,RW = D−1/2HLP/HPD1/2

= D−1/2
∏
n

(βnIN ±D−1/2AD−1/2)...D1/2D−1/2...
∏
n

(βnIN ±D−1/2AD−1/2)D1/2

=
∏
n

(βnIN ±D−1A)k.

Thus, the random-walk-normalized transform

WRW =
1

2
D−1/2(HLP + HHP + K(HLP −HHP ))D1/2

=
1

2
(HLP,RW + HHP,RW + K(HLP,RW −HHP,RW )),

continues to be invertible for non-zero node degrees and subject to the same restrictions.

4.2 Space-Variant Graph Wavelets

For previously derived transforms, the signals of interest have mainly been confined to

being globally and locally (piecewise) smooth, with pieces of the same function type. A

more flexible version of the graph (spline) wavelet transform, which is termed space- or
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4.2. Space-Variant Graph Wavelets

Figure 4.1: Piecewise Smooth Graph Signal on a Circulant Graph.

node-variant, is therefore introduced carrying localized annihilation properties for piece-

wise smooth (or bandlimited) graph signals, with pieces that do not necessarily belong to

the same class of functions.

Let 1C ∈ RN denote the graph signal on G = (V,E), with (1C)i = 1 if node i ∈ C

and (1C)j = 0 otherwise, for local vertex set C ∈ V . Further, consider the series of vertex

sets {Ci}Ti=0 such that Ci := [j, j + |Ci| − 1], with j − 1 ∈ Ci−1, describe consecutively

labelled partitions of V ; without loss of generality, (piecewise) smooth signals are thus

defined on local vertex sets with ordered labelling (see Fig. 4.1).

Definition 4.2. A graph signal x ∈ RN on G = (V,E) is piecewise smooth if it can be

written as x =
∑T

j=0 xj ◦ 1Cj for node sets {Cj}Tj=0, with pieces xj belonging to the class

of smooth graph signals, including bandlimited and (exponential) polynomial signals.

As this necessitates the design of graph filters that behave differently in different neigh-

borhoods of the graph, one may adopt the form D̃ ±A, parameterized by the diagonal

degree matrix D̃ =
∑T

i=0 Di, which consists of pieces such that Di(Ci, Ci) = βiI|Ci| and

Di(C
{
i , C

{
i ) = 0Ni,Ni , with Ni = |C{i |, for selected (degree) parameters {βi}i. In the case

of circulant graphs, one may set the latter to be of the form of the e-degree dαi ,α ∈ R, or

in general, the eigenvalues of (normalized) A.

This ultimately gives rise to a node-variant transform of the following form:

Theorem 4.1. Given the undirected graph G = (V,E) of dimension N , with symmetric

normalized adjacency matrix An, we define the higher-order space-variant graph-spline

wavelet transform (HSVGSWT), composed of the low-and high-pass filters

HLP =
1

2k
(IN + D̃−1/2AnD̃

−1/2)k (4.4)

HHP =
1

2k
(IN − D̃−1/2AnD̃

−1/2)k (4.5)

for D̃ =
∑T

i=0 Di, such that Di(Ci, Ci) = βiI|Ci| and Di(C
{
i , C

{
i ) = 0Ni,Ni, with Ni = |C{i |.

This filterbank is invertible subject to ∀i, βi ≷ 0 and k ∈ 2Z+, for any downsampling pat-

tern, as long as γ̃(Ã) 6= 1, for eigenvalues of Ã = D̃−1/2AnD̃
−1/2. If ∃ γ̃(Ã) = ±1, the
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transform continues to be invertible for a suitable downsampling pattern such that the re-

spective associated downsampled eigenvectors {v1,j(Vα)}j (and complement {v−1,j(V
{
α )}j)

form linearly independent sets, for retained nodes in set Vα and multiplicities j.

Proof. Since the matrix Ã = D̃−1/2AnD̃
−1/2 continues to be Hermitian (though not

normalized) with an orthonormal basis, the proof from Thm. 3.1 in Appendix A.1 carries

over, up to Eq. (A.3)
N−1∑
i=0

r(i)2(1− γ̃i2)k = 0

for eigenvalues {γ̃i}N−1
i=0 of Ã. By the submultiplicativity of the spectral norm [97]

||D̃−1/2AnD̃
−1/2|| ≤ ||D̃−1/2||||An||||D̃−1/2|| ≤ 1

d̃min

γmax(An)

and noting the spectral radius ||An||2 = γmax(An) = 1, we observe for the spectrum

γ̃(Ã) that 1 ≤ γ̃max ≤ 1
d̃min

, so we require k ∈ 2Z+ to ensure all-positive summands, and

thus r(i) = 0, i = 0, ..., N − 1. Here, βi = d̃min is the smallest magnitude entry of D̃,

where |βi| ≤ 1, ∀i generally holds for normalized eigenvalues (e-degrees). One merely

needs to exclude the special case of γ̃ = ±1, for the construction to be invertible under

any downsampling pattern, which due to the re-normalization is not an anticipated case;

otherwise, one may further need to show that for γ̃ = ±1, the corresponding eigenvectors

of Ã remain respectively linearly independent after (suitable) downsampling, following the

proof of Thm. 3.2 in Appendix A.2.

In addition, to ensure that Ã is real symmetric, we require all parameters {βi}Ti=0 to have

the same sign; for negative βi, D̃−1/2 gains purely imaginary entries, which cancel out

only if all βi are negative. Hence, for parameters of different sign, Ã becomes complex

symmetric with Ã = ÃT ; according to (Cor. 4.4.4, [97]), a complex symmetric matrix

admits the so-called Takagi factorization Ã = VD̄VT , with unitary V and nonnegative

diagonal D̄, however, it is not diagonalizable per se and the proof does not apply.

If the graph is bipartite, the property that the spectrum Γ̃ is symmetric with respect to

0 is maintained so γ̃min = −γ̃max, since the characteristic structure of its un-normalized

adjacency matrix, with

A =

[
0 A1

AT
1 0

]
is upheld beyond multiplication with arbitrary (non-zero) diagonals

D−1/2AD−1/2 =

[
D
−1/2
1 0

0 D
−1/2
2

][
0 A1

AT
1 0

][
D
−1/2
1 0

0 D
−1/2
2

]
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4.2. Space-Variant Graph Wavelets

=

[
0 D

−1/2
1 A1D

−1/2
2

(D
−1/2
1 A1D

−1/2
2 )T 0

]
.

As such, in case of |γ̃| = 1, one needs to consider the linear dependency of the corre-

sponding eigenvectors of Ã (after downsampling) for both opposing eigenvalues (and their

multiplicities).

Hence, for a sufficiently banded, arbitrary undirected graph, the above transform gives

rise to sparse representations of signals that are piecewise bandlimited with respect to the

graph, subject to border effects dependent on the bandwidth of the graph; in the case of

a circulant graph with e-degree parameterization, higher-order vanishing moments can be

invoked for k > 1.

As a result of their structure, the proposed node-variant filters are invertible, which in the

case of the high-pass filter gives rise to a promising independent sparsification method.

Corollary 4.2. The filters of Thm. 4.1 are invertible for βi ≷ 0,∀i, and in general, if Ã

is normal, provided γ̃(Ã) 6= 1.

Proof. We need to show that the nullspace of the filters with eigenbasis U, represented by

vectors satisfying z = Ur, is empty and jump to the step

U(IN ± Γ̃)kr = 0N ,

followed by taking the l2-norm and power 2,

rH(IN ± Γ̃)2kr =

N−1∑
i=0

|r(i)|2(1± γ̃i)2k = 0.

It becomes evident that this is always satisfied for any k, as the summands are always

positive and thus r = 0N .

If ∃ γ̃ = 1, this ceases to be valid for the high-pass version (and vice versa for the low-pass

filter with γ̃ = −1), as well as for either filter in the bipartite graph case, when ∃ γ̃ = ±1,

by similar reasoning as in Cor. 3.3. When Ã is normal with complex Γ̃, one may further

show that

rH(IN ± Γ̃H)k(IN ± Γ̃)kr = rH(IN ± Γ̃H ± Γ̃+ Γ̃Γ̃H)kr =

N−1∑
i=0

|r(i)|2(1+ |γ̃i|2± (γ̃i+ γ̃∗i ))k,

and letting γ̃i = xi+ iyi, xi, yi ∈ R, one has (1+ |γ̃i|2±(γ̃i+ γ̃∗i ))k = (1+x2
i +y2

i ±2xi)
k =

((1± xi)2 + y2
i )
k > 0 and hence r = 0N . In case of γ̃ = ±1, prior reasoning applies.
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Further note that this is an interesting feature of the space-variant high-pass filter which

the (circulant) e-spline graph Laplacian does not possess (i. e. when parameter β is an

eigenvalue, it is not invertible, see Rmk. 3.1).

A different realization of a node-variant filter was introduced in [99] by Segarra et al. of

the form H =
∑N−1

i=0 DiS
i for diagonal matrices {Di}i and graph shift-operator S, which

re-weights the contributions for each node, in an effort to design more general graph

operators. This, however, is distinct from the proposed construction in that it does not

have any desired and/or proven annihilation effect.

4.3 Time-Variant Graph Wavelets

When the graph at hand changes over time or a series of graphs are constructed from

given data to capture information from multiple (geometric) views, it is desirable to design

wavelets that operate across and merge different connectivities or topologies as opposed to

conducting a separate graph wavelet analysis on each individual graph. The existence of a

(time-)varying graph transform on a set of data-driven graphs, in particular, facilitates the

merging of information from different views or modalities, given in form of (time-)varying

edges, for a joint multimodal (geometric) analysis of the data set involving multiple data

spaces.5

In the following, we present various families of graph-variant transforms and discuss their

specific interpretation. We distinguish between (i) graph-fusing and (ii) graph-extending

transforms. The former, which is the focus of this section, is built on the assumption that

a set or sequence of given graphs {Gk}k share the same vertex set V while each graph has a

different edge set Ek, with the goal to merge or unify information from the different graphs

within the same dimension |V | = N . The latter, to be treated in Sect. 4.5, additionally

considers the inter-connectivity between individual graphs and, by contrast, adds another

dimension through the Kronecker operator for multi-dimensional processing.

Figure 4.2: Illustrative Time-Varying-Graph at t = 0, 1, 2.

5This notion of multimodal manifold analysis has in particular been realized for approaches such as
spectral clustering or diffusion maps [100].
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4.3.1 The Cross-Graph Walk

We restrict our focus at first to families or sequences of undirected graphs which share

the same (graph matrix-)eigenbasis. The primary motivation for this choice is to maintain

shift-invariance with respect to the same basis across graphs of different connectivity,

such that essential GSP operations, including downsampling, are preserved over time, and

suitable (symmetric) transforms of provable invertibility can be identified. This may, for

instance, encompass series of graphs which are subject to specific perturbations over time

(see Fig. 4.2) and are modelled to possess steady eigenvectors with changing eigenvalues.

If for a given sequence of graphs this property is not fulfilled, one may resort to approxima-

tion schemes such as joint diagonalization [100] to find an approximate common eigenbasis.

A further requirement is that a common downsampling pattern is established; note that

while graphs may share the same eigenbasis, the vectors associated with certain graph

eigenvalues, which can serve as a possible indicator function in generalized downsampling

schemes [60], may not always be the same6. As a next step, a joint coarsening strategy

needs to be established.

In an effort to create global filtering operations across graphs, we primarily distinguish

between the addition and multiplication of time-varying graph matrices, which, wlog and

for consistency of discussion, are constrained to be of the form of adjacency matrices here;

as such, generalized polynomial graph filters on a set of adjacency matrices {Aj}j may

take the form of H =
∑

j,k aj,kA
k
j or H =

∑
k

∏
j ãj,kA

k
j for coefficients aj,k, ãj,k ∈ C. Sim-

ilarly as for stationary graphs, coefficients may be chosen to induce a desired frequency

response, for the targeted annihilation of smooth (generalized bandlimited) graph signals

as well as for ranking the contribution of individual graph topologies. The summation of

two (or more) adjacency matrices presents the simplest way of fusing connectivity infor-

mation from different graphs by simply adding the edge weights of equivalent nodes in a

form of (weighted) averaging; multiplication, however, appears to be more intricate and

we proceed to analyse its significance in mathematical terms.

It is known from graph theory that the (i, j)-th entry of Ak, for binarized version A

of a given adjacency matrix, indicates the number of k-hop walks between the node pair

(i, j) [101]; we wish to further generalize this interpretation for products of different graph

adjacency matrices. Consider the binary adjacency matrices A and B of graphs GA and

GB respectively, with product C = AB; then Ci,j 6= 0 iff there exists a walk from i to j

in set (EA, EB), which indicates ‘double-hop’ walks whose first edge is in GA and second

in GB, and Ci,j = 0 otherwise. In particular, from the relation Ci,j =
∑N−1

k=0 Ai,kBk,j , we

observe that (Cs)i,j counts the number of 2s-hop walks from node i on graph GA to node

6Conditions which ensure the ‘matching’ of eigenvectors on different graphs are in particular addressed
in the proof of Cor. 4.3 in Appendix B.1.
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Figure 4.3: Walk across two circulant graphs.

j on graph GB, with the first edge on GA and second on GB, while traversing a common

node k as an anchor or central point (see Fig. 4.3). Provided that A and B are symmetric

and share the same eigenbasis, C is also symmetric.

Further, as a consequence of ([37], Lemma 5.2), when its diagonals are set to have unit

weight, (Cs)i,j represents the number of 2r-hop walks of length r ≤ s, thereby alluding to

the fact that products of graph Laplacians give rise to localized operations within 2s-hop

neighborhoods across graphs. This interpretation assumes no further ‘transitional’ prob-

ability between nodes on different graphs (as e. g. done in [102] for graph layers), in the

sense of conducting operations with respect to past and future neighbours of a node, all

of which are equally weighted.

In [101], the idea of graph multiplication is realized through König digraphs (as a special

kind of bipartite graphs) which are shown to preserve essential graph properties under

multiplication. In this case, while not a proper graph operation which preserves desirable

properties, the multiplication of adjacency (or graph Laplacian) matrices rather provides

insight into the graph evolution and connectivity over time in form of the intermediate or

transitional graph GC.

One should further take note that the above operations are affected by the individual

labelling of each graph component; as such, we assume a fixed node labelling over time

and apply permutations, if necessary, on all graphs, prior to processing.

4.3.2 Filtering Across Different Graphs

Consider the set of graphs Ḡ = {G0, ..., GT } with corresponding adjacency matrices Ā =

{A0, ...,AT }, captured at time instant t = 0, ..., T , and let x denote a graph signal on Gt,

which may be stationary or time-varying7. In the former case, the signal is assumed to

reside on the (fixed) nodes of each graph layer.

7In the latter case, a variation of the proposed transforms can be applied on each individual signal.
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If a common basis U does not exist, one may pose an optimization problem and conduct

joint diagonalization of existing graph (Laplacian) matrices Lk, as done in [100]

min
Û∈RN×N

T∑
k=0

off(ÛLkÛ) s. t. ÛT Û = IN , with off(A) =
∑
i 6=j

A2
i,j

among other variations (see [103], [100] for a review), while a common downsampling

pattern may be found i. a. via partitioning of a suitably chosen, common eigenvector (e. g.

using λmax [60] of a suitable transition graph). For a multilevel scheme, the individual

graphs may be coarsened through Kron-reduction, with subsequent repetition of joint

diagonalization (or potential coarsening with respect to common eigenbasis U) at further

levels to find a new common basis, where applicable.

The filtering of x with respect to varying graphs can then be realized through the successive

application of filters {Hi}i on the individual graphs {Gi}i

xt = Ht...H0x

as a generalization of the iteration xt = Htx; under the assumption of a common graph

shift-operator, the former matrices commute and their order is interchangeable.

A time-varying graph transform (or filterbank), as the fusion of different graphs within

a single transform, facilitates critical sampling and may capture and incorporate graph

similarities and/or inter-relations into the signal analysis, whereas the fragmentation into

separate GWTs for each graph is more costly and information on graph-connectivity evolu-

tion is lost. While the simplest realization would be the transform product xt = Wt...W0x

for transform Wi on graph Gi
8, other possible structures may feature i. a. the successive

low-pass filtering of the signal on each graph (up to a certain time instant t − 1), with

a proper downsampling on low-and high-pass branches imposed on the t-th graph, or,

more consistently, the successive application of low-and high-pass filters on each graph

and eventually, given a common downsampling pattern, unification in a transform.

Following the style of previous generalized graph transforms, for the sequence of undirected

graphs {Gt = (V,Et)}Tt=0, |V | = N , with symmetric normalized (not necessarily circulant)

adjacency matrices {Ãt}Tt=0, which possess the same eigenbasis, i. e. Ãt = VΓtV
H , we

propose a set of time-varying graph wavelet averaging transforms, consisting of the filters

HLP =
T∑
t=0

htHLPt =
T∑
t=0

ht

M∏
n=1

(
βt,nIN + Ãt

)k
(4.6)

8Instead of separate graphs, a given set may also characterize a partition (decomposition) of a single
graph into subgraphs with E = ∪kEk (that are ideally connected, e. g. through cycles) as done in [35].
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HHP =
T∑
t=0

h̃tHHPt =
T∑
t=0

h̃t

M∏
n=1

(
βt,nIN − Ãt

)k
(4.7)

and graph wavelet product transforms, with filters

HLP =

T∏
t=0

htHLPt =

T∏
t=0

ht

S∏
n=1

(βt,nIN + Ãt)
k (4.8)

HHP =
T∏
t=0

h̃tHHPt =
T∏
t=0

h̃t

S∏
n=1

(βt,nIN − Ãt)
k, (4.9)

for respectively non-zero coefficients ht, h̃t ∈ C.

Corollary 4.3. The time-varying graph wavelet transform, consisting respectively of the

filters

(i) in Eqs. (4.8) and (4.9), with parameters βt,n = 1 and S = 1 ∀t, is invertible for any

downsampling pattern, as long as at least one node retains the low-pass component for

connected graphs with non-negative weights, and otherwise, for a suitable set of retained

nodes Vα such that the partitioned eigenvectors {vt,j(Vα)}t,j corresponding to γt,i = 1 (and

for bipartite graphs, also {ṽt,j(V {α )}t,j for γt,i = −1) of multiplicity j are linearly indepen-

dent. If the graphs are bipartite, non-negativity is sufficient.

(ii) in Eqs. (4.8) and (4.9), is invertible for any downsampling pattern as long as |βt,n| 6=
|γt,i| and subject to restrictions (a) the eigenvalues of HLPHHP are non-zero and of the

same sign or (b) k ∈ 2N; otherwise, if for some βt,n = γt,i, and the graph is non-bipartite,

invertibility follows, under the previous conditions, from linear independence of the corre-

sponding partitions {vt,j(Vα)}t,j for suitable Vα.

(iii) in Eqs. (4.6) and (4.7), is invertible under the same conditions as (ii), where in (b)

it is additionally required that ht, h̃t ≶ 0 ∀t; otherwise, if βt,n = γt,i holds on each graph

Gt such that all HHPt share the same nullspace v, invertibility follows under the preced-

ing provided the corresponding partitions v(Vα) (and ṽ(V {α ) in the bipartite case, for ṽ

inducing −γt,i on each graph Gt) are linearly independent for suitable Vα.

Proof : See Appendix B.1.

For the special case of circulant At, with {βn}n = { d̃αnd }n and suitable coefficients {ht, h̃t}t,
commutativity and the identification of a common downsampling pattern are ensured,

while a wider range of annihilation possibilities can be incorporated.

For more generalized designs, in the sense of Sect. 4.1, one may consider a filterbank of

the form

HLP =
∑
k

akHLPk
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HHP =
∑
k

ãkHHPk

with equivalent restrictions on the frequency response. Alternatively, instead of aligning

pre-constructed individual graph filters, a more generalized option is to formulate the

transform directly in terms of the graph adjacency matrices:

HLP =

K∑
k=0

hkÃ
k

HHP =

K∑
k=0

h̃kÃ
k

with symmetric Ã =
∏T
t=0 atAt or Ã =

∑T
t=0 atAt subject to suitable restrictions on At

and {ht, h̃t}t.

When different graph filters on a given set of (circulant) graphs have the same annihilation

property (i. e. annihilate the same type of signal), their sum preserves that, while their

product may generalize it to higher (or multiple) order, where applicable; in either case

when annihilation is localized, graphs need to be sufficiently banded due to the border

effect. For instance, the product of (banded) circulant graph Laplacians L1...Lk has the

same number of vanishing moments as the single (banded) circulant Lk, but on different

graphs combined. In certain cases, the sum of graph e-spline filters of different e-degrees

(eigenvalues) can lead to the creation of new vanishing moments, or more generally, create

a shift in the nullspace. The case of the symmetrized circulant graph Laplacian L̃α for

directed circulant graphs, treated in Sect. 3.4.1 is a direct example for when the addition

of two operators on different graphs with opposing vanishing moments can induce new

vanishing moments.

While the present constructions can also be interpreted as formations of a unifying graph,

the main objective is to provide a notion of a time-varying graph filterbank, whose filters

can be adapted to rank and merge the contribution of individual graphs, while the latter

are still separately preserved i. a. for subsequent (multiscale) operations.

4.4 The Condition Number of the GWT

In order to assess the ability of the derived graph wavelet transforms W to sparsely

represent smooth signals x under perturbations or noise, as well as evaluate their proximity

to orthogonal bases, one may compute the frame bounds of the analysis operator W, given
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by the extremal eigenvalues of WTW

λmin||x||22 ≤ ||Wx||22 ≤ λmax||x||22

with 0 < λmin ≤ λmax <∞. The ratio C =
√

λmax
λmin

is known as the condition number of

W, as a measure of its sensitivity with respect to errors or noise, with C = 1 characterizing

a unitary matrix and C →∞ a singular (ill-conditioned) one [97].

It can be demonstrated that in the case of a general bipartite graph, there exists an ex-

plicit expression for the condition number of the GWT as a result of the spectral folding

phenomenon. Hence, the set of imposed filter functions, which satisfy the conditions of

the generalized perfect reconstruction filterbank on a bipartite graph, as discussed earlier,

facilitate the direct computation of C.

Consider the symmetric operator

WTW =
1

2
(H2

LP + H2
HP + HLPKHLP −HHPKHHP ) =

1

2
(H2

LP + H2
HP )

where K is the downsampling matrix on a bipartite graph. The last simplification follows

from KHLP = HHPK, which, for appropriately chosen filter functions, is specific to a

bipartite graph. In particular, assuming wlog the filter form HLP/HP = ϕLP/HP (An),

where ϕ(·) is a function applied on the symmetric normalized graph adjacency matrix9,

and letting γ(An) denote the spectrum of An and Pγi = uiu
T
i the projection matrix of

eigenvector ui of An, corresponding to γi, such that HLP/HP =
∑

γi∈γ(An) ϕLP/HP (γi)Pγi ,

it can be shown that

KHLP =
∑

γi∈γ(An)

ϕLP (γi)KPγi =
∑

γi∈γ(An)

ϕLP (−γi)PγiK

and further, in an equivalent fashion to the derivation in ([35], Eq. (33))

HLPKHLP −HHPKHHP =
∑

γi∈γ(An)

(ϕLP (γi)ϕLP (−γi)− ϕHP (γi)ϕHP (−γi))KPγi

due to KPγi = P−γiK, ∀γi ∈ γ(An). Thus, for ϕLP (−γ) = ϕHP (γ), which is the case

for most proposed constructions, the eigenvalues of WTW can be directly expressed as

λ = 1
2(ϕLP (γ)2 +ϕHP (γ)2), resulting in the explicit condition number C =

√
λmax
λmin

of W.

In the special case of a circulant bipartite graph, one can additionally show that the repre-

senter polynomials satisfy HLP (−z) = HHP (z), which is equivalent to KHLP = HHPK,

while the matrix WTW is also circulant.

9In the case of node-variant filters, this may be replaced by Ãn, or for multiple graphs Gi, by An,i.
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Note that the expression for the condition number coincides with that derived in [35], yet

the latter uses an approximation to reduce to that, while here specific filter functions ϕ(·)
are considered that facilitate exact simplifications.

4.4.1 Comparison of Different GWTs

We proceed to evaluate and compare the condition numbers for a selection of proposed

graph transforms, in order to further comprehend their variation in performance, when the

graph is undirected and bipartite, and downsampling is fixed as above. Here we assume

for simplicity that the adjacency matrix, and by extension any symmetric (parameter-

)normalized version, always has the eigenvalue γ = 0 and is thus singular. While this is

a frequent case, there also exist bipartite graphs with non-singular adjacency matrices,

however, an intuitive or direct classification into either set is not known (see [104] for an

algorithmic proposition); in the latter case, one may thus simply adjust derived formulae

by replacing γ = 0 with the eigenvalue of smallest magnitude, where applicable.

Corollary 4.4. The condition number of the HGSWT of Thm. 3.1 for undirected bipartite

graphs is C =
√

22k−1.

Proof. In the case of the simple spline filterbank, i. e. when β = 1, we have ϕLP/HP (γ) =

(1 ± γ)k and define f(γ) = 1
2(1 + γ)2k + 1

2(1 − γ)2k, which is assumed to be continuous;

the filter coefficients are omitted for simplicity as they eventually cancel out within the

fraction of eigenvalues in C. With γmax = 1 and γmin = −1, we prove that f(γ) is

strictly increasing for γ ∈ [0 1], and decreasing for γ ∈ [−1 0], by considering derivative

f ′(γ): as a consequence of the Mean Value Theorem, we have f ′(γ) = k((1 + γ)2k−1 −
(1 − γ)2k−1) > 0,∀γ ∈ (0 1] and f ′(γ) < 0,∀γ ∈ [−1 0). Thus, fmin = f(0) = 1 and

fmax = f(γmax) = f(γmin) = 22k−1, given f(−γ) = f(γ), which proves C =
√

22k−1.

In another interesting property of bipartite graphs, it can be shown that the above condi-

tion number stays the same regardless of the graph connectivity for (non-parameterized)

strictly monotonic simple spline filters ϕ(γ) = (1 ± γ)k, since the extremal eigenvalues

γmax = −γmin = 1 stay the same; this ceases to be the case for parameterized con-

structions, where the e-degree (or eigenvalue) parameter β changes with the graph, or

non-singular graphs.

Corollary 4.5. The condition number of the HGESWT of Thm. 3.2 (by extension, Cor.

4.1) is CB =

√∏T
n=1(βn+1)2k+

∏T
n=1(βn−1)2k

2
∏T
n=1 β

2k
n

, for parameters of the same sign.
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Proof. When βn ≶ 0,∀n, monotonicity is upheld, with f(γ) = 1
2

∏T
n=1(βn + γ)2k +

1
2

∏T
n=1(βn−γ)2k and f ′(γ) ≶ 0 since the resulting series f(γ) =

∑2kT
i=0

1
2(si+(−1)isi)γ

i is

strictly monotonic for si ≶ 0, increasing for γ ∈ [0 1] and decreasing for γ ∈ [−1 0], with

f ′(γ) = 1
2

∑2kT
i=1 isiγ

i−1 + 1
2

∑2kT
i=1 (−1)iisiγ

i−1 =
∑kT

i=1 2is2iγ
2i−1. Note that the elemen-

tary symmetric polynomials si are of the form s0 = β1...β2Tk, ...,s2Tk−1 = β1 + ...+ β2Tk,

s2Tk = 1 for redundant {βi}2Tki=1 , i. e. at even numbered positions we always have s2i > 0

provided all βn are of the same sign (as a sufficient condition). Thus C =
√

f(1)
f(0) =√∏T

n=1(βn+1)2k+
∏T
n=1(βn−1)2k

2
∏T
n=1 β

2k
n

.

Further, we compare the condition numbers of the node-variant and parameterized ban-

dlimiting wavelet transform for bipartite (not necessarily circulant) graphs; this is of rele-

vance when the given signal to analyze is piecewise smooth (generalized bandlimited) and

noisy, considering that both transforms may be tailored to annihilate the clean version.

Corollary 4.6. The condition number CS of the space-variant HSVGSWT transform in

Thm. 4.2 is bounded as follows
√

22k−1 ≤ CS ≤
√

1
2(1 + 1

d̃min
)2k + 1

2(1− 1
d̃min

)2k.

Proof. Based on the function f(γ̃) = 1
2(1 + γ̃)2k + 1

2(1− γ̃)2k, where Γ̃ are the eigenvalues

of Ã = D̃−1/2AnD̃
−1/2, monotonicity follows from Cor. 4.4. Hence, we have fmax =

f(γ̃max) = f(−γ̃min) ≤ f
(

1
d̃min

)
= 1

2(1 + 1
d̃min

)2k + 1
2(1 − 1

d̃min
)2k and fmin = f(0) =

1, where d̃min and d̃max denote the extremal magnitude values of diagonal D̃, giving

CS ≤
√

1
2(1 + 1

d̃min
)2k + 1

2(1− 1
d̃min

)2k. Since f(1) ≤ f(γ̃max), we also have the condition

number of the HGSWT as a lower bound C =
√

22k−1 ≤ CS .

Corollary 4.7. The condition number CS of the space-variant HSVGSWT is consistently

smaller than that of the bandlimiting HBGWT CB for equivalent parameterizations (of the

same sign).

Proof. Consider for simplicity an e-spline/bandlimiting GWT with two parameters β1 and

β2 and space-variant GWT with two diagonal elements β1 = d̃min and β2 = d̃max of the

same sign; we know that |d̃| ≤ 1, as these constitute normalized adjacency eigenvalues

(or e-degrees), and so 1
|d̃| ≥ 1, provided d̃ 6= 0. Then the function corresponding to

the former, f(γ) = 1
2(β1 + γ)2k(β2 + γ)2k + 1

2(β1 − γ)2k(β2 − γ)2k gives fmax = f(1) =
1
2(β1 + 1)2k(β2 + 1)2k + 1

2(β1 − 1)2k(β2 − 1)2k and fmin = (β1β2)2k, and hence

CB =

√
1

2

(
1 +

1

β1

)2k (
1 +

1

β2

)2k

+
1

2

(
1− 1

β1

)2k (
1− 1

β2

)2k

.
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Assume, wlog that β1, β2 > 0; thus, for condition numbers CS and CB, we have

C2
S ≤

1

2

(
1 +

1

β1

)2k

+
1

2

(
1− 1

β1

)2k

≤
(

1 +
1

β1

)2k

≤ 1

2

(
1 +

1

β1

)2k

(1 + 1)2k ≤ 1

2

(
1 +

1

β1

)2k (
1 +

1

β2

)2k

≤ 1

2

((
1 +

1

β1

)2k (
1 +

1

β2

)2k

+

(
1− 1

β1

)2k (
1− 1

β2

)2k
)

= C2
B

This can then be generalized for multiple parameters, since the upper bound for CS always

depends on the smallest single parameter d̃min, while CB grows rapidly for an increasing

number of parameters.

While the previous explicit results and comparisons are reserved for bipartite graphs, one

can nevertheless make similar observations about the condition numbers of general undi-

rected graphs, in that transforms consisting of filters with multiple matrix factors (of the

same sign) gain rather large condition numbers rapidly, while an increase in the graph con-

nectivity or complexity (at a consistent transform order) leads to a comparatively slower

increase in condition number, as was already evidenced in the experiments of Chapter 3;

nevertheless, these generalizations remain observational.

4.5 Graph Products and Approximations: A Multidimen-

sional Extension

As part of a more generalized motivation which facilitates the multi-and lower-dimensional

processing and representation of signals on graphs, we at last explore graph product ap-

proximations as a promising avenue. In particular, given an arbitrary undirected graph,

one may consider its approximation as the graph product of factor graphs of certain de-

sirable structures, such as circulants, which may be further leveraged to implement trans-

formations and induce sparsity.10 Multi-dimensional wavelet analysis has been considered

i. a. for bipartite graphs as the operation with respect to separate edge sets on the same

vertex set within a bipartite subgraph decomposition [35]. In the proposed framework for

graph approximation and wavelet analysis via graph product decomposition, however, the

notion of multiple dimensions arises from the graph product operation itself, with each

factor constituting a separate dimension.

Graph products [105] have been studied and applied in a variety of contexts for purposes

such as modelling realistic networks and/or rendering matrix operations computationally

10The content of this section appears in [7].
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efficient ([106], [107], [108]). Their relevance for GSP was first considered in [109] as a

means of modelling and representation of complex (high-dimensional) data as graph signals

defined on product graphs, with the potential of promoting more efficient implementations

of graph operations, such as graph filtering. The motivation for considering graph prod-

ucts here is twofold: (1) as a scheme which can decompose arbitrary graphs into circulant

graphs, to facilitate the processing of graph signals with respect to the circulant approxi-

mations, and (2) as a means to conduct operations in lower dimensional settings in order

to increase efficiency. Beyond that graph products can be used to model time-varying

processes, and, in contrast to previously considered fusion-based transformations, operate

on an extended set of nodes.

4.5.1 Graph Products of Circulants

The product, �, of two (undirected) graphsG1 = (V (G1), E(G1)) andG2 = (V (G2), E(G2)),

also referred to as factors, with respective adjacency matrices A1 ∈ RN1×N1 and A2 ∈
RN2×N2 , is formed by denoting the new vertex set of the resulting graph G as the Cartesian

product V (G) = V (G1)× V (G2), and defining the new edge relations E(G) according to

the characteristic adjacency rules of the product operation, resulting in adjacency matrix

A� ∈ RN1N2×N1N2 . We identify four main graph products of interest:

• Kronecker product G1 ⊗G2: A⊗ = A1 ⊗A2

• Cartesian product G1 ×G2: A× = A1 ×A2 = A1 ⊗ IN2 + IN1 ⊗A2

• Strong product G1 �G2: A� = A1 �A2 = A1 ⊗A2 + A1 ⊗ IN2 + IN1 ⊗A2

• Lexicographic product G1[G2]: A[ ] = A1[A2] = A1 ⊗ JN2 + IN1 ⊗A2

where JN2 = 1N21
T
N2

. The lexicographic product in particular can be regarded as a

variation of the Cartesian product, yet contrary to the others, it is not commutative for

unlabelled graphs [105]. Furthermore, the adjacency matrices A� of the first three products

possess the same (orthogonal) eigenbasis V = V1⊗V2, for decompositions A1 = V1Γ1V
H
1

and A2 = V2Γ2V
H
2 , and eigenvalues of the form Γ� = Γ1 � Γ2 ([105]).

Graph products have been employed to model realistic networks due to their ability to

capture present regularities, such as patterns and recursive community growth [107], and

may therefore serve as suitable approximations to networks with inherent substructures,

such as social networks consisting of similarly structured communities or time-evolving

sensor networks [109]. For the ensuing analysis, we exploit an existing matrix scheme
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for arbitrary graphs which imposes desired constraints, such as that of circularity, on the

individual factors11.

The Kronecker Product Approximation

Given an arbitrary undirected graph G with adjacency matrix A, one may resort to a result

from matrix theory by Pitsianis et al. [110] which facilitates the approximate Kronecker

product decomposition A ≈ A1 ⊗A2 into circulant (adjacency) matrices Ai of suitably

chosen dimension Ni, by solving the convex optimization problem

min
CT1 vec(A1)=0,CT2 vec(A2)=0

||A−A1 ⊗A2||F

subject to linear constraints in the form of structured, rectangular matrices Ci with en-

tries {0, 1,−1}, which impose circularity (or other pattern) on Ai via column-stacking

operator vec. Closed-form solutions vec(Ai), i = 1, 2 are obtained by solving a reduced

unconstrained problem, after expressing the above as a rank-1 approximation problem

(see [110] for details). In addition, desirable properties such as symmetry and bandedness

may be imposed, among others ([110], [108]).

Exact Graph Products

In reverse action, we observe that the general graph product of circulants gives rise to

block-circulant structures (or sums thereof), as the example in Fig. 4.4 illustrates. Here,

the Cartesian product of two circulant graphs G1 and G2 of respective dimension N1 and

N2 is formed by connecting N1 blocks of G2 according to the connectivity of G1.

However, a subset of circulant graphs can be represented as the graph products of circulant

factors; while such cases are marginal, they motivate decompositions for lower-dimensional

processing.

Circulant graphs are not generally closed under the graph product operation, with the

exception of the lexicographic product [111]. In particular, the product G1[G2] of two

circulant graphs G1 = CN1,S1 and G2 = CN2,S2 of respective dimensions N1 and N2

and with generating sets S1 and S2, is isomorphic to the circulant graph CN1N2,S with

generating set S =

(
∪b

N2−1
2
c

t=0 tN1 + S1

)
∪
(
∪b

N2
2
c

t=1 tN1 − S1

)
∪ N1S2 [111]. The graph

CN1N2,S is connected with 1 ∈ S only if G1 is connected with 1 ∈ S1. The characteristic

adjacency matrix A[ ] is not circulant per se, but its isomorphism Ã[ ] = PA[ ]P
T is,

where permutation matrix P performs the relabelling {0, ..., N1N2 − 1} → {0 : N2 :

11On a related note, in [106] Kronecker product approximation is identified as a means to increase com-
putational efficiency for large structured least-squares problems in image restoration, which coincidentally
marks an area where circulant approximations are used extensively.
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× =

Figure 4.4: Graph Cartesian Product of two unweighted circulant graphs. c©2017 Elsevier
Inc.

N1N2 − 1, 1 : N2 : N1N2 − 1, ..., N2 − 1 : N2 : N1N2 − 1} such that each product node

(g1,j , g2,k) ∈ V (G) is labelled as g1,j +N1g2,k, for gi,j ∈ V (Gi).

Further special cases of graph products that remain circulant with circulant factors are

discussed in [112].

4.5.2 Multi-dimensional Wavelet Analysis on Product Graphs

The following analysis explores how the developed theory on graph wavelets, and circulant

graphs in particular, can be extended to product graphs12. Here, we operate under the

assumption that the decomposition (and decomposition type) of an arbitrary graph into

circulants (or alternative graph structures) is either known (exactly or approximately),

or unknown, in which case one can resort to a Kronecker product approximation. This

primarily requires the identification of the graph Laplacian of product graphs L� as a

relevant high-pass filter; its specific interpretation as an extension of the circulant graph

Laplacian high-pass filter to higher dimensions, with associated property preservations,

will be revisited in Sect. 4.5.3. In particular, the formation of L� does not directly reflect

the adjacency matrix relations, except in the case of the Cartesian product ([113], [114]):

• Kronecker product: L⊗ = D1 ⊗D2 −A1 ⊗A2 = L1 ⊗D2 + D1 ⊗ L2 − L1 ⊗ L2

• Cartesian product: L× = D1 ×D2 −A1 ×A2 = L1 ⊗ IN2 + IN1 ⊗ L2

• Strong product: L� = D1 �D2 −A1 �A2 = L1 ⊗D2 + D1 ⊗L2 −L1 ⊗L2 + L1 ⊗
IN2 + IN1 ⊗ L2

• Lexicographic product: L[ ] = D1[D2] − A1[A2] = IN1 ⊗ L2 + L1 ⊗ JN2 + D1 ⊗
(N2IN2 − JN2)

12Note that this can be naturally extended to graph products between more than two factors.
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For regular connected graph factors Gi, equivalent relations between the eigenbases U

of L� = UΛ�U
H and Ui of Li = UiΛiU

H
i as for the adjacency matrices hold, with

U = U1 ⊗U2 and eigenvalues Λ� = D� − Γ� [113]; these relations are further preserved

for the Cartesian product when the factors Gi are generic, while a nearer characterization

for the remaining cases is subject to investigation ([114], [113]). The eigenvectors of L[ ]

are defined as U[ ] = [{u1,i ⊗ 1N2}
N1
i=1|{ei ⊗ u2,j}i=N1,j=N2

i=1,j=2 ], when G1 is connected [114].

Therefore, under the first three products, the special case of circulant graph factors, for

which U = V can be represented as the 2D DFT matrix, and arbitrary regular graph fac-

tors by extension, reveals that each graph Laplacian eigenvector uj of L� is the Kronecker

product of the graph Laplacian eigenvectors of its factor graphs. This insight motivates a

more generalized view of a graph signal for GSP:

Definition 4.3. Any graph signal x ∈ RN , with N = N1N2, can be decomposed as

x =
∑k

s=1 xs,1 ⊗ xs,2 = vecr{
∑k

s=1 xs,1x
T
s,2}, where vecr{} indicates the row-stacking

operation, or, equivalently,
∑k

s=1 xs,1x
T
s,2 has rank k with xs,i ∈ RNi . For x residing

on the vertices of an arbitrary undirected graph G, which admits the graph product

decomposition of type �, such that G� = G1 �G2 and |V (Gi)| = Ni, one can redefine and

process x as the graph signal tensor factors xs,i on Gi.

While x does not generally lie in the graph (Laplacian) eigenspace of the underlying

graph, and alternative decompositions are possible, the above perspective is adopted as a

promising interpretation of component-wise processing of graph signals defined on product

graphs. For an undirected arbitrary graph product with eigenbasis U = U1⊗U2, a signal

of the form x =
∑k

s=1 us,1 ⊗ us,2 is multi-dimensional (generalized) bandlimited as both

x and its components are respectively bandlimited on G and {Gi}2i=1. The special case

x = x1 ⊗ x2 (for rank k = 1) is inspected more closely in Sect. 4.5.3, as it facilitates

concrete claims on the smoothness and sparsity relations between a signal and its tensor

factors on a graph.

Separable vs Non-separable Wavelet Analysis

Let graph signal x reside on the vertices of an arbitrary, undirected graph G with graph

product decomposition G� = G1 �G2, which can be exact or approximate, such that the

factors Gi are circulant with adjacency matrices Ai ∈ RNi×Ni , i = 1, 2 and connected with

s = 1 ∈ Si, i = 1, 2 in particular (or undirected regular and connected in general).

We propose a non-separable and a separable wavelet transform on G�: the former operates

on the product graph directly, while the latter acts on each factor graph independently,

thereby omitting the inter-connections arising through the graph product operation be-

tween the two factors.
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Define the non-separable graph wavelet transform on G� with adjacency matrix A� as

H� =
1

2
(IN + K)

T∏
n=1

1

2k

(
β�,nIN +

A�
d

)k
+

1

2
(IN −K)

T∏
n=1

1

2k

(
β�,nIN −

A�
d

)k
, k ∈ N.

As has transpired from earlier discussions, this is verifiably invertible for any downsampling

pattern K as long as at least one low-pass component is retained when β�,n = 1, ∀n and

subject to further conditions otherwise, following Cor. 4.1 and others. The fundamental

properties which ensure this extension are that G� is regular and connected [50], i. e. the

spectrum of A�
d is such that |γ�,i| < γ�,max = 1, with A�

d 1N1N2 = 1N1N2 and corresponding

γ�,max of multiplicity 1. Here, G� is connected under the Cartesian product for connected

Gi and under the Kronecker product, if in addition at least one Gi is non-bipartite [115].

Wavelet constructions with exponential degree (or eigenvalue) parameters à la Thm 3.2

and Cor. 4.1 can be similarly extended to product graphs under equivalent restrictions on

cases |β�,n| = |γ�,i|.
While the graph product G� of circulants is not LSI per se, it is invariant with respect to

circular shifts on its factors, i. e. the matrix P⊗ = PN1 ⊗PN2 , for circulant permutation

matrices PNi , commutes with filters defined on A�.

As a result, one can conduct multiresolution analysis with respect to product graphs

by performing downsampling and graph coarsening operations on its individual factors,

where one level corresponds to operating on either Gi. For instance, given downsampling

matrix K2 (with respect to s = 1 ∈ S2) for circulant G2 in Fig. 4.4, one may apply the

downsampling pattern K = IN1 ⊗ K2 on G� and redefine the sampled low-pass output

on G1 � G̃2, where G̃2 represents the coarsened version of G2 (see Fig. 4.5). This notion

similarly extends to undirected (regular) product graphs of the first three types as filters

of the form H� = ϕ(A�) (for some function ϕ(·)) are shift-invariant with respect to a

designated graph-operator with common eigenbasis U = U1 ⊗U2.

→ = ×

Figure 4.5: Graph Downsampling and Coarsening of G� in Fig 4.4 on G2 w. r. t. s = 1 ∈ S2

with coarsened G̃2. c©2017 Elsevier Inc.

The separable graph wavelet transform on G� is proposed as an alternative construction,

which is applied with respect to the individual graph factors.
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4.5. Graph Products and Approximations: A Multidimensional Extension

Let Wi denote the generalized graph wavelet transform of (circulant) graph factor Gi

Wi =

[
Ψ↓2HLP~α

Φ↓2HHP~α

]
,

with downsampling matrices Ψ↓2,Φ↓2 and filters HLP~α/HP~α as defined in Sect. 3 (or more

generally).13 Then (W1 ⊗W2) represents the separable transform processing x with

respect to G1 and G2, which entails the analysis of N1 graph signal partitions {x((0 :

N2−1)+(t−1)∗N2)}N1
t=1 on G2, and subsequent N2 partitions {w(t : N2 : N1N2−1)}N2−1

t=0

on G1, with w = (IN1 ⊗W2)x. For partition x̄i ∈ RNi on Gi, let w̄i = PNiWix̄i

denote the graph wavelet domain representation on the same graph, subject to a node

relabelling in form of permutation matrix PNi ; the respective low-and high-pass values of

w̄i may be subsequently assigned to suitably coarsened versions of Gi. The recombination

w̄ = w̄1 ⊗ w̄2 ultimately gives rise to the graph signal w̄ on G. The proposed scheme

can be generalized to accommodate iterations on the low-pass branch, by defining the

multilevel transform

W
(j)
i =

Wj
i

I
Ni−

Ni
2j

 . . .W0
i

and iterative permutation matrix

P
(j)
Ni

= P0
i . . .

Pj
i

I
Ni−

Ni
2j


at levels j ≤ J − 1, for a multiscale representation

w = (P
(J−1)
N1

⊗P
(J−1)
N2

)(W
(J−1)
1 ⊗W

(J−1)
2 )x = P

(J−1)
N1N2

(W
(J−1)
1 ⊗W

(J−1)
2 )x,

where (W̃1 ⊗ W̃2) = (W
(j)
1 ⊗W

(j)
2 ) represents the introduced graph product transform

at level j. This transform is invertible with inverse (W̃−1
1 ⊗ W̃−1

2 ), as per invertibility of

its (circulant) sub-wavelet transforms Wj
i .

Remark 4.2. The application of a 2D discrete tensor-product wavelet transform on an

(image) matrix X can be expressed as w2D = W1XWT
2 , whose row-vectorized form is

given by (W1⊗W2)x. It becomes evident that this constitutes an analogy to one level of

the proposed transform, where in the traditional domain one has W2 = W1, while in the

graph domain the Wi’s generally differ, as they are not defined on the same graph. This

elucidates that our derived scheme can be regarded as the equivalent of operating on a

graph signal (or vectorized image) with respect to confined direction (rows and columns),

which is dictated by the factors in the chosen graph decomposition. One may therefore

13Assume for simplicity that the general graph (factor) in each case admits downsampling into two
equal-sized vertex sets.
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Chapter 4. Generalized and Adaptive Wavelets on Graphs

regard the analysis of partitions x̄i on Gi, and subsequent re-assignment to the vertices of

G�, as a two-dimensional extension of the graph wavelet analysis of x on G� via a suitable

transform.

A significant difference in notion between graph product-based and the graph-fused or

time-variant graph filters of previous sections is that the former does not accommodate

changes in the graph connectivity, since the components (or dimensions) of the graph

product are fixed, but is more suitable to analyze signals changing over time. In particular,

this can be realized with one graph factor representing the time axis in form of the simple

cycle and the other as the underlying graph topology of the signal in question.

4.5.3 Smoothness and Sparsity on Product Graphs

For the remainder of this discussion, following Def. 4.3, the focus is on the analysis of graph

signals which admit the rank-1 decomposition x = x1 ⊗ x2 into smooth signal (tensor)

factors xi for a maximally sparse representation.

We begin by investigating how the smoothness of graph signal x with respect to G� is

related to the smoothness of the subgraph signals xi with respect to Gi, as measured

by the classical graph Laplacian quadratic form S2(x) = xTLx [1]. Let the individual

smoothness coefficients be denoted by S� = xTLx for G�, and Si = xTi Lixi for factors

Gi, and assuming degree regularity, simplify Di = diINi , which gives rise to the following

relations:

• S⊗ = d2S1||x2||22 + d1S2||x1||22 − S1S2

• S× = S1||x2||22 + S2||x1||22

• S� = (1 + d2)S1||x2||22 + (1 + d1)S2||x1||22 − S1S2

• S[ ] = ||x1||22S2 + S1c
2
2 + d1||x1||22(N2||x2||22 − c2

2),

with constant c2 =
∑N2−1

i=0 x2(i). The total smoothness S� is composed of weighted sub-

measures Si, whose individual contribution is scaled by parameters pertaining to the

energy of the corresponding subgraph signal and node degree of the opposing factor graph.

One deduces that if for a designated decomposition G� = G1 � G2 with factors Gi, the

measures Si are small, i. e. the sub-signal factors xi are smooth with respect to graph

factors Gi, then x is also relatively smooth on G� with small S� (subject to a scaling).

Following proper normalization by ||x||22 = ||x1||22||x2||22, it can be inferred that when

x is an eigenvector, the smoothness measure gives rise to an eigenvalue of L�. For the

symmetric normalized graph Laplacian matrices of non-regular graphs, the above relations

continue to hold.
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4.5. Graph Products and Approximations: A Multidimensional Extension

Furthermore, following the interpretation of L� as a high-pass filter, consider the signal

L�x and analyze its sparsity ||L�x||0:

• L⊗x = (L1x1)⊗ d2x2 + d1x1 ⊗ (L2x2)− (L1x1)⊗ (L2x2)

• L×x = (L1x1)⊗ x2 + x1 ⊗ (L2x2)

• L�x = (L1x1)⊗d2x2 +d1x1⊗ (L2x2)− (L1x1)⊗ (L2x2) +(L1x1)⊗x2 +x1⊗ (L2x2)

• L[ ]x = x1 ⊗ (L2x2) + (L1x1)⊗ c21N2 + d1x1 ⊗ (N2x2 − c21N2)

It becomes evident that for constant xi (and hence x) such that Lixi = 0Ni , we have

Lx = 0, naturally preserving the nullspace. For linear polynomial xi and banded circulant

graph factors Gi, signals Lixi are sparse, which is not necessarily true for L�x under any

product operation.

Replacing Di by e-degree matrices D̃i,αk for exponential parameter αk (as defined in

Ch. 3, Def. 3.3 on p. 54), gives rise to equivalent relations for parameterized circulant

L̃i,αk ; the same principle can be extended to generalized graph Laplacians of the form

L�,λj = λj(A�) −A�. Hence, for periodic complex exponential graph signals xi param-

eterised by αk = 2πk
Ni
, k ∈ [0 Ni − 1] (or accordingly, bandlimited signals), we obtain

Lα1�α2x = 0, with exception of the lexicographic product, for which this holds only if x2

is an all-constant vector, as evidenced by its eigenspace property.

Overall, this demonstrates that the vanishing moment properties of circulant (e-)graph

Laplacians are to an extent preserved within the graph product, yet sparsity is reduced

as a result of the newly arising interconnections between the factors and, hence, growing

(graph) border effect. Due to the fact that the above relations cannot be generalized to

powers of the graph Laplacian matrix, comparable property preservations can only condi-

tionally be extended to higher order (exponential) polynomial graph signals, which have

a sparse representation with respect to factors Lki . This suggests that a sparser represen-

tation can be gained by performing a separable signal (wavelet) analysis with respect to

inherent circulant substructures, as measured via the graph Laplacian and its powers. In

contrast, the annihilation property of generalized or e-graph Laplacians for bandlimited

signals continues to be preserved at higher powers, as the eigenbasis does not change.

In light of this, we at last compare the sparsity of representation attained via the proposed

graph wavelet transforms on the basis of an example, and discover that the separable

approach, apart from preserving higher-order annihilation properties, can induce more

sparsity, for certain cases such as non-periodic smooth signals on circulants. It should be

noted that two levels of the 1-D non-separable graph wavelet transform (or alternatively,

downsampling on both factors, with respect to K = IN1⊗K2 followed by K = K1⊗IN2/2),

are considered comparable to one level of the 2-D separable transform, yet similarly as in

the traditional domain, there is no direct equivalence between the two.
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Chapter 4. Generalized and Adaptive Wavelets on Graphs

Example 1: Given graph signal x = x1⊗x2 on G = G1⊗G2, where Gi are circulant and

banded of bandwidth Mi and xi ∈ RNi are linear polynomial, let Wi ∈ RNi×Ni and W⊗ ∈
RN1N2×N1N2 represent first-order graph-spline wavelet transforms on factors Gi and G re-

spectively. Here, we downsample w. r. t. s = 1 ∈ Si on each Gi and reconnect nodes such

that generating sets Si are preserved. Hence, separable representation w = w1 ⊗w2 has

K = 3
4N1N2− 1

2(2M1M2+M1N2+M2N1) zero entries, whereas non-separable w⊗ = W⊗x

has a total of K⊗ = K⊗,1 +K⊗,2 zeros, with K⊗,1 = 1
2N1N2 − (M1N2 +M2N1 − 2M2M1)

and K⊗,2 = 1
4N1N2− (3

2N1M2 +M1N2− 6M1M2) zeros at levels 1 and 2 respectively. We

have K > K⊗ for 4Mi < Ni, and K > K⊗ = K⊗,1 with K⊗,2 = 0 for Ni/4 ≤Mi < Ni/2,

which implies that the separable approach induces a sparser representation at any band-

width Mi < Ni/2. Note that the sparsity of w� is the same under any of the first three

graph products.

Example 2: For circulant lexicographic product graph G = CN1N2,S and decomposi-

tion G = G1[G2], it can be deduced from the above relations, that we can gain sparsity by

conducting the 2-D graph wavelet analysis of xi on Gi as opposed to the 1-D analysis of x

on G, for any choice of smooth xi as long as they do not lie in the eigenspace of the graph

Laplacian. Here, the product-related relabelling Px = x2 ⊗ x1, which renders a circulant

matrix Ã[ ] = PA[ ]P
T , corresponds to a simple stacking of columns instead of rows, thus

preserving the tensor product, and associated smoothness properties with respect to the

subgraphs.

4.6 Computational Experiments

In the following, we consider selected transforms in order to illustrate their sparsification

properties.

Let a multi-dimensional piecewise smooth signal reside on the toroidal graph, which re-

sults from the Cartesian graph product of two circulants of respective dimension |Vi| = 32

with generating sets S1 = {1} and S2 = {1, 2}, also illustrated in Fig. 4.4 of Sect.

4.5. We compare the non-linear approximation performance between the suitably pa-

rameterized space-variant (HSVGSWT ) and regular graph e-spline wavelet transform

(HGESWT ) with initial parameters β1 = d̃max = 2 cos(α1)+2 cos(α1)+2 cos(2α1)
6 , β2 = d̃min =

2 cos(α2)+2 cos(α2)+2 cos(2α2)
6 and order k = 2 at 3 levels as well as with the simple graph spline

wavelet transform (HGSWT ). Further, reconnection is conducted such that generating sets

are preserved separately on each graph factor and all transform factors are set to 1. The

condition numbers of the constructions are respectively CHSVGSWT = 655.04, CHGESWT =

719.538×103 and CHGSWT = 399.61, and the signal is given by x =
∑2

i=1 xi◦1[ti ti+N/2−1],

t1 = 0, t2 = N/2, with pieces xi = (cos(αik)◦p)⊗cos(αik), for linear polynomial p ∈ RNi ,
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4.6. Computational Experiments

Figure 4.6: Non-linear Approximation Performance Comparison for a piecewise smooth
signal (top) on a toroidal graph product (left).

sequence k = 0 : Ni−1, and with α1 = 2π
32 and α2 = 0.2 respectively per piece. It becomes

evident that the node-variant transform achieves perfect reconstruction at a significantly

lower number of retained coefficients than the multiplicative graph e-spline transform (see

Fig. 4.6).14 This can be traced back to a smaller matrix bandwidth, and hence smaller

border effect, of the node-variant transform compared to the graph e-spline transform,

which includes a larger number of matrix factors to achieve the same annihilation effect.

The latter is further outperformed within the region prior to perfect reconstruction by

the simple graph spline construction, which albeit not having the required annihilation

properties, has a lower condition number, in line with the previous derivations of Sect.

4.4.

Further, we compare the performance of the previous set of transforms (for order k = 1)

under noise for a piecewise smooth signal on a circulant graph of dimension |V | = 1024 with

generating set S = {1, 2, ...,M} of varying bandwidth M = 1, 5, 9. Given the noisy signal

y = x + n, for random Gaussian noise vector n, we recover x via the hard-thresholding

of a fraction of graph wavelets coefficients w, for a chosen value close to the sparsifying

threshold of the annihilating transforms in the clean state, and subsequent application of

the inverse GWT, similar to the analysis in Sect. 3.6. Here, 3 levels are considered, with

reconnection as before, and standard transform factors omitted, while results are averaged

over 10 trials of noise and plotted against the standard deviation of the noise. In Fig. 4.7,

a piecewise sinusoidal signal, with frequencies α1 = 2π
N and α2 = 2π5

N respectively per

14The graph in Fig. 4.6 (lower left) was prepared using [52].
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Chapter 4. Generalized and Adaptive Wavelets on Graphs

Figure 4.7: Non-linear Approximation Performance Comparison for a noisy piecewise
smooth signal (top) on a circulant graph with bandwidth M = 1, 5, 9 (from left).

piece, is recovered on the vertices of a circulant graph. Performance generally decreases

with increasing bandwidth, in line with the observations for universally smooth signals

from Sect. 3.6, however, as is apparent, all three considered (first-order) graph wavelet

transforms provide an improvement with respect to the noisy version.

In the case when the first piece of the signal is a polynomial sinusoidal with the same

frequency α1 = 2π
N , while the latter is a sinusoidal with α2 = 0.05, an additional graph

border effect is incurred following transform analysis, and we observe in Fig. 4.8, that

the matrix-product-based HGESWT construction diminishes rapidly in performance as a

result of its increased condition number and sensitivity to noise. Here, we have compared

the space-variant and simple spline GWTs of order k = 2 with the HGESWT comprising

filter factors of order k1 = 2 and k2 = 1, respectively corresponding to the band-pass filters

for α1 and α2.
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Figure 4.8: Non-linear Approximation Performance Comparison for a noisy piecewise
smooth signal (top) on a circulant graph with bandwidth M = 1, 5, 9 (from left).
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4.7 Overview of GWTs

The following table summarizes the various proposed GWTs from Chapters 3 and 4, along

with the corresponding classes of graph signals that can be annihilated (or reproduced,

where applicable) on the specified undirected graph type.

We list the analysis filter type as a function of the normalized graph (adjacency) matrix

eigenvalues γ, the order of annihilation as either the number k of vanishing moments

(local) or the dimension of the nullspace of the high-pass filter Null(·) (or NullP (·) for

piecewise bandlimited signals), which is variable, and the parameterization in form of the

e-degree dα or generalized eigenvalue γi.

Name Filters Order Parameters Graph Type Signal Class

HGSWT (1± γ)k 2k d0 = 1 Polynomial: p

HGESWT
∏T
n=1(βn ± γ)k 2Tk/Null(·) βn = dαn =

∑M
k=1 2dk cos(αnk) Complex Exp. Pol. e±ikαnp

2Tk βn = diαn =
∑M

k=1 2dk cosh(αnk) Circulant Real Exp. Pol. e±kαnp

HCGESWT
∏T
n=1(βn − γ)k 2Tk/Null(·) βn = dαn =

∑M
k=1 2dk cos(αnk) Complex Exp. Pol. e±ikαnp

HSVGSWT (1± γ̃)k 2k/NullP (·) d̃i Piecewise Smooth

HBGWT
∏
n(βn ± γ)k Null(·) βn = γi Arbitrary (Piecewise) Bandlimited

HSVGSWT (1± γ̃)k NullP (·) d̃i Piecewise Bandlimited

Table 4.1: Overview of Proposed GWTs.

We further make the following remarks in relation to Table 4.1:

• The term piecewise here refers to pieces of different function type; note that all

circulant constructions annihilate piecewise smooth signals of the same function

type by default.

• Further γ̃ denotes the spectrum of Ã = D̃−1/2AnD̃
−1/2 with parameters d̃i and

k = 0 : N − 1.

• The complementary construction HCGESWT is an alternative to the HGESWT

for complex exponential polynomials with more reproduction properties, within a

variable low-pass filter, and well-defined synthesis filters.

• The proposed time-varying and graph-product-based transforms represent general-

izations of the above respectively to sets of multiple graphs and higher-dimensional

graphs.

111



Chapter 5

Sparse Sampling on Graphs

With the focus of previous chapters laid on the problem of inducing sparsity in graph

signal representations by identifying suitable graph wavelet bases, the present discussion

is intended to further the exploration of sparsity on graphs by considering its wide-ranging

implications. Given a sparse signal residing on the vertices of an arbitrary graph, it is

desirable to exploit the sparsity property for sampling or dimensionality reduction, as

conducted in the classical frame of signal processing or compressed sensing.

In particular, by leveraging the core theory of Finite Rate of Innovation (FRI) sampling

in the classical domain, paired with insights from classical and, by extension, the de-

rived (circulant) graph spline wavelet theory, we introduce a graph signal sampling and

graph coarsening framework, termed the Graph-FRI (GFRI) framework for sparse graph

signals.1 At its core, the introduced GFRI-framework states that any K-sparse signal

residing on the vertices of a circulant graph can be sampled and perfectly reconstructed

from its dimensionality-reduced representation in the graph spectral domain of minimum

size 2K, while the structure of an associated coarsened graph can be simultaneously in-

ferred. Equipped with a broad range of sparsifying graph wavelet transforms, the devel-

oped framework can thus be naturally extended to signals that are (piecewise) smooth,

while the context of noisy recovery under (graph-)perturbations is also explored. Exten-

sions to arbitrary graphs can be further enforced via suitable approximation schemes.

1A significant part of the content of this chapter appears in accepted article [6], and further led to
publications [8] and in part [11].
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5.1 Sampling on Circulant Graphs

5.1.1 Related Work

The spectral domain-based coarsening approach in the developed GFRI framework is com-

parable to the graph coarsening scheme introduced in [68] by Chen et al. up to the choice

of the sampling set and resulting property preservations, and with the further distinc-

tion that we additionally (iteratively) filter the given graph signal with a suitable graph

e-spline filter. While the former requires K entries of suitably chosen sample locations

(for bandlimited signals of bandwidth K) for perfect recovery, our downsampling pattern

is fixed and independent of the reconstruction scheme, which solely requires the input of

the dimensionality-reduced spectral graph signal, as well as primarily used to extract the

coarsened graph corresponding to the sampled graph signal, under preservation of certain

graph properties. In addition, the present scheme considers sparse and graph wavelet-

sparse, as opposed to bandlimited, graph signals, encompassing a wider variety of graph

signal classes, which do not necessarily belong to a fixed subspace, as facilitated through

suitable graph (e-)spline wavelet analysis. It has already been established by Ekambaram

et al. [55] that a K-bandlimited graph signal x on a circulant graph, whose GFT is non-

zero at known locations, can be exactly recovered from K consecutive entries of x via

inversion of its GFT-matrix, following that any K ×K-submatrix of either K consecutive

rows or columns of the DFT-matrix is invertible.

5.1.2 Sampling in the Time Domain

The process of sampling a continuous-time signal x(t) in the Euclidean domain tradition-

ally comprises a filtering (convolution) operation with a given filter function h(t), followed

by a (uniform) sampling step, which creates the samples yn = (x ∗ h)(t)|t=nT at sam-

pling rate fs = 1
T for period T ([22], see Fig. 5.1). At its core, sampling theory creates

a bridge between continuous-time and discrete-time signals by seeking to identify ideal

methods as well as conditions for the perfect reconstruction of x(t) from the given yn; this

further extends to characterizing distinct classes of signals x(t) and suitable filters h(t)

which guarantee perfect recovery. In a broader sense, sampling in discrete-time may be

Figure 5.1: Traditional Sampling Scheme. c©2017 Elsevier Inc.

interpreted as a dimensionality reduction process, which is followed by a dimensionality

increase (or interpolation) step to recover the original signal [81]. Nevertheless, in order
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to formulate a proper sampling theory in the graph domain, additional questions need to

be addressed, in particular, on what kind of graph structure the dimensionality-reduced

(sampled) signal resides and how the former relates to the original graph, which challenges

the classical problem and invites a more sophisticated take on sampling. Sampling theory

on graphs can therefore be collectively described as the study of conditions and methods

which facilitate the perfect recovery of a graph signal x ∈ RN on the vertices of a graph

G = (V,E) with |V | = N , from a dimensionality-reduced, possibly graph-filtered, signal

y ∈ RM , further extending to the identification of a coarsened graph G̃, with |Ṽ | = M and

M < N , on which y is defined, as well as to providing a generalized frame for the classical

problem. Further intriguing dimensions of the framework may involve the accompanying

recovery of G from G̃, however, in this work we restrict our focus on the former.

5.1.3 Wavelets for Sampling

Equipped with a range of novel families of sparsifying circulant (and non-circulant) graph

wavelet transforms, the focus now shifts to the resulting sparse graph signals and, as such,

the following conventions are applied.

Let xW ∈ CN denote a signal defined on a (circulant) graph G and Wj ∈ RN/2j×N/2j

represent a general graph wavelet transform (GWT) of the form

Wj =

[
Ψj↓2HLPj

Φj↓2HHPj

]
,

composed of low-and high-pass filters HLPj ,HHPj ∈ RN/2j×N/2j , at level j, where the

binary downsampling matrices Ψj↓2,Φj↓2 ∈ RN/2j+1×N/2j sample complementary sets

of nodes in the standard alternating pattern with respect to s = 1 ∈ S for circulants

(or as appropriate); here, even-numbered nodes are retained in the low-pass branch and

subsequently redefined on a suitably coarsened graph. The multiresolution representation

of xW , following iteration in the low-pass branch, then yields

x̃ = WxW =

Wj

IN(2j−1)

2j

 . . .[W1

IN
2

]
W0xW ,

for multilevel graph wavelet transform matrix W. In order to re-label x̃, whose individual

partitions reside on a collective of coarsened graphs, with respect to the original G, we

introduce the permutation matrix P, so that, for an appropriate re-assignment, x = Px̃

resides on G.

Prior analysis is thus captured in the definition of a class W of wavelet-K-sparse graph

signals, with xW ∈W of dimension N , whose elements possess a K-sparse multiresolution
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representation x ∈ CN , ||x||0 = K, via a suitable GWT. Given a smooth graph signal xW ,

one can describe, and hence tailor, the sparsity K of x as a function of decomposition level

j as well as of the bandwidth Bj of the graph filter matrix at each j, where applicable.

In particular, this analysis model is primarily relevant for (piecewise) smooth signals on

circulant graphs due to their breadth of annihilation capabilities, ranging from localized to

global (bandlimited) form on multiple scales, whereas annihilation on arbitrary graphs has

so far been confined to signals of (piecewise) bandlimited form and is not extendable to

multiple levels in general due to the lack of structure and consistency in graph coarsening.

For illustration, results assessing the number of non-zero entries of x ∈ CN are presented,

for polynomial xW (generalizable to complex exponential polynomials) on circulant graphs.

Node reconnection is conducted such that the coarse graphs retain their original gener-

ating set after downsampling at each level, thereby maintaining constant filter support;

generalizations to other, less regular, graph coarsening schemes such as Kron-reduction,

are omitted for simplicity.

Corollary 5.1. Consider an undirected, circulant graph G of dimension N and bandwidth

B̃, and let x be the multiresolution decomposition of graph signal xW , which is a 1-piece

polynomial of maximum degree D ≤ 2k − 1, on G via the j-level GWT matrix W.

(i) Let W be the HGSWT of order 2k, with corresponding low-and high-pass graph filter

matrices each of bandwidth B = kB̃, and assume that B is sufficiently small such that∑l
n=0

B
2n ≤

N
2l+1 at each level l ≤ j − 1. The resulting x = PWxW is K-sparse, where

K = N
2j

+B(2(j − 1) + 21−j), when B = 2j−1r, r ∈ Z+.

(ii) Let W be the HCGSWT of order 2k, with corresponding low-and high-pass graph filter

matrices of bandwidth T and B = kB̃ respectively, such that B +
∑l

n=1
T
2n ≤

N
2l+1 at each

level l ≤ j − 1 The resulting x is K-sparse, where K = N
2j

+ Bj + T (j + 21−j − 2), when

T = 2j−1r, r ∈ Z+.

(iii) Let W be the HGSWT at j = 0, with the alternative ‘minimum’ downsampling

pattern, which retains only one low-pass component. Then x is K-sparse with K = 2B.

Proof. See Appendix C.1.

When B ∈ Z+, the results of (i) & (ii) in Cor. 5.1 continue to apply up to a small correction

term, which increases with the number of levels j. For the multiresolution decomposition

of periodic (complex exponential) graph signals with parameter α = 2πk
N , k ∈ N, the max-

imum sparsity of K = N
2j

can be achieved after j levels, or selectively, up to K = 1 for the

‘minimum’ downsampling pattern in (iii) under a suitable GWT.

Further to Cor. 5.1 (iii), since invertibility of the generalized GWT on an arbitrary graph

depends on i. a. the downsampling pattern, one can identify a set of distinctly parame-

terized transforms on circulant and non-circulant graphs, for which this is satisfied when

only one (or few) nodes are low-pass filtered; the circulant HGSWT being a prominent

example. Here, the downsampling operation is less meaningful from a graph and sampling
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theoretical (or filterbank) perspective but rather leveraged as an intermediate processing

step to produce a sparse signal. Therefore, one may apply any type of sparsifying graph

transform, that does not necessarily capture a graph filterbank, such as a form of invertible

generalized (space-variant) graph Laplacian filter (see Cor. 4.2), where applicable.

5.1.4 The Graph FRI-framework

As previously mentioned in the review of Ch. 2, the traditional FRI-framework is built on

the central result that certain classes of non-bandlimited signals with a finite rate of inno-

vation can be sampled and perfectly reconstructed using kernels of compact support, which

satisfy the Strang-Fix conditions ([116], [22]). In the discrete domain, this prominently

entails that a K-sparse signal vector x ∈ RN with known K can be perfectly reconstructed

from M ≥ 2K consecutive sample values yn of the measurement vector y = Fx, where

F ∈ CN×N is the DFT matrix, of the form

yn =
1√
N

K−1∑
k=0

xcke
−i2πckn/N =

K−1∑
k=0

αku
n
k (5.1)

with weights xck of x at positions ck; here, the locations uk = e−i2πckn/N and amplitudes

αk = xck/
√
N are successively recovered using a local reconstruction algorithm known as

Prony’s method [22]. In other words, the filtering (or acquisition) of a sparse signal with

the DFT F facilitates its exact reconstruction from a dimensionality-reduced version in

the Fourier domain.

The insight that the graph frequency-ordered (graph Laplacian) GFT basis of any circulant

graph G can be expressed as the DFT-matrix, subject to a graph-dependent permutation

σ of columns, motivates an intuitive extension of sparse sampling to the graph-domain,

which is termed the Graph FRI-framework (GFRI):

Theorem 5.1. (Graph-FRI) Define the permuted GFT basis U of undirected circulant

graph G such that UH is the DFT-matrix. We can sample and perfectly reconstruct a

(wavelet-)K-sparse graph signal (with multiresolution) x ∈ CN , on the vertices of circulant

G using the dimensionality-reduced GFT representation y = UH
Mx, y ∈ CM , where UH

M

are the first M rows of UH , as long as M ≥ 2K.

Proof. See Appendix C.2.

Similarly as in the traditional case, the proof of this theorem follows from the simple

application of Prony’s method. In reference to the previous sparsity analysis, one there-

fore requires at least K < N
2 for a given K-(wavelet-)sparse graph signal x, since M ≥ 2K,

for dimension N = 2n, n ∈ Z+ by initial assumption.
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Chapter 5. Sparse Sampling on Graphs

While the sampling basis is the same for all circulant graphs, the reduced spectral sig-

nal y carries a variable frequency interpretation that depends on the graph topology and

thus permutation σ, encapsulated within frequency coefficients y(λσi ) for DFT-permuted

(partial) graph Laplacian spectrum {λσi }Mi=1; nevertheless, apart from possible inference

through x, the sole representation through y does not a priori capture (or reveal) the

specific topology of the underlying graph, which will be inspected more closely in what

follows.

Graph Coarsening for GFRI

The problem of (down-)sampling a signal on a graph G = (V,E) along with graph coars-

ening, as the task of determining the reduced set of vertices and edges of the coarsened

graph G̃ = (Ṽ , Ẽ), are central to GSP theory and represent one of the main challenges

that the complex data dependencies of graphs impose on traditional signal processing, as

has been remarked in previous chapters on graph wavelet analysis. In an effort to fur-

ther characterize the spectral graph representation y in terms of the principal underlying

graph G as well as complete the current graph sampling framework, it is thus desirable to

identify the coarsened graph G̃ complementing the dimensionality-reduced signal.

Formulated approaches range from spectral graph partitioning, where the largest graph

Laplacian eigenvector is used to determine a downsampling pattern [60], up to graph-

characteristic operations such as for bipartite graphs ([1], [35]), which naturally comprise

a partitioning into two disjoint sets of nodes and can be considered a special case of the

former. Graph reconnection may be conducted to satisfy various properties, and is an

accompanying problem in itself. In the context of multilevel graph wavelet analysis, the

properties of most interest have been the preservation of circularity and sparsity of the

GWT representation, and as implied by the foregoing discussion, the latter is achieved

when the bandwidth of the graph Laplacian is small, i. e. minimal reconnection is con-

ducted.

Since in the present scenario, one needs to identify the graph structure associated with

the dimensionality reduced GFT-representation y, conversely to prior graph coarsening

approaches, both an appropriate downsampling pattern as well as a reconnection strategy

need to be extracted from the information given by the spectral coefficients at hand, rather

than imposed to fullfil a set of desired properties in the first instance. The main difficulty

is posed by the fact that y resides in the spectral graph domain and does not directly give

rise to a downsampling pattern in the vertex domain.

In the traditional FRI-framework [22], a sparse signal can be sampled with a general expo-

nential reproducing kernel ϕ(t), beyond the complex exponentials of the Fourier domain,
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5.1. Sampling on Circulant Graphs

where the function ϕ(t) in continuous-time and its shifted versions reproduce exponentials

for a proper choice of coefficients cm,n∑
n∈Z

cm,nϕ(t− n) = eαmt for αm ∈ C,m = 0, ..., P. (5.2)

We note that the coefficients cm,n in Eq. (5.2) can be expressed as cm,n = cm,0e
αmn, where

cm,0 =
∫∞
−∞ e

αmxϕ̃(x)dx [22], and the functions ϕ(t) and ϕ̃(t) form a quasi-biorthonormal

set, with biorthonormality as a special case ([117], [118]).

Inspired by this notion of sampling a sparse signal within a multi-layered scheme, the

Graph FRI-framework is further extended by expressing the reduced GFT-basis UH
M as

the product between a fat coefficient matrix C and a row-reduced low-pass GWT filter,

which reproduces complex exponential graph signals as per Thms. 3.2 and 3.5.

In the following, we proceed to demonstrate the feasibility of this scheme by first proving

the existence of such a coefficient matrix C and its relation to a row-reduced DFT-matrix.

Lemma 5.1. Let UH
M be the reduced GFT-basis of undirected circulant graph G, as de-

fined in Thm. 5.1, and E~α ∈ RN×N a low-pass graph filter matrix in the e-spline GWT

family (see Thms. 3.2, 3.5), which can reproduce complex exponential graph signals with

parameter ~α = (α0, ..., αM−1) =
(

0, ..., 2πk
N , ..., 2π(M−1)

N

)
. We thus have UH

M = CΨ↓2E~α,

where Ψ↓2 ∈ RN/2×N is a binary sampling matrix which retains even-numbered nodes, and

C ∈ CM×N/2 is a coefficient matrix. Further, C = ĈŨH
M , where Ĉ ∈ CM×M is diagonal

and ŨH is the DFT matrix of dimension N/2.

Proof. Consider the general complementary graph e-spline wavelet filterbank (Thm. 3.5)

with respective analysis and synthesis matrices

W =

[
Ψ↓2HLPα

Φ↓2HHPα

]
, W̃ =

[
Ψ↓2H̃LPα

Φ↓2H̃HPα

]

such that W̃TW = IN , where the high-pass representer polynomials at both branches

possess the same number of exponential vanishing moments, i. e. roots at z = e±iα for

some α ∈ R. Let x ∈ CN be a complex exponential graph signal of the form

x =
[
eiα0 eiα1 eiα2 . . . eiα(N−1)

]T
where α = −2πk

N , i. e. xT is the (k + 1)-th row of the (unnormalized) DFT-matrix, and

define y = HLPαx = cx, for c ∈ R (also an eigenvalue of HLPα), such that

Ψ↓2HLPαx = cΨ↓2x = c
[
eiα0 eiα2 eiα4 . . . eiα(N−2)

]T
= y(0 : 2 : N − 2) = y↓2
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which denotes a scalar multiple of the (k+ 1)-th row of the DFT of dimension N/2, since[
eiα0 eiα2 eiα4 . . . eiα(N−2)

]T
=
[
ei(2α)0 ei(2α)1 ei(2α)2 . . . ei(2α)(N/2−1)

]T
with 2α = − 2πk

N/2 . We obtain

[
(Ψ↓2H̃LPα)T (Φ↓2H̃HPα)T

] [Ψ↓2HLPα

Φ↓2HHPα

]
x =

[
(Ψ↓2H̃LPα)T (Φ↓2H̃HPα)T

] [ y↓2

0N/2

]
,

but since (Φ↓2H̃HPα)T0N/2 = 0N , neither 0N/2 nor (Φ↓2H̃HPα)T contribute, and we can

thus write

[
(Ψ↓2H̃LPα)T (Φ↓2H̃HPα)T

] [ y↓2

0N/2

]
=
[
(Ψ↓2H̃LPα)T

] [
y↓2

]
= x

i. e. linear combinations of the columns of (Ψ↓2H̃LPα)T reproduce x. Rewriting the former,

we obtain yT↓2Ψ↓2H̃LPα = xT , and reversing the sequence of W and W̃, and letting

Eα = HLPα , we arrive at [
cT
]

Ψ↓2Eα = xT

with c ∈ CN/2 (c = ĉx↓2 for eigenvalue ĉ of H̃LPα), Ψ↓2Eα ∈ RN/2×N , and xT ∈ CN . By

generalizing the RHS to incorporate M stacked complex exponential vectors x to form the

transposed DFT-matrix (UH
M )T , we can similarly show

CΨ↓2E~α = UH
M ,

with C = ĈŨH
M and ~α = (α1, ..., αM ). In particular, the matrix Ĉ is diagonal, while ŨH

M

represents the first M rows of the DFT-matrix of dimension N/2.

In the case of a bipartite graph, using Thm. 3.2, we can proceed similarly, and obtain[
(Ψ↓2H̃LPα)T

] [
y↓2

]
= x with y↓2 = cx↓2 for some c ∈ R, for synthesis low-pass filter

H̃LPα , which confirms that it reproduces complex exponentials with parameter ±α, just

as the analysis low-pass filter, despite not being of the same support (see also the semi-IIR

graph filterbank in Sect. 3.5.1). In particular, as previously shown, the inherent biorthog-

onality constraints of the wavelet transform impose that the representer polynomials of

the bipartite HGESWT contain opposing roots respectively for analysis and synthesis, i. e.

we have HLPα(z) = −z−1HHPα(−z) and H̃LPα(z) = −zH̃HPα(−z). Thus we may inter-

change the order of synthesis and analysis branch, and obtain
[
(Ψ↓2HLPα)T

] [
ĉx↓2

]
= x,

confirming our previous result that the columns of the adjacency-matrix based, analysis

low-pass filter (Ψ↓2HLPα)T reproduce x as a consequence of the generalized Strang-Fix

conditions ([25], [82]).

A sensible vertex selection for the coarsened graph can be extracted from the previous
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5.1. Sampling on Circulant Graphs

result, in that the factored low-pass graph filter Ψ↓2E~α samples every other node in

keeping with the standard circulant downsampling pattern with respect to s = 1 ∈ S.

The popular graph coarsening scheme of Kron-reduction [70], which employs Schur com-

plementation based on the given node sampling pattern, presents a straight-forward real-

ization of reconnection by evaluating the graph-Laplacian matrix L̃ of the coarsened graph

from the graph Laplacian matrix L of initial graph G and given set Vα = {0 : 2 : N −2} of

retained nodes: L̃ = L(Vα, Vα)− L(Vα, V
{
α )L(V {α , V

{
α )−1L(Vα, V

{
α )T . It can be shown that

for the given Vα and symmetric circulant L, the scheme preserves these properties for the

resulting coarsened graph ([70], [55]), yet faces the drawback of generally inducing denser

graphs. In particular, for a banded circulant matrix, the resulting lower-dimensional Schur

complement will be of equal or larger bandwidth which may prove destructive in a sparsity-

driven filterbank construction and analysis as well as possibly for matrix conditioning.

Alternatively, by leveraging the fact that any graph Laplacian eigenvector uk of G can be

interpreted as a graph signal on its vertices with sample value uk(i) at node i, we propose

a graph coarsening approach in the spectral domain of the graph at hand, which applies

the extracted downsampling pattern on its eigenbasis, and is captured by the following:

Lemma 5.2. Consider an undirected circulant graph G with generating set S, and adja-

cency matrix A = 1
NUΛUH ∈ RN×N with bandwidth B, where 1√

N
UH is the DFT matrix.

We downsample by 2 via the binary matrix Ψ↓2 ∈ RN/2×N on the first N/2 rows in UH

and eigenvalues Λ, such that ŨH = UH
0:N/2−1Ψ

T
↓2, and Λ̃ = Ψ↓2ΛΨT

↓2. The resulting

adjacency matrix Ã = 1
N/2ŨΛ̃ŨH ∈ RN/2×N 2 is circulant with the same generating set

S as G, provided 2B < N/2.

Proof. The eigenvalues of A with first row [0 a1...a1] are λj =
∑B

k=1 2ak cos
(

2πjk
N

)
,

j = 0, ..., N -1. Thus the eigenvalues of Ã with the same entries ai and bandwidthB < N/4,

are λ̃j =
∑B

k=1 2ak cos
(

2π(2j)k
N

)
= λ2j , j = 0, ..., N/2-1. We can similarly show the

preservation of the downsampled DFT-eigenbasis. Let

x =
[
eiα0 eiα1 eiα2 . . . eiα(N−1)

]T
with α = −2πk

N denote the (k + 1)-th row of the non-normalized DFT-matrix. If we

discard all entries at odd-numbered positions, we obtain the (k+ 1)-th row of the DFT of

dimension N/2, since[
eiα0 eiα2 eiα4 . . . eiα(N−2)

]T
=
[
ei(2α)0 ei(2α)1 ei(2α)2 . . . ei(2α)(N/2−1)

]T
with 2α = − 2πk

N/2 . Thus, if we apply the above sampling pattern on the first N/2 rows of the

DFT of dimension N , we obtain the DFT of dimension N/2. In particular, at k = N/2,
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Chapter 5. Sparse Sampling on Graphs

we have α = π and thus corresponding, downsampled row x = 1N/2, and proceeding

similarly, we observe that the sampled lower half of the N × N DFT, equivalently gives

the DFT of dimension N/2.

The above is further reinforced by the fact that adjacency and graph Laplacian matrices

of regular graphs possess the same basis, which as will be seen in a later discussion in

Sect. 5.1.5, is not upheld for e. g. a path graph. In particular, Lemma 5.2 gives rise to

a meaningful coarsening strategy for circulant graphs as it preserves both the original

connectivity of the graph by retaining the same generating set, as well as its spectral in-

formation given that its eigenvalues and eigenbasis are respectively composed of a subset

and subpartition of the original.

Following a generalization of Lemma 5.1, and the preceding discussion, the graph coarsen-

ing scheme complementing the proposed Graph-FRI framework is formulated as follows:

Theorem 5.2. Given GFT y ∈ CM , from Thm 5.1, we determine the coarsened graph

G̃ = (Ṽ , Ẽ) associated with the dimensionality-reduced graph signal ỹ ∈ CM̃ , via the

decomposition

y = UH
Mx = C

J−1∏
j=0

(Ψj↓2E2j~α)x = Cỹ

where UH
M ∈ CM×N is the row-reduced permuted GFT basis (DFT-matrix), C ∈ CM×M̃

is a coefficient matrix with M̃ = N
2J

given M , Ψj↓2 ∈ RN/2j+1×N/2j is a binary sampling

matrix which retains even-numbered nodes, and E2j~α ∈ RN/2j×N/2j is a (higher-order)

graph e-spline low-pass filter on G̃j, which reproduces complex exponentials at level j, with

parameter ~α = (α0, ..., αM−1) =
(

0, ..., 2π(M−1)
N

)
. The associated coarsened graphs G̃j at

levels j ≤ J can be determined following two different schemes:

(i) Perform Kron-reduction at each level j ≤ J using the pattern Vα in Ψj↓2 to obtain Lj

(ii) Define eigenbasis (Ũj , Λ̃j) ∈ CN/2j×N/2j at each level j ≤ J through the application

of Ψj−1↓2 on (Ũj−1, Λ̃j−1) (see Lemma 5.2). The coarse graph G̃j for graph signal ỹj =∏j−1
k=0(Ψk↓2E2k~α)x, has adjacency matrix

Aj = (2j/N)ŨjΛ̃jŨ
H
j

which preserves the generating set S of G for a sufficiently small bandwidth.

Consequentially, the edge set of the coarsened graph associated with the GFRI-framework

is not unique, and two possible approaches have been explored which satisfy the main

connectivity constraints of symmetry and circularity. Kron-reduction on the one hand

preserves basic graph characteristics, yet, while using the entire graph adjacency relations

in the computation of the coarsened version, it provides little general intuition on the

121



5.1. Sampling on Circulant Graphs

topology of the latter. The spectral reduction technique on the other hand, is shown to

additionally preserve the original graph connectivity by retaining its generating set (see

Fig. 5.2), thereby simultaneously alleviating the issue of an increasing bandwidth. It is

therefore also relevant as a coarsening scheme for (sparse) multilevel graph wavelet anal-

ysis.

The graph sampling framework, further illustrated in Fig. 5.3, may conclusively be summa-

rized as the filtering of a sparse graph signal x on G with a graph e-spline (low-pass) filter

followed by dimensionality reduction and giving rise to signal ỹ on coarsened G̃, which is

subsequently transformed into the further dimensionality-reduced, scaled spectral graph

domain, resulting in the representation y. Following an initial sparsification step, this

extends to graph signals xW with a sparse (multiresolution) representation via a GWT,

which can then be similarly sampled. The derived decomposition notably achieves the

distinct spectral characterization of y in that the coefficient matrix C, which incorporates

graph filter eigenvalues, as well as the graph filter depend directly on (and are unique for)

the graph.

Figure 5.2: Graph Coarsening for a Circulant Graph with S = {1, 2, 3}. c©2017 Elsevier
Inc.

Figure 5.3: Sampling Scheme with Preceding Sparsification Step and One Level of Coars-
ening. c©2017 Elsevier Inc.

The matrix E2j~α in Thm. 5.2, representing a higher-order, vertex-localized graph e-spline

wavelet low-pass filter parameterised by ~α2j at level j, is implicitly assumed to repro-

duce complex exponential graph signals (with ~α as specified), and thus of the form of
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a low-pass filter designed in Eqs. (3.3) (of Thm. 3.2) or (3.14) (of Thm. 3.5), depend-

ing on whether the graph at hand is also bipartite or not. Since the filter construction

in either case is based on the combination (convolution) of different graph e-spline basis

functions, for certain scenarios the resulting higher-order function may contain opposing

roots, which i. a. would violate Bézout’s Thm in the non-bipartite case [25], and thus the

necessary biorthogonality condition for filterbank construction. While for complementary

graph wavelet filterbanks, it is more intricate to formulate generalized conditions on when

exactly this occurs, one can further specify conditions under which the HGESWT for bi-

partite graphs loses reproduction properties and/or ceases to be invertible, as formulated

in Cor. 3.4 2.

Further to Thm 5.2, we proceed to specify restrictions on the number of samples M

and levels J that ensure the reproduction via low-pass graph filter E~α. As alluded to in

Ch. 3, certain rows of the DFT-matrix cannot be reproduced using a real-valued sym-

metric graph filter, as, for instance, parameter α = ±π/2 induces the opposing (complex

conjugate) factors (1− iz)(1 + iz) in the representer polynomial of a parameterized graph

Laplacian filter, which violates Bézouts equality for complementary filterbank construc-

tion as well as prevents the reproduction of the corresponding complex exponential in the

DFT via a HGESWT -based low-pass graph filter.

It follows that one cannot reproduce consecutive rows of the DFT-matrix beyond its N/4-

th row, and therefore one needs to ensure within a multiresolution analysis that

α2j−1 =
2πk2j−1

N
<

2π(N/4)

N
, ∀j ≤ J

such that k < N
2J+1 or J < log2

(
N
k

)
− 1, where J is the total number of levels. In other

words, one can approximate the DFT-matrix up to its M = k + 1-th row for a certain

number of levels, with parameters M̃ = N
2J

and M = N
2J+1 = M̃

2 of Thm 5.2. This condi-

tion further coincides with the biorthogonality constraint for traditional e-spline wavelets

outlined in [85], [25] which ensures that the corresponding filters do not contain oppos-

ing roots, i. e. given distinct γ, γ′ ∈ ~γ, 2j(γ − γ′) = iπ(2k + 1) must not be satisfied for

some k ∈ Z at level j ≤ j0 − 1. Depending on the given signals, one may not always be

able to satisfy the sparsity level K = N
2J+2 exactly, in which case one may simply require

2(2K) ≤ 2M ≤ M̃ and generalize the formulae accordingly.

Since the graph e-spline filter functions of Thm. 3.2 give rise to traditional e-splines when

the graph at hand is a simple cycle, the aforementioned condition with γ = ±iα is suffi-

cient in that case, nevertheless for all other cases, as a result of the complex connectivity

of circulant graphs and arising eigenvalue multiplicities, further restrictions on ~α need to

2In particular, this amounts to showing when d̃αj =
∑
k∈2Z+1 2dk cos

(
2πjk
N

)
= −d̃αt =∑

k∈2Z+1 2dk cos
(
2πk
N

(
t± N

2

))
can occur, i. e. for which αj = 2πj

N
, αt = 2πt

N
, weights dk and graph con-

nectivity k ∈ 2Z + 1, the scheme ceases to be valid.
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be imposed.

For an unweighted bipartite circulant graph with consecutive, odd elements sk ∈ S

and even generating set cardinality |S|, and as a special case of Cor. 3.4, one addi-

tionally observes at α = ±π/4 the e-degree d̃α =
∑

k∈Z 2 cos(α(2k + 1)) = 0, since

cos(α(2k + 1)) =
√

2
2 , k = 0, 3, 4, 7, 8, ..., and cos(α(2k + 1)) = −

√
2

2 , k = 1, 2, 5, 6, ....

Thus similarly as before, the associated graph filter polynomials contain opposing roots and

one can approximate consecutive rows of the DFT-matrix up to at most the N/8-th row,

which translates into the constraints k < N
2J+2 or J < log2

(
N
k

)
− 2, and M = N

2J+2 = M̃
4 .

The parameter M may require further reduction, as a consequence of increasing eigenvalue

multiplicities for d̃α = γi = 0 for different graph-connectivities.

More generally, if G is bipartite circulant, one needs to ensure that no parameters αi, αj ∈
~α satisfy d̃αi = −d̃αj at any level in order to preserve the invertibility property of Thm

3.2, and thus consecutive frequencies (or consecutive rows of the DFT) are considered

only up to some cut-off frequency with αk = 2πk
N at position k + 1, such that for i, j ≤ k,

d̃αi 6= −d̃αj . As per Cor. 3.5, d̃αi = −d̃αj is satisfied when the location parameters

fulfill j = (i + N/2)N , which can occur, despite the previously derived constraint with

i, j < N/4, as a result of large eigenvalue multiplicities (associated with higher graph

connectivity) at 0, for some i, j. As an example, we note the normalized adjacency matrix

of the unweighted (circulant) complete bipartite graph with bipartite sets of equal size

N/2, whose eigenvalues are γmax/min = ±1 of respective multiplicity m = 1, and γi = 0

of multiplicity N − 2. Further, the condition j 6= (i+N/2)N also needs to be satisfied for

non-bipartite circulant graphs in the HCGESWT, which follows equivalently from the tra-

ditional biorthogonality constraints as well as from a special case of the presented graph

spline wavelet transform designs.3 We note that these are necessary conditions for the

existence of a suitable low-pass filter via the HGESWT, however, the set of special cases

presented here is not exhaustive.

5.1.5 Extensions to Path Graphs

The path graph, as a simple cycle without the periodic extension, bears similar properties

to its circulant counterpart; it is bipartite and its graph Laplacian eigenvectors can be

represented as the basis vectors of the DCT-II matrix [119] such that UH = Q is the

DCT-III matrix, with entries Qm,n = c(m)
√

2
N cos

(
πm(n+0.5)

N

)
, for 0 ≤ m,n ≤ N − 1,

and constants c(0) = 1√
2

and c(m) = 1 for m ≥ 1, with corresponding distinct eigenvalues

λm = 2 − 2 cos
(
πm
N

)
, m ∈ {0, 1, ..., N − 1}. In addition, a signal residing on the ver-

tices of a path graph can be considered analogous to a non-periodic discrete-time signal

3This can be easily demonstrated in a generalization of the proof of Thm. 3.2 (in Appendix A.2), where
high-pass filter HHP~α is maintained and low-pass filter HLP~α is generalized to the form of Eq. (3.14), with
fixed downsampling pattern with respect to s = 1 ∈ S.
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in the classical domain. A K-sparse signal sampled with this DCT matrix can be per-

fectly reconstructed via a variation of Prony’s method using at least 4K of its consecutive

sample values, according to [120], which inspires a specialized extension of the Graph-FRI

framework4:

Theorem 5.3. (Graph-FRI for paths) Let x ∈ CN be a K-sparse graph signal defined on

the vertices of an undirected and unweighted path graph G, whose GFT basis is expressed

such that UH is the DCT-matrix Q. We can sample and perfectly reconstruct x on G using

the dimensionality-reduced GFT-representation y = UH
Mx ∈ CM , where UH

M corresponds

to the first M rows of UH , provided M ≥ 4K.

Furthermore, as the graph Laplacian matrix of a path is circulant up to its first and last

row, it incorporates 2 vanishing moments with a graph-inherent border effect of length

T = 2, while its powers similarly inherit 2k vanishing moments with a border effect of

T = 2k. Thus, for symmetric normalized adjacency matrix An = D−1/2AD−1/2, the

graph spline wavelet construction of Thm. 3.1 applies to the path graph, with the minor

restriction that the high-pass filter Lnorm = IN −An gains an increased border effect of

T = 2(k + 1), as the nullspace of Lnorm now contains D1/21N , as a consequence of the

non-regularity of the graph.

Similar extensions pertain to the e-graph-spline transform in Thm. 3.2 (or bandlimiting

transform, Cor. 4.1), with filters of the form H = 1
2k

(INλj±An)k for eigenvalues λj of An,

however, these results are of lesser relevance (except for sparse multiresolution analysis),

given that the DCT does not give rise to an equivalently intuitive decomposition scheme

as the DFT for sampling-based graph coarsening.

At last, it should be noted that, for a multilevel graph wavelet analysis, the path graph

can be coarsened via the Kron-reduction of the graph Laplacian matrix, if every other

node is sampled, resulting in a weighted path graph with universal weight 1/2 [60].

5.2 Generalized & Multidimensional Sparse Sampling

In order to extend the derived sampling framework to sparse signals defined on arbitrary

graphs, one may leverage a variety of approximation schemes, which facilitate the interpre-

tation of circulant graphs as building blocks for the former. Given the adjacency matrix

A of a general undirected graph G, we therefore propose to conduct (i) nearest circulant

4In particular, the DCT matrix is an example of a larger class of invertible sampling bases of the form
Q = ΛVS, with diagonal Λ ∈ CN×N , Vandermonde matrix V ∈ CN×M with [V]n,m = pnm and distinct
pm, and S ∈ CM×N , whose columns are at most D-sparse [120]. A K-sparse signal x can be perfectly
recovered from 2DK consecutive entries of y = Qx using Prony’s method (Prop. 4, [120]), which also
facilitates a generalization to graphs whose GFT basis is of that form.
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5.2. Generalized & Multidimensional Sparse Sampling

approximation of A by Ã, or alternatively (ii) (approximate) graph product decomposi-

tion A ≈ A1 �A2 into (banded) circulants Ai.

The former case entails the projection of A onto the subspace of circulant matrices CN ,

spanned by circulant permutation matrices Πi, i = 0, ..., N − 1, where Π has first row

[0 1 0 ...], via the Frobenius inner product Ã =
∑N−1

i=0
1
N 〈A,Π

i〉FΠi [121]. Here, A may

be subjected to a prior node relabelling for bandwidth minimization (using for instance the

RCM-algorithm [122]) so as to reduce the crude approximation effect of averaging over

the diagonals of A, which introduces additional complementary edges in Ã, and hence

significantly alters the graph, as well as prior partitioning, for when the graph at hand

features distinct communities. The set of (wavelet-)sparse signals defined on G can be

subsequently sampled with respect to the graph approximation G̃. In light of the rich

sparsifying graph wavelet analysis, the sampling framework may be further extended to

accommodate an arbitrary graph and smooth graph signal with an initial sparsification

step on the original graph, provided that a suitable graph basis can induce a sufficiently

sparse representation, while the actual sampling step may be continued with the sparsified

signal and the nearest circulant approximation of the given graph.5

In the latter case, an additional degree of dimensionality reduction is introduced through

the graph product operation, which can be successfully leveraged for suitably defined

multi-dimensional sparse signals consisting of sparse tensor factors. Analogously to the

investigation of multidimensional graph wavelet analysis, conducted in Sect. 4.5 of the

previous chapter, we focus on the generalization of the GFRI sampling framework to

arbitrary graphs through graph product decomposition (refer to Sect. 4.5 for definitions).

Given the graph product decomposition G = G1 �G2, which can be exact or approximate

such that factors Gi are undirected, circulant and connected with s = 1 ∈ Si, i = 1, 2, the

tensor factors of a given multi-dimensional graph signal x on G (as defined in Def. 4.3) can

be analyzed with respect to its inherent circulant substructures; we consider x = x1 ⊗ x2

(at rank k = 1) for the remainder of this discussion, for simplicity.

A multi-dimensional K = K1K2-sparse graph signal x, with Ki-sparse tensor factors xi,

defined on an arbitrary undirected graph G, can be sampled and perfectly reconstructed

from dimensionality-reduced GFT-representations of xi on the (approximate or exact)

graph product decomposition of G into circulant factors Gi. Here, the GFRI framework

(Thms. 5.1 & 5.2) can be applied on each component individually, thus perfectly recov-

ering xi (using Prony’s method) from spectral representations yi = UH
Mi

xi, of dimension

Mi ≥ 2Ki, where UH
Mi

denote the first Mi rows of the permuted GFT (DFT) matrix

5This approach nevertheless does not take into account or quantify the loss of accuracy (in i. a. data
representation) incurred by working with a graph approximation as opposed to the original graph, which
in itself poses an open problem.
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Chapter 5. Sparse Sampling on Graphs

of dimension Ni × Ni, i = 1, 2. In particular, for all but the lexicographic product, the

following holds

(ΦM1 ⊗ΦM2)UHx = (UH
M1
⊗UH

M2
)(x1 ⊗ x2) = y1 ⊗ y2 = y,

where y ∈ CM with M ≥ 4K and ΦMi ∈ RMi×Ni sample the first Mi rows, or expressed

alternatively as y = (C1ỹ1) ⊗ (C2ỹ2) for graph-filtered representations ỹi and graph

spectral transformation matrices Ci; otherwise, the xi need to be processed separately

on the individual graph Laplacian eigenbases of Gi. Ultimately, one may recombine the

coarsened circulant graphs G̃i associated with representations ỹi under the same graph

product operation to form the coarse graph G̃ = G̃1 � G̃2 and redefine the signal ỹ1 ⊗ ỹ2

on its vertices.

5.2.1 Exact vs Approximate Graph Product Decomposition

In the case when a graph product decomposition G = G1 �G2 into circulants Gi is exact

and known, one can perfectly recover the tensor-sparse signal x on G by performing graph

operations in lower dimensions, which requires the storage of further lower dimensional

spectral representations yi. This advantage is particularly evident in the case of the

lexicographic product, which is closed under circulant graphs [111], as the GFRI framework

may be applied directly on the original graph G, with known lexicographic decomposition

and assuming that x is sufficiently sparse (or smooth on G), yet the decomposition into

lower-dimensional circulants can increase efficiency, while preserving the scheme.

The Cartesian product of two unweighted path graphs is known to produce an unweighted

lattice graph [105], which facilitates the generalization of both the sparse sampling and

wavelet analysis framework to lattice graphs (see Fig. 5.4) as well as to more general graph

products of path and circulant graphs. Leveraging the vanishing moment property of the

graph Laplacian of a path graph, one can apply a multidimensional wavelet analysis of

(piecewise) smooth signals on lattice graphs. In particular, this has revealed an interesting

relation to the interpretation of the graph Laplacian as a differential operator: while

the graph Laplacian provides the stencil approximation of the second order differential

operator for lattices up to a sign, coincidentally, unweighted lattice graphs, as the graph

product of two path graphs, which are circulant up to an edge, preserve (to an extent) the

inherent vanishing property of the graph Laplacian of a circulant graph via the product

operation. This phenomenon was further investigated for general circulants in Sect. 4.5.3.

Hence, following the GFRI Thm. for paths, signals defined on the graph product of path

graphs are equivalently sampled and reconstructed in a multidimensional scheme, where

sparse subtensors xi on Gi can be perfectly recovered based on at least 4Ki consecutive

samples of their dimensionality-reduced GFT (DCT) representation.
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5.3. Sampling under Noise: Circulant Graphs with Perturbations

× =

Figure 5.4: Graph Cartesian Product of two unweighted path graphs. c©2017 Elsevier Inc.

In order to extend the GFRI framework beyond circulant and path graphs to arbitrary

graphs, which can be decomposed as an approximate graph product of the former, one may

resort to Kronecker product decomposition under the constraint of symmetric circularity

(and bandedness), as laid out previously in Sect. 4.5; here, the specific case of a 1-banded

Toeplitz structure can similarly be imposed on either factor Ai to obtain a decomposition

into path graphs, where applicable.

As a means to complete the foregoing discussion on sampling, one may at last revisit

the separable graph wavelet transform of Sect. 4.5.2, which is defined on the individual

circulant factors Gi of product graphs; while doing so, we preserve previous notation.

Let Wi denote the graph (e-)spline wavelet transform in the vertex domain of circulant

graph factor Gi, and wi = PNiWixi the graph wavelet domain representation of signal

factor xi on Gi, subject to the node relabelling PNi ; the representation w = w1⊗w2 then

is the result of a separable, two-dimensional graph spline wavelet transform redefined on

G. If x consists of smooth graph signal tensor factors xi such that 2-D multiresolution

graph wavelet representation w = w1 ⊗ w2 = P
(j)
N1N2

(W
(j)
1 ⊗W

(j)
2 )x is K-sparse with

||wi||0 = Ki and K = K1K2, for suitable graph wavelet transforms W
(j)
i and permutation

matrices P
(j)
N1N2

at level j ≤ J − 1, one can apply the multidimensional framework of

sampling and perfect reconstruction of wi on the vertices of circulant Gi. Eventually the

original x can be reconstructed from w via the (invertible) 2-D graph wavelet transform.

5.3 Sampling under Noise: Circulant Graphs with Pertur-

bations

Preceding sections have addressed the challenge of sampling with respect to arbitrary

graphs by resorting to (multidimensional) circulant graph approximations, and while such

methods are simple in execution, they may fail to preserve basic graph characteristics when

the given graph is far from being circulant, as determined via a designated error norm. This

final section is therefore devoted to the discussion of sampling on graphs in the presence of

(connectivity) noise, which serves to illustrate an alternative avenue of pursuing the above
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Chapter 5. Sparse Sampling on Graphs

problem, featuring i. a. matrix perturbation theory, with its accompanying difficulties.

Consider the problem of K-sparse graph signal recovery on perturbed circulant graphs,

simulating network clusters, as groups of strongly connected entities within a larger net-

work.6 In particular, given such a network, we propose to model the individual net-

work clusters as (un-)weighted undirected circulant subgraphs, which are linked via inter-

connecting edges on a main graph G = (V,E), and are subject to perturbations in form

of the addition and/or removal of randomly chosen edges; this is distinct from the con-

struction of small-world networks [71], where individual edges of circulants are rewired

with a certain probability, yet their total number in the graph is preserved. In light of

the aforementioned background and findings, we present a novel model of (blockwise)

reconstruction operations with dimensionality reduction; following graph partitioning or

clustering, we operate on each subgraph individually using a set of approximation and

denoising schemes.7

It has been established that the (graph Laplacian) GFT-basis U = [u0| . . . |uN−1] ∈ RN×N

on circulant graphs can be expressed as a permutation of the columns of the DFT-matrix

F ∈ CN×N , however, as a result of the occurring eigenvalue multiplicities, it is not unique.

Due to the difference in frequency interpretation, the k-th column of F, corresponding to

the frequency ωk = 2πk/N is not the same as basis vector uk, corresponding to the k-th

smallest graph-frequency λk, requiring a permutation (and eigensubspace re-combination)

in form of coefficient matrix C ∈ CN×N such that CUH = F.

Let x ∈ RN , with ||x||0 = K, denote a K-sparse graph signal defined on the vertices of a

circulant graphG, with GFT ŷ = UHx, and, following a change of basis, new measurement

vector y = Cŷ = CUHx. Then x can be perfectly reconstructed from at least 2K

consecutive entries of y using Prony’s method. If the samples contain noise, in form of

additive Gaussian noise n, giving ỹ = y+n, one needs to further apply denoising schemes,

such as Cadzow’s algorithm [123], while a larger number of samples M ≥ 2K is required to

achieve a sufficiently good reconstruction, as has been conducted in the classical domain.

The latter is a robust algorithm which performs an SVD-decomposition of Ŷ = UΣVT as

the Toeplitz-realization of ŷ (see Appendix C.2), zeroing the L+ 1−K smallest diagonal

coefficients of Σ giving Σ′, and finding the closest Toeplitz-matrix approximation8 to the

resulting Ŷ′ = UΣ′VT ; a few iterations of this process are conducted to reduce the noise.

The shape of Ŷ ∈ CL×R is chosen to be as close to square as possible, with suitable

parameters L and R, for optimal performance ([123], [23]).

The devised GFRI-framework is now further challenged through two additional factors:

6The content of this section appears in part in publications [11] and [10].
7One may alternatively operate on the entire graph at once using a blockwise matrix operation scheme,

however, we resort to operating on each subgraph individually to limit the perturbation effect.
8Incidentally, this is equivalent to nearest circulant approximation, considering that a circulant matrix

is in fact a special Toeplitz matrix.
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5.3. Sampling under Noise: Circulant Graphs with Perturbations

only a subset of the basis-vectors U is retained and G is subject to perturbations. In

light of this, we develop a reconstruction approach, which employs a variation of Prony’s

method, along with further iterative denoising, to recover the sparse signal residing on G.

In particular, given a subset of P selected GFT-eigenvectors UP and dimensionality-

reduced approximation of the GFT y = CUH
P x ∈ CM , where C ∈ CM×P andM < P < N ,

we reconstruct the K-sparse graph signal x ∈ RN on the vertices of a perturbed circulant

graph G = (V,E) for suitably chosen P and M ≥ 2K, with FM ≈ CUH
P and FM denoting

the first M rows of the DFT-matrix (see Fig. 5.5).

Figure 5.5: GFRI-Scheme under Graph Perturbations.

Here, one imposes a further permutation σ on U according to the eigenvalue sequence Λ

obtained by taking the DFT of the first row of graph Laplacian L of the circulant G (or its

nearest circulant approximation) and arranging repeated eigenvalues of the same subspace

j together, as per the location of their first appearance. Depending on the eigenvalue

multiplicity distribution function f(·) of the graph at hand, one thus needs to impose

the dimensionality offset P = f(M) ≥ f(2K), which results in a rectangular coefficient

matrix C. In the case of dimensionality reduction, this allows to obtain a better least-

squares approximation of the matrix C ∈ CM×P , i. e. only the relevant eigensubspaces of

U, corresponding to the rows of FM , are incorporated in UP . In particular, when G is an

unperturbed circulant and P = f(2K), one achieves perfect reconstruction.

For instance, in the case of a simple cycle, one can perfectly recover x with only P =

2M − 1 = 4K − 1 GFT-sample values, since the eigenvalues λk = 2− 2 cos(2πk/N) occur

with a maximum multiplicity of m = 2 (except at λ0 = 0, and λN = 4 with m = 1, for

even N). While the order of eigenvalue multiplicities may differ by dimension N , it would

generally appear for circulant graphs that the higher the connectivity and similarity of

edge weights, the less distinct are the eigenvalues. Large eigenvalue multiplicities (along
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with proximities) can lead to instabilities in the corresponding eigenspaces [124] as well as

require a greater number of GFT-eigenvectors P for the approximation of individual DFT-

rows, and thus greater storage. The inclusion of (random) symmetric weights in the graph

model generally facilitates a spectrum with smaller multiplicities at higher connectivity,

however, as mentioned in earlier discussions, there is no systematic way to detect the

particular circulant generating sets inducing lowest multiplicities.

When the circulant graph at hand is perturbed, we apply an iterative denoising scheme

to the given samples prior to reconstruction, beginning with Cadzow’s algorithm9 and

followed by further denoising based on removal of the perturbation matrix E = CUH
P −FM

at the current estimate x̂ from the measurement vector y at iteration i: yi+1 = y −Ex̂i.

In particular, this reduces the error caused by initial estimates x̂ in a setting of highly

irregular and/or localized noise, so that for a sufficiently large number of given samples

M , and number of iterations i, one can achieve good to nearly perfect reconstruction.

The proposed approaches are summarized in Algorithm 5.1, of which Option 2 only ap-

plies to a subset of circulant graphs with certain generating sets, i. a. the simple cycle with

S = {1}; it has been established that for a sufficiently large number of given samplesM and

iteration number i ≥ 5, one can usually achieve good reconstruction results. Otherwise,

circulant graphs with complementary generating sets have exhibited destructive behavior

in the reconstruction process due to highly localized, topologically-dependent, perturba-

tion noise, caused by the permutation/approximation steps, which requires a more refined

approach.

Algorithm 5.1 Sparse Graph Signal Recovery on Network Clusters

1: Input: Adjacency matrix A of clustered graph G = (V,E), and corresponding signal x, with
||x||0 = K

2: Decompose G into T disconnected subgraphs {Gl}Tl=1 via graph partitioning (e. g. graph cut).
Re-assign x appropriately on the disconnected subgraphs, resulting in T signals {xl}Tl=1 with
sparsity {Kl}Tl=1. Apply the following scheme(s) on each subgraph and -signal individually

3: Option 1: Compute the nearest circulant {Ãl}Tl=1 to {Al}Tl=1, or alternative. Define xl on

the vertices of G̃l, and, if required, impose a suitable permutation σΛ̃j
on Ũ of G̃l. Compute

C via LS: CT = (ŨH
P )T \FT

M . Only P = 4Kl − 1 consecutive samples are required for perfect
reconstruction, at best. Ensure that G̃l has the required minimum of multiplicities (or adjust
P accordingly). Store GFT-vector ŷ = ŨH

P xl ∈ CP

4: Option 2: Model the graph as circulant with a perturbation, by first computing the nearest
circulant Ãl to the given Al, and imposing the permutation σΛ̃j

on U of Gl, if required.

Compute C as above, and create y = CUH
P xl for suitable M , and P = f(M) (where mapping

f(·) depends on the multiplicities of G̃l).
Apply the proposed scheme at P = f(M) ≥ 4Kl − 1 samples:

5: Denoise y with Cadzow’s algorithm, and recover x̂l through Prony’s method
6: Do further iterative denoising, yi+1 = y − Ex̂i

l, as required, while repeating 5. Store GFT-
vector ŷ = UH

P xl ∈ CP .

9Note that this algorithm has been deemed mainly suitable for FRI scenarios where the noise is additive
Gaussian, however, in the current scenario, the noise is irregular and multiplicative.
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Further, note that the nearest circulant approximation may produce different multiplicity

distributions as an otherwise determined circulant graph approximation, so further anal-

ysis is needed to investigate which model gives the best eigensubspace-permutation. In

this context, consider the following:

Remark 5.1. If the graph-invasiveness (or the degree of alteration of an existing graph) of a

scheme were to be measured in terms of the number of added or removed links, the nearest

circulant (graph) approximation (via subspace-projection) does not necessarily provide

the least invasive option, despite minimizing the Frobenius-norm error with respect to the

original. In particular, consider the simple cycle graph with an additional (arbitrary) edge;

the nearest circulant approximation of the corresponding adjacency matrix yields four

additional diagonals with uniform weights 1/N , which represent N − 1 new connections.

In contrast, the simple cycle differs only by a link of unit weight from the given perturbed

version, and may be interpreted as a structurally closer approximation, despite resulting

in a (slightly) larger Frobenius-norm error.

Both the original circulant connectivity (multiplicity distribution) and perturbation lo-

cation contribute to a setting of highly irregular and localized noise; the performance of

Prony’s and Cadzow’s algorithms is further affected by increasing dimensions, marginal

sparsity levels as well as the distribution and strength of perturbation. Moreover, Prony’s

method is known to be unstable when the sparse vector entries are too close together. For

high perturbation noise, the multiplicity offset becomes less critical and/or effective, in

which case it is not excluded that more adaptive approaches would lead to better results.

As such, it would appear that the variability present due to different graph connectivities

and the effect of the perturbation location within the graph largely hinders generalized

conclusions on the effectiveness of the approach. However, since a comprehensive numeri-

cal analysis is outside the scope of this section and the problem itself, we further conduct

a theoretical analysis of simple scenarios in the following section in order to better com-

prehend the underlying effect of perturbations on graphs.

5.3.1 Notes on Perturbation Theory

In the course of the numerical analysis of perturbed (weighted) circulant graphs, we dis-

cover an interesting phenomenon. When the perturbation is particularly strong or lo-

calized, due to either a high number of added edges or their specific location, a certain

boundary effect causes shifts in the eigen-subspaces, which are usually associated with re-

peated eigenvalues. The following results from matrix perturbation theory serve to further

comprehend this perturbation effect.

Let L represent the graph Laplacian matrix of a circulant graph G, and E the graph

Laplacian of a single (unweighted) edge not on G; then L + E gives a perturbed graph
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caused by a rank-1 matrix perturbation E.10 Given that L and L + E are real, symmet-

ric matrices, we can infer certain properties on the eigenvalues of the perturbed graph

Laplacian, including the bound |λk(L + E) − λk(L)| ≤ ||E||2 = 2, k = 0, ..., N − 1

(Cor. 8.1.6, [5]) and the fact that there exist nonnegative mi such that λi(L + E) =

λi(L) + miα, i = 0, ..., N − 1, and
∑N

i=1mi = 1 (Thm. 8.1.8, [5]), since for E = αccT

with some α ∈ R, α ≥ 0 and c ∈ RN of unit l2-norm,

λi(L + E) ∈ [λi(L), λi+1(L)], i = 0, ..., N − 2

whereas for α ≤ 0

λi(L + E) ∈ [λi−1(L), λi(L)], i = 1, ..., N − 1.

Matrix perturbation theory provides tighter bounds as well as series expansions for the per-

turbed eigenvalues of Hermitian matrices, but they cannot be determined explicitly [124].

Nevertheless, there exists an explicit formula for the corresponding perturbed eigenbasis

(in the case of distinct λ’s) as well as scheme for the case of repeated λ’s, yet requiring

the knowledge of the perturbed spectrum, which was developed by Bunch, Sorensen et

al. (1978) [125]. We generally note that the perturbation of an eigenbasis with repeated

eigenvalues (which are additionally close to each other, instead of lying in well-separated

clusters) leads to instabilities [124].

In particular, according to the previous results, the perturbed eigenvalue λ̃i lies in the

interval [λi, λi±1] of unperturbed eigenvalues (for which respectively an edge has been

added or removed), yet when the outmost perturbation gives λ̃i = λi±1, i. e. the eigenvalue

is perturbed to equal the next-highest/lowest unperturbed eigenvalue, we run the risk of a

swap, as (equal-valued) perturbed eigenvalues are ordered in a random manner making it

impossible to identify which value corresponds to which eigensubspace; this perturbation

effect is directly visible when only one eigenvalue per subspace is perturbed. However, this

information is particularly crucial for the reordering of the given perturbed GFT matrix

according to its unperturbed eigenvalues. The phenomenon of a subspace swap was further

studied in [126] in the context of SVD-based methods.

Another boundary perturbation effect occurs for the approximation λ̃i ≈ λi±1, which,

while not leading to a swap, if sufficiently close, reveals (from the coefficient distribution

in the matrix C) that the perturbed GFT-eigenspace at λ̃i may provide a closer approx-

imation, within the linear combination of eigenspaces, to the i ± 1-th DFT-row at hand,

than the corresponding eigenspace at λ̃i±1. However, these occurrences need to be sub-

jected to further theoretical study. In case of several edge perturbations, the perturbed

spectrum is subject to shifts beyond λ̃i ≥ λi±1, which renders a coordinated permutation

10In the case of high perturbation noise, i. e. E has larger rank, such analysis becomes less definite.
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(a) Unperturbed (b) Simple Cycle (c) Circulant with S = {1, 2}

(d) ‘Near’-Complete Circulant (e) Weighted Complete Circulant

Figure 5.6: Coefficient Matrix C under Perturbations (displayed in magnitude, scale-factor
10).

approach of the eigensubspaces less effective.

The nature of the perturbation/approximation noise present in different scenarios for cir-

culant graphs is further monitored via the structure of the coefficient matrix C.

In particular, Fig. 5.6 displays the full coefficient matrix C (given U) of size 256 × 256,

which consists of characteristic diagonals in the general unperturbed state (Fig. 5.6 (a)),

for (b) the simple cycle, (c) the circulant graph with S = {1, 2}, (d) the near-complete

unweighted graph with its only zero weights for edges {i, (i + N/2 − 2 : i + N/2 + 2)N}
and (e) a randomly weighted complete circulant graph with weights in (0, 1). Each graph

is subject to perturbations between the same node pairs (1, 4) and (5, N/2), where for

(b) and (c) these are connected with unit weight, while for (d) both are disconnected and

for (e) the former is disconnected and the latter re-weighted by a random weight; in the

unperturbed state all graphs have a comparable eigenvalue multiplicity distribution with

maximum multiplicity m = 2.

For a simple cycle (b), we observe the formation of noisy entries (for every perturbed

eigenvalue) closely around the diagonals, indicating that perturbed eigenvectors require

additional approximation information from preceding and succeeding eigenspaces. The

magnitude of the respective coefficients decreases the further away an eigenspace lies (as

ordered by eigenvalue magnitude from smallest to largest). This type of noise distribution

can be detrimental to performance when certain circulant graphs are considered. While

the permutation σ changes the order of the perturbed eigenvectors, the previously noted

approximation effect, where nearby eigenspaces, as ordered by magnitude of the corre-

sponding eigenvalues, contribute to the approximation of a given eigenvector via noise,

remains in place, and thereby may differ in shape from the diagonal structure of the
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coefficient matrix C, as can be seen for cases (c) and (d). This difference in location

impacts the goodness of approximations, when considering P GFT-rows for the reduced

M DFT-rows; as the coefficient matrix is of size M × P , it will not contain approxima-

tion information from eigenvectors, which occur much later in the new sequence, yet are

actually closer (as per eigenvalue magnitude ordering) to the eigenvectors at hand. In (e),

however, noise appears to be evenly distributed across C.

5.3.2 Computational Experiments

Consider the simple cycle graph subject to perturbations in form of two additional, ran-

domly distributed edges (1, 4) and (5, N/2), and let a set of 100 randomly generated sparse

graph signals {xi}i with i. i. d. entries reside on its vertices; we apply the proposed scheme

on the corresponding measurement vectors {y}i to recover the signals (see Option 2 in

Algorithm 5.1). Fig. 5.7 illustrates the average reconstruction performance per iteration

in form of the average location error between the estimated and true entry locations of the

randomly generated sparse vector x for 100 generated trials, based on the dimensionality

reduced measurement vector y ∈ CM , and P = 2M−1 GFT-samples. In the course of the
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Figure 5.7: Reconstruction Performance on a Perturbed Simple Cycle (N = 256), for 100
randomly generated sparse signals xl (K = 4, minimum separation of 3 between entries).
c©2015 IEEE

trials the location of the K-sparse entries as well as the corresponding amplitudes (i.i.ḋ.

Gaussian numbers) are re-distributed, and the average location error e =
∑K

k=1
|uk−ũk|

K

between the true locations uk and the estimates ũk recorded. In this case, the simple

cycle and the nearest circulant approximation to the perturbed graph exhibit the same

multiplicity distribution and hence ordering scheme.

Overall, while the above analysis has revealed interesting properties of (perturbed) cir-

culant graphs, it appears that it is only feasible for the addition/removal of (individual)

links for selected circulant graphs of low multiplicities. Therefore, for an arbitrary graph,
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it remains more promising to conduct operations directly on a nearest circulant graph

approximation and apply the previously developed GFRI-framework (which further facil-

itates graph coarsening), at the possible sacrifice of connectivity-preservation. The latter

may be regarded as a special case of the presented perturbation scheme for which FM is di-

rectly assumed as the permuted partial eigenspace of the circulant graph (approximation)

at hand, circumventing the need for coefficient matrix C with dimensionality offset.11

11Here, the coefficient matrix C used in the GFRI framework is unrelated to the present construction.
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Chapter 6

Image Processing on Graphs

Graph-based image processing, in the form of graph wavelet analysis or regularization

([127], [41], [128], [36]), presents a promising application venue for theoretical contribu-

tions to harmonic analysis on graphs, that is garnering appeal within the growing field of

GSP. The projection of (patches from) images onto higher-dimensional network structures

has been employed for i. a. segmentation, compression and/or denoising purposes, as it

particularly lends itself for capturing and processing the inherent geometry of the data on

a sophisticated level.

While in the one-dimensional case, traditional wavelet bases are most suited for the repre-

sentation of piecewise smooth functions, higher-dimensionality encompasses the additional

challenge of incorporating smoothness across multiple directions and discontinuities i. a.

along curves, which prove difficult to capture by simple tensor product wavelet bases and

require more sophisticated methods. Classical image processing, in particular, has expe-

rienced the advent of curvelets [17] and shearlets [129], which represent highly redundant

frames with strong anisotropic directional selectivity, however, are non-adaptive and thus

mainly suited for images which are piecewise C2 with discontinuities along C2 curves [20].

For less regular images, bases and frames such as the orthogonal bandelets were intro-

duced, which represent anisotropic wavelets that can adapt to the geometric regularity of

the image [19]. Nevertheless, the construction of such bases is elaborate, while conceptu-

ally non-trivial, which all the more invites the conceptual clarity of graphs and GSP.

This final chapter aims to unify gained notions on wavelets and sparsity on graphs in an

application-driven framework for graph-based non-linear image approximation, whose dis-

cussion is intertwined and furthered i. a. through the substantial, yet largely unexplored

(and unexploited), concept of the optimum node labelling. In its essence, the framework

facilitates the analysis of homogeneous image regions with respect to data-driven graph

wavelet basis functions for increasingly sparse representations. The superiority of the ap-

proach, compared to traditional image transforms, is eventually demonstrated on the basis

of real and artificial image patches. At last, the setting of noisy (image) data is considered
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6.1. Graph Wavelets for Non-Linear Image Approximation

(a) Original (b) 2D Haar (c) 2D Linear Spline (d) GWT

Figure 6.1: Non-Linear Approximation Comparison for the 2D Haar, 2D Linear Spline and pro-
posed Graph Wavelet Transform (GWT) with 5 levels at 5% of non-zero coefficients (f. left).

and its discussion concluded with an open problem.

6.1 Graph Wavelets for Non-Linear Image Approximation

A (gray-scale) image, traditionally represented by a matrix, can be modelled by a graph

in a variety of ways. Popular graph models include grid graphs which represent the image

structure as a grid of pixels (nodes) of rectangular and/or diagonal connectivity, and

nearest neighbor (k-NN) graphs, in which each vertex, representing a vector (object) in

a metric space, has exactly k connections to its nearest neighbors, as determined by a

designated distance function [130].

Of particular interest in this context are images with distinct geometrical properties, as

opposed to natural images, incorporating i. a. irregularly shaped, sharp discontinuities

between homogeneous regions or alternating patterns, which challenge the ‘stiff’ row-

column-wise operations of conventional tensor product wavelet bases, generally unsuitable

to represent geometric structures, and invite more flexible, graph-based operations across

irregular (not necessarily spatially confined) image segments.

Consider the example of an image with a simple (binary) stripe pattern, pictured in Fig.

6.1, that is approximated with traditional and graph wavelet basis elements corresponding

to 5% of the largest magnitude wavelet coefficients. It becomes apparent that while both

of the traditional tensor wavelet transforms produce significantly deformed results, the

proposed ‘segmentation-based’ graph wavelet transform achieves perfect reconstruction in

this case.

6.1.1 The General Framework

In the following, an approach is devised to conduct non-linear image approximation on

graphs which facilitates the analysis of (not necessarily spatially connected) homogeneous

image regions through circulant graph wavelets for a maximally sparse representation.
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Image Segmentation

A (data-driven) graph G = (V,E) is built from an N × N image by letting each node

represent a pixel and establishing bilaterally weighted connections between node pairs

(i, j), of the form

wi,j = e
−
||pi−pj ||

2
2

σ2p e
− |I(i)−I(j)|

2

σ2
I , i, j ∈ {0, ..., N2 − 1} (6.1)

based on the distance between their spatial location p and intensity I; here, σp and σI

denote their respective calibration. Further, the image is converted to a graph signal

x ∈ RN2
for processing on G by assigning an intensity value to each node i and adopting

the vector-stacked form x(i) = I(i), ∀i ∈ V .

The transformed image data can be subsequently segmented according to graph-based

image segmentation methods; here, a variation of the graph cut is employed, which seeks

an optimal partition of the vertex set V of G into two sets A and B, while minimizing the

number and/or total weight of removed edges between them.

The normalized graph cut problem on a graph with degree matrix D and weighted adja-

cency matrix W is formulated as

min
x
Ncut(x) = min

y

yT (D−W)y

yTDy
, subject to y(i) ∈ [1,−b] and yTD1 = 0

for some specified constant b, and can be minimized by solving the generalized eigenvalue

problem (D−W)y = λDy [131]. Its approximate solution, given by the second smallest

eigenvector of the previous system, serves as an indicator vector for partitioning, whose

splitting point can be selected through a search across evenly spaced points to minimize

the so-called Ncut-measure, defined as

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )

for resulting partitions. Here, cut(A,B) =
∑

u∈A,v∈B w(u, v) is the traditional cut-measure

as the total weight of removed edges between partitions A and B, while assoc(A, V ) =∑
u∈A,t∈V w(u, t) measures the connections from vertices in one set to all graph vertices.

The significance of this approach lies in the fact that the cut cost is computed as a fraction

of total connections, which circumvents the bias of cutting isolated points [131].

The selection of suitable weights and calibrations σ in the initial graph model, with the

latter described as typically 10-20% of the total range of the distance function d(x) for

weight w(x) = e
−
(
d(x)
σ

)2
[131], is therefore crucial in order to ensure the goodness of the

cut.1

1Contrary to the model in [131], the present image graph does not feature connectivity restrictions
for spatially distant pixels, since the primary objective is to separate highly homogeneous as opposed to
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Performance of the proposed algorithm is in the first instance governed by the realization

of an adequate segmentation, and, where applicable, several iterative graph cuts may be

performed.

Graph Wavelet Analysis

Eventually, circulant first-order graph spline wavelet transforms are constructed and ap-

plied on the individual regions of homogeneous (or constant) content, as captured in form

of partitioned sub-graph signals.

To obtain circulant graphs, one resorts to computing circulant graph approximations G̃i

to the partitioned sub-graphs Gi using the nearest circulant approximation scheme, which

entails the minimization of error norm minW̃i∈CNi
||WP

i −W̃i||F over the space CNi of all

Ni ×Ni circulant matrices, for given weighted adjacency matrices Wi ∈ RNi×Ni , i = 1, 2.

If G is sparse or a posteriori sparsified (e.ġ. through the thresholding of edges with small

weight), this approximation can be refined through a prior node relabelling P based on

the Reverse Cuthill-McKee (RCM) algorithm [122], so as to minimize the bandwidth of

Wi. In particular, this facilitates a restructuring such that WP
i is (locally) closer to cir-

culant (sub-)structures, and, hence, reduces the number of complementary edges in W̃i

that are introduced as a result of the diagonal averaging of the circulant approximation.

The closed-form solution is therefore captured as

W̃i =

Ni−1∑
j=0

1

Ni
〈WP

i ,Π
j〉FΠj , i = 1, 2

for circulant permutation matrix Π, and, graph signals residing on Gi are analyzed with

respect to circulant approximation G̃i.

Hence, in order to construct a more localized form of the graph wavelet with respect

to the image segment, as opposed to the entire image, among other objectives, one can

explore various graph sparsification schemes; we concentrate on sparsification with respect

to the Euclidean distance by only retaining connections within a square neighborhood of

the original pixel grid ||pi − pj || ≤
√

2, as well as sparsification with respect to a (data-

dependent) intensity threshold. In the latter case, the graph weights are additionally

transformed from bilateral to intensity-based for the application of the GWT, and the

RCM algorithm is replaced by a simple sorting of the corresponding subgraph signal to

serve as the relabelling step; this simultaneously minimizes the bandwidth, prior to the

spatially confined content, however, this may be tailored.
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approximation, and the (graph-unrelated) total variation

||xP ||TV =

Ni∑
j=2

|xP (j)− xP (j − 1)|

of the signal to be annihilated, for maximum sparsity in the graph wavelet domain. In

particular, when the similarity measure of Wi is based solely on the (intensity) samples of

the graph signal xi, the relabelling from the proposed bandwidth minimization algorithm

approximates the one obtained by performing a simple sort operation on xi, due to the

breadth-first traversal of the former. In an effort to further minimize the border effect of

the GWT, one may approximate the given subgraph(s) by the simple cycle, as the spars-

est circulant graph, or alternatively, the ‘smoothest cycle’ of Gi, and define the sorted

graph signal xi on its vertices. This phenomenon and the significance of incorporating a

relabelling step is revisited and further elucidated in the next section.

The transform is extended to multiple levels by iterating on the respective lowpass-

branches, where downsampling is conducted with respect to the outmost cycle (s = 1)

and no reconnection applied for graph coarsening, so as to ensure maximum sparsity; if

either subgraph dimension is odd, one may alternatively employ nearest circulant approx-

imation for reconnection to preserve circularity.

While, as has emerged from the discussion in Ch. 4, the HGSWT remains valid on ar-

bitrary connected undirected graphs, albeit the high-pass filter loses vanishing moments,

suitable downsampling and reconnection strategies need to be identified in order to con-

tinue to preserve invertibility and sparsity for a multiscale representation, and are thus

more difficult to tailor for the chosen graph model and objectives than for circulant graphs.

Overall, the proposed non-linear approximation scheme consists of two main components:

a graph-based image segmentation step followed by the construction of suitable circulant

graph wavelets on the segmented regions. Here, the selection of parameters and graph

weights may be updated in each step so as to optimize the respective task, i. e. the initial

(complete) graph is built to ensure an optimal cut, while for graph wavelet analysis a

sparser graph may be preferred for refined processing and enhanced performance. A

complete description is outlined in Algorithm 6.1.

6.1.2 The Matter of the Labelling

The GWT for image approximation may be regarded as an instance of transforming a 2D

into a 1D problem, which is directed to benefit from graph-specific operations, such as

optimization of labelling and localization of basis functions.

While the primary purpose for introducing the RCM-algorithm in the second stage of the

141



6.1. Graph Wavelets for Non-Linear Image Approximation

Algorithm 6.1 Non-linear Image Approximation on Graphs

1: Input: Grayscale Image I

2: Construct undirected, weighted graph G from I with weights wi,j = e
−
|Ii−Ij |

2

σ2
I e

−
||pi−pj ||

2
2

σ2p be-

tween node pair (i, j). Let graph signal x ∈ RN2

be the vector-stacked form of I.
3: Perform one (or more) normalized graph cuts on G, and partition the graph signal accordingly

s.ṫ. signals {x(Vk)}k respectively reside on graph-partitions Gk = (Vk, Ek)
for k = 1, 2, ...

4: Sparsify Gk by a suitable threshold and relabel using the RCM
or

5: Reweight Gk with wi,j = e
−
|Ii−Ij |

2

σ2
I , then sparsify by a suitable threshold and relabel using the

simple sort on {x(Vk)}k
6: Compute the nearest circulant graph approximations G̃k to Gk

7: Construct a circulant GWT on G̃k to analyze sub-signals {x(Vk)}k
8: Coarsen G̃k with no reconnection and iterate on the respective LP-branches for a multiresolu-

tion representation.

proposed framework, has been to obtain a reordered matrix with more similar neighbor-

hoods, and, whose structure is closer to that of a circulant matrix, it appears that in

light of our treatment of maximum annihilation, the obtained reduced bandwidth can be

additionally leveraged for increased sparsity in the graph wavelet domain, provided the

corresponding re-ordered graph signal is smooth. In point of fact, the problem of finding

the optimal band form of a symmetric matrix has an equivalence in the graph domain, as

captured by the following theorem:

Theorem 6.1. ([51]): Let A be a symmetric square matrix of order N which is (p, p)-

banded. Let the vertices of its graph G(A) be labelled by the indices 1, 2, ..., N of the

corresponding rows (and columns) of A. If each edge (i, k) of G(A) is assigned the number

|i− k|, then p equals the maximum over all edges in G(A) of the numbers assigned in this

way.

Namely, the problem of finding a labelling, consisting of distinct integers 0 to N−1, for the

vertices of a graph of size N , such that the maximum value of the distances |i−k| over all

edges (i, k) is minimized, belongs to the class of NP -complete problems, comprising i. a.

the travelling salesman problem, yet several (heuristic) algorithms such as the presently

employed RCM or GPS algorithm can find adequate (suboptimal) solutions [51].

Both algorithms are designed to find a so-called level structure R = [V1, ..., Vr] of the

given graph G = (V,E) which partitions the vertex set into smaller sets of connected

components, such that the condensation of G with respect to R is connected and the

width w(R) = maxi=1,...,r |Vi| of R is minimized [51]. The condensation of G describes the

path of size r through vertices V1, ..., Vr, resulting from the contraction of each partition

to a single vertex, which has an edge from Vi to Vj , i 6= j, if and only if there is an edge

from x to y in E, for elements x ∈ Vi and y ∈ Vj [51]. The employed RCM algorithm,

which comprises a slight modification [132] of the original by Cuthill and McKee [122], is
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summarized in Algorithm 6.2.

Algorithm 6.2 The RCM algorithm [51]

1: Input: Graph G with |V | = N and individual vertex degrees {si}Ni=1

2: Define S = maxi=1,...,N si, s = mini=1,...,N si and σ = 1
N

∑N
i=1 si, and set threshold T =

max{min[(S + s)/2, σ − 1], s}
3: for v = 1 : N , if sv ≤ T

Generate Rv at vertex v: put V1 = {v} and define Vk, k > 1 as the set of all vertices with
distance k − 1 from v
Compute w(Rv)
end
Consider the Rv with minimum w(Rv) and label as follows:

4: Let V1 = v be 1, for k = 1 : ..,
Given the labelling in Vk, for Vk+1 label first the vertices adjacent to the lowest numbered
vertex in Vk, in order of increasing degree
Move to the next lowest numbered vertex in Vk and repeat until all vertices in Vk+1 are
exhausted
Repeat above until all vertices in G are numbered. If the next vertex cannot be chosen uniquely,
it is done arbitrarily
end

5: Compute bandwidth for each labelling and choose the (or a) minimizing one
6: Number vertices in reverse order of final labelling

As laid out, the final labelling is based on the creation of a level structure to form a

smooth multi-dimensional path. In addition, the algorithm assumes an unweighted graph,

as it only takes the number of connections, not the weights, into account. It is therefore

beneficial to consider graphs that are sparse or have been reduced to their most signifi-

cant edges via thresholding, since the removal of redundant or less meaningful edges may

improve the search for smooth labelling paths. A threshold may be chosen heuristically

and depends on the graph at hand, i. e. if chosen too small it may decrease differentiation

between regions and lead to similar adverse effects as if chosen too large as well as pos-

sible disconnectedness; accordingly, the labelling within individual neighborhoods (level

components) of less nuanced connectivity is subject to increased inaccuracy.

The bandwidth minimization problem presents one of several graph labelling problems,

which have been incorporated into a comprehensive framework in [133]. For a connected

undirected graph G = (V,E), with |V | = N , an optimum one-to-one mapping (i. e. la-

belling) P from V to the vertex set VH = {0, ..., N − 1} of a host graph GH = (VH , EH)

is sought, as per minimization (or maximization) of a suitable objective function; this

specifically entails that distances between labels correspond to pairs of adjacent vertices

in G. The labelling P that minimizes the graph bandwidth, as has been of interest, can

be expressed as

P̂ = arg min
P

max
{u,v}∈E

dH(P (u), P (v))

where dH is the shortest path distance between two vertices (as simply the absolute value

of the label difference) and max{u,v}∈E dH(P (u), P (v)) denotes the labelling bandwidth.
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The related bandwidth (or minimum) sum problem has a different objective function

P̂ = arg min
P

∑
{u,v}∈E

dH(P (u), P (v)),

and is set to minimize the total length sum of the edges. To date, the most widely used

host graph model in graph labelling problems is the simple path, which has provided the

foundation for a variety of approaches, while alternatives, such as the simple cycle or

(higher-dimensional) grid graph have been studied to a lesser extent [133]. A theoretical

investigation with respect to weighted graphs has not yet been realized, to the best of our

knowledge, albeit heuristic approaches exist.

While operations on graphs with respect to graph signals, as considered, are usually in-

variant to labelling permutations, the latter nonetheless provide essential information on

the general structure of the network which can be leveraged for various objectives, in-

cluding bandedness (sparsity) and visualization. In [134], a transformation technique is

devised that converts networks to time series using multidimensional scaling, with results

uncovering i. a. that the level of periodicity of resulting time series is an indicator for the

similarity of networks to ring lattices (i. e. circulants). For instance, the time series result-

ing from circulant graphs coincide with its periodic sinusoidal eigenvectors that reflect the

underlying ‘smooth’, circular labelling, while those of the small-world network are ‘noisy’

periodic. This has been further studied as an inverse operation [135]. Nevertheless, the

smoothness of eigenvectors is generally not a sufficient criterion for our purposes, consid-

ering that every circulant graph has the same periodic eigenvectors, but not necessarily a

small bandwidth. In [136], a new heuristic is introduced for the approximate solution of

the cyclic bandwidth sum problem, consisting of the identification of a set of paths by a

depth-first search for vertices with similar neighborhoods, which are subsequently merged;

further, the algorithm adapts its search to the structure of the graph as it traverses it.

It is further argued that a labelling that reflects or is consistent with the topology of the

network, i. e. takes into account the adjacency relations, facilitates spectral analysis [136].

The related problems of community detection, clustering, and image segmentation, which

can be posed as graph partitioning problems, thus present popular examples that consider

vertices in a consistent order with respect to the graph topology. It becomes evident on

the basis of a simple form of execution, the graph cut, which determines the most eco-

nomical (with respect to some cost measure) partition of a graph into disjoint sets of high

intra-and low inter-similarity via the Fiedler vector2 [47], how the sample-distribution (or

smoothness) of the corresponding graph eigenvectors, which represent a form of graph

signal in their own right, is crucial in determining vertex adjacency. As such, the use of

the graph cut for segmentation, in the first step of the proposed framework, presents a

2The line of work originating in spectral graph theory employs (graph) eigenvectors for bisection, and, in
early heuristics the Fiedler vector, which belongs to the second smallest eigenvalue of the graph Laplacian.
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(a) (b) (c) (d)

Figure 6.2: Random Graph Signal (b) with corresponding Graph Adjacency Matrix (a) before
and after ((c)− (d)) applying a simple sort (graph kernel as in Eq. (6.2), with threshold T = 0.3).

preliminary means of label categorization in the pursuit of an optimal graph labelling.

Signals that vary smoothly over the network, or in other words, whose distribution is

reflected in the network structure through similar values in neighborhoods of higher con-

nectivity, can therefore be leveraged in a superior relabelling scheme as indicator-functions,

whose simple ordering is related to and may be used to reduce the bandwidth of the graph.

In fact, while originally an exclusive graph problem, the addition of the graph signal has

simplified the bandwidth-minimization problem, as an optimal solution can now be found

in form of the simple sort operation, which minimizes the total variation of the graph sig-

nal. The sorted signal is (ideally) piecewise smooth, with pieces conceived as approximate

(or noisy) polynomials, and can be (near-)annihilated by a suitable graph Laplacian filter

with a sufficient number of vanishing moments, while the minimum bandwidth ensures a

reduced graph border effect (see Fig. 6.2).

In the proposed image processing framework, this is realized by confining the similarity

kernel of the partitioned subgraphs to the intensity of corresponding graph signals which

subsequently facilitates the use of signal-sorting as opposed to sub-optimal algorithms for

relabelling; the projection of the sorted signal onto a simple cycle is the sparsest option

and directly reflects the, now, simplified task of finding the smoothest possible path (or

cycle) within a graph. Nevertheless, when the underlying similarity kernel of the graph

goes beyond reflecting the sample value similarity, this becomes less reliable; when addi-

tional measures, such as the bilateral weight, which includes spatial (Euclidean) proximity,

are incorporated, while desirable for other purposes such as image segmentation, compro-

mise the previously stated relation between sorting and bandwidth. A path of spatially

close vertices in an image-graph is not necessarily smooth, with the simple-sort relabelling

revealing that similar pixels (nodes) are often spread out, hence, the inclusion of the Eu-

clidean distance in the weight measure is limiting to the bandwidth-reduction model.

By way of illustration, Fig. 6.3 depicts a data-driven graph with weights

wi,j = e−
d(xi,xj)

2

σ2 , d(a, b) = |a− b|, i, j = 0, ..., N − 1 (6.2)
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Figure 6.3: Original G (N = 64) after thresholding of weights (a), after RCM relabelling
(b), signal x before/after relabelling (c), multiscale HGSWT representation (at k = 1) of
x (in magnitude) on G̃ for 3 levels (d). c©2017 Elsevier Inc.

with σ as 10% of the total range of d(a, b), and random graph signal x with uniformly

distributed entries xi ∈ (0, 1), along with the corresponding (sparse) graph approximation

and multiscale representation via the HGSWT (at k = 1, no reconnection), prepared

using [52]. The obtained representation is highly sparse as a consequence of the breadth-

first traversal of the RCM algorithm, where xP has reduced total variation ||xP ||TV and

simultaneously WP (and by extension W̃) is of small bandwidth. When a simple sort

operation is applied instead, both functions are minimized.

6.2 Examples

We consider and compare the non-linear approximation performance for variations of the

introduced algorithm with standard 2D wavelet transforms for a variety of artificial and

natural images; here, we restrict our attention to the 2D Haar and linear spline (CDF

5/3 wavelet transform), with respectively 1 and 2 (dual) vanishing moments. While the

employed graph constructions are all of first order with 2 vanishing moments, the 2D Haar

is considered due to its smaller support and proven superiority for certain natural images.

Succeeding a partitioning of the same starting graph with weights as in Eq. (6.1), the

following variations of the proposed algorithm are employed (where applicable), for each of

which the final GWT(s) are constructed on circulant approximations of the specified graph

type: (i) nGWT: the original complete weighted graph, (ii) sparseGWT(bil, RCM):

the graph is sparsified by Euclidean distance ||pi− pj ||2 ≤
√

2 and subsequently relabelled
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by the RCM, (iii) sparseGWT(I, sort): the graph is re-weighted as intensity-only,

sparsified by a data-dependent intensity threshold I, and reordered using signal sorting

and (iv) GWT(S=(1), sort): the graph is reduced to the smoothest simple cycle.

In certain cases, we consider multiple graph cuts and extend the described approaches to

all segments, however, for simplicity, the chosen thresholds per GWT remain the same.

The chosen GWT-type is the HGSWT (k = 1) of Thm. 3.1. It should be noted that while

we consider the same number of levels for all transforms, the comparison is technically not

favourable to the graph-based methods, since it can be demonstrated that the traditional

tensor product wavelets can be represented as two levels of a 1D transform (see also Sect.

4.5 on graph products). In addition, all GWT rows have been normalized to 1.

The performance is measured as PSNR = 20 log10

(
Imax√
MSE

)
, with maximal intensity value

Imax and

MSE =
1

N2

N−1∑
i=0

N−1∑
j=0

|I(i, j)− Ĩ(i, j)|2

between original image I and approximation Ĩ; for I(i, j) ∈ [0 1], Ĩ is subject to post-

processing by adjusting outliers Ĩ(i, j) 6∈ [0 1] to the original extrema.

We begin by comparing two different stripe patterns, a binary and a sinusoidal one. The

application of the proposed scheme on the former produces constant sub-graph signals on

two distinct graph partitions, which can be perfectly annihilated (irrespective of graph

bandwidth), and hence ensures perfect reconstruction from a small number of basis ele-

ments, while the traditional 2D wavelet transforms struggle (Fig. 6.4). In the latter case,

the two distinct regions are no longer constant, which hinders complete annihilation, yet

invites further variations. As can be seen in Fig. 6.5, all proposed graph wavelets out-

perform the traditional, with the smooth cycle (iv) being the best by a margin; here the

sparseGWT(bil,RCM) marks a slight improvement over the un-processed nGWT, while

all intensity-only based transforms that employ the simple sort fare better in order of

decreasing support.

Figure 6.4: Comparison of NLA performance at 5 levels for a 64× 64 image patch.
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Figure 6.5: Comparison of NLA performance at 5 levels for a 64× 64 image patch.

Figs. 6.6-6.7 respectively illustrate individual (multi-level) analysis low-pass basis elements

of the euclidean-and intensity-thresholded transforms on the sinusoidal stripe image.

Further, we consider images which feature regions with respectively the same stripe pat-

terns as well as homogeneous regions, which are created to be linear polynomial of the

form wi,j = α1x(i) +α2y(j), x,y ∈ RN and α1, α2 ∈ R. In both cases, we apply a total of

two graph cuts and compare the NLA performance in Fig. 6.8. When the stripe pattern is

homogeneous, the best performance is again achieved by the smoothest cycle, where per-

formance is nearly identical for both one and two cuts, as a result of the minimum border

effect. This is followed by the sparseGWT(bil, RCM), while the sparseGWT(I,sort) fares

less well, yet still outperforms traditional methods. The performance of the nGWT and

sparseGWT(I,sort) is almost comparable since their annihilation potential is identical for

the stripe region, with the homogeneous region constituting only a small gain for the latter

due to it being non-constant. When the pattern features non-binary stripes, this trend is

again reversed, and the performance of intensity-based GWTs superior, for both one and

two cuts (see Fig. 6.9). Eventually, consider a real image patch extracted from the 256×256

‘cameraman’, which features distinct regions with sharp discontinuities and details (see

Figs. 6.10, 6.11). When one graph cut is applied, previous observations are upheld with

the intensity-based variations outperforming the remaining, while all graph-based methods

outperform the traditional tensor wavelets. The effect of the former is further exemplified

beyond the simple cycle through the use of two different intensity thresholds, with the

larger one achieving better results (sparseGWT(I,sort)-1 in Fig. 6.10). When three graph

cuts are applied, all GWTs gain in performance.
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(a) Original (b) Local Pixels

(c) Level 1 (d) Level 2

(e) Level 3 (f) Level 4

Figure 6.6: Localized Basis Functions of the sparseGWT(bil,RCM) depicted on selected
(nodes) pixels (b) of the original image patch.
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(a) Original (b) Local Pixels

(c) Level 1 (d) Level 2

(e) Level 3 (f) Level 4

Figure 6.7: Localized Basis Functions of the sparseGWT(I,sort) depicted on selected
(nodes) pixels (b) of the original image patch.
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Figure 6.8: Comparison of NLA performance at 5 levels for a 64× 64 image patch.

Figure 6.9: Comparison of NLA performance at 5 levels for a 64× 64 image patch.

In summary, the sparseGWT(bil, RCM) provides a solid improvement over traditional

methods as well as the simple execution of a complete weighted GWT, with spatially local-

ized analysis basis functions, however, since it does not produce smooth sub-graph signals,

it proves only near-optimal when multiple graph cuts are performed and/or the associ-

ated signals are (almost) constant. On the contrary, the sparseGWT(I,sort) exploits the

relation between signal smoothness and bandwidth for a marginally better performance,

with optimal results when it is reduced to the smoothest cycle, yet its basis functions are

signal dependent and hence need to be individually tailored, while its parameters may re-

quire further adjustment to be effective for multiple graph cuts. Overall, it has transpired

that both a basis with sparse support and a smooth labelling consistent with the graph

structure facilitate superior performance, which, nevertheless, simultaneously shows that

graphs are most effective when sparse.

While the preceding analysis has demonstrated the ability of graph wavelets, and its

associated tools, to operate with respect to the inherent image geometry, resulting in

highly sparse representations, one needs to emphasize that the discussed approaches are

data-driven, i.e. their ultimate effectiveness depends on, and thus varies according to,

the (image) data at hand. Furthermore, while obtained representations are sparse, and

therefore of interest for applications such as image compression, one further needs to take

into account the additional side information of the image graphs, such as the pixel-to-node

mapping.
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(a) (b) (c)

(d)

Figure 6.10: (a) Original 64× 64 image patch, (b)-(c) Graph Cut Regions for 1 cut & (d)
Comparison of NLA performance. c©2017 Elsevier Inc.

(a) (b) (c) (d) (e)

(f)

Figure 6.11: (a) Original 64× 64 image patch, (b)− (e) Graph Cut Regions for 3 cuts &
(f) Comparison of NLA performance.
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6.3 Open Problem: Graph Labelling Under Noise

The underlying strengths of the proposed approach have been established as the parti-

tioning and re-labelling steps. In the following, we briefly review other works that have

operated under comparable notions, and discuss possible extensions.

The Easy Path Wavelet Transform (EPWT) for sparse image representation [137], while

not a legitimate graph wavelet transform per se, exploits local data correlations in in-

tensity images (and potentially higher-dimensional structures) by constructing a smooth

path of data points on which a discrete 1-D wavelet transform can be subsequently applied

for maximum sparsity; here individual path elements are chosen from within a spatially

confined (grid-like) neighborhood, so that the absolute differences between their function

values are minimized. In addition, the process can be repeated for multiple levels, how-

ever, each time a path is chosen from within an ‘upsampled’, smoothed version of the

low-passed image. This approach is similar to the proposed image approximation scheme

sparse GWT(I, sort) with the distinct difference that we operate directly in the graph do-

main, facilitating a graph cut and graph-based multiscale transform construction, as well

as make use of the graph signal to determine the ideal path without spatial confinement.

When the signal at hand is uncorrupted, the optimal solution to the bandwidth-minimization

problem is clearly given through a simple sorting of its sample values; nevertheless when

samples are missing or contain noise, the traditional total-variation measure becomes un-

reliable as even small additions of noise can falsify the associated graph topology (or

underlying geometry). The proposed framework still works fairly well under noise when

the image patch features sharp contrasts, such as the example in Fig. 6.12, where denoising

was performed by retaining a fixed percentage of highest magnitude wavelet coefficients

(averaged over 10 trials of noise), and/or the noise level is relatively small, however, for

general scenarios, one requires a more robust and, hence, less data-dependent labelling

method.

Figure 6.12: Denoising performance comparison for a 64× 64 image patch.

Several works by Elad et al. that mainly targeted the problem of image processing, and
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6.3. Open Problem: Graph Labelling Under Noise

denoising in particular, have considered the issue of finding the best ‘noisy’ signal path

through a vectorized version of the image in order to apply subsequent operations on an

appropriate smooth permutation, which should be close to that of the clean version, and

thus, robust to noise. A significant difference to our graph-based framework is the inclusion

of high-dimensional feature vectors, such as patches, as opposed to pixels in the reorder-

ing scheme, while spatial localization of pixels (and their surrounding patches) takes on a

more substantial role, as it circumvents the bias of an exclusively data-dependent labelling

scheme by incorporating local geometric information.

In particular, in [138], [139], a tree-based wavelet transform for functions defined on high-

dimensional data or graphs is proposed which employs reordering based on the distance

measure between given data points within a hierarchical tree structure, and can be consid-

ered a generalization of the work in [137]. It is applicable to image denoising by using the

proximity between feature vectors (images patches) as a predictor of similarity between the

clean versions of its middle pixels. Further, in [140], similar graph-like notions are applied

in image denoising, as the vector of corrupted/noisy image pixels is reordered according to

the smoothest (or shortest) path through higher-dimensional data points (image patches)

xpj with total variation measure xpTV =
∑N

j=2w(xpj ,x
p
j−1) for distance measure w(·, ·), in

the spirit of the travelling salesman problem. The latter can be approximately minimized

by conducting spatially confined searches within image regions and choosing the nearest

neighbor (patch) according to a probability proportional to its degree of similarity. Sub-

sequent smoothing and filtering operations are then applied to the reordered 1D-signal

before converting it back to denoised image form.

Following similar notions, the formerly introduced EPWT has been further extended for

image denoising by creating more robust and adaptive path selection methods which i. a.

consider the proximity between associated feature vectors, within confined neighborhoods,

in addition to similarity between function values in both deterministic and probabilistic

schemes [141].

In order to demonstrate directly the significance of the underlying labelling (or ideal path

selection) for a graph signal, consider a noisy version of the cameraman-image patch

and compare an optimally labelled, ‘segmentation-based’ graph wavelet transform on the

simple cycle to the BM3D [142], as a state of the art image denoising algorithm. The

underlying graph labelling of the former is obtained from a simple sorting of the clean

sub-graph signals, following one graph cut, and GWT values at and below 3σ in mag-

nitude are thresholded, for standard deviation σ of the noise (see Fig. 6.13). It can be

seen that the smoothest simple cycle with the oracle labelling largely outperforms the

BM3D at the indicated noise range, which exemplifies the promise behind recovering a

(near-)optimal labelling and provides an intriguing avenue for extensions of the presented

framework.
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Chapter 6. Image Processing on Graphs

Figure 6.13: Denoising performance comparison between BM3D and simple cycle GWT
with ideal labelling on the 64× 64 cameraman image patch.

While the use of graphs in image processing has facilitated data-specific operations by

capturing and exploiting more (geometric) information, it is nevertheless also more sus-

ceptible to instability as a result of noise in the data. Several works, both directly and

indirectly affiliated with GSP, have attempted to remedy that by i. a. associating entire

feature vectors to each node to incorporate information beyond the pixel intensity, how-

ever, methods to date are largely heuristic, with the problem of finding the optimum

labelling under noise remaining an open issue.
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Chapter 7

Conclusion

7.1 Summary

This thesis has provided a sparsity-driven tour of graph signal processing with particular

focus on circulant graphs and their implications for both generalized graph scenarios and

traditional signal processing concepts. In an effort to elucidate how sparse representations

on graphs can be both induced and leveraged as well as comprehend the links between the

emerging GSP theory and traditional signal processing theory, we have conducted a the-

oretical analysis of sparsity on graphs by delving into the (inter-related) topics of wavelet

and sampling theory on graphs.

Hereby, we have discovered and leveraged the underlying polynomial and annihilation

properties of circulant graph Laplacian matrices (and their generalizations) for the devel-

opment of graph spline wavelet theory, in the style of its traditional counterpart, while

exploiting the circulant nature of traditional signal processing operations to solidify the

connection between the Euclidean and graph domain. Having explored both a range of

sparsifying wavelet transforms as well as classes of (piecewise) smooth signals on circulant

graphs and beyond, along with their properties and limitations, we have further shifted the

focus to sampling of (wavelet-)sparse signals within the GFRI framework, inspired by Fi-

nite Rate of Innovation theory, which facilitates their perfect recovery from dimensionality-

reduced spectral representations, while simultaneously identifying an associated coarsened

graph. Eventually, we have devised a graph-based image approximation algorithm, which

employs graph partitioning with subsequent sparsity-driven graph wavelet analysis as a

superior method, compared with traditional tensor-product bases, due to its (conceptually

simple) potential to operate with respect to the inherent geometry of images with patterns.

In order to motivate both the problem context as well as its mathematical frame, in

Chapter 2, we reviewed notable contributions and insights from both traditional sparse

signal processing and graph signal processing, along with relevant definitions and concepts
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from graph and matrix theory, and with particular regard to wavelet and sampling theory.

We further presented the theory of circulant matrices and graphs, and, in particular, its

inherently polynomial characteristics.

In Chapter 3, we presented several contributions in form of special operators and wavelet

transforms on circulant graphs with inherent and/or imposed desirable properties, while

introducing the notion of a spline on a graph and its (structural) relation to the tradi-

tional spline. Specifically, we leveraged the vanishing moment property of circulant graph

Laplacian matrices to derive the graph spline and e-spline wavelet transforms, along with

a range of complementary constructions based on spectral factorization, which exhibit re-

production and/or annihilation properties for classes of (exponential) polynomial signals,

and further discussed their significance and special cases.

Chapter 4 commenced with a contextualization of previous derivations for circulants, fol-

lowed by the introduction of a variety of sparsity-inducing graph wavelet transforms for

(piecewise) smooth graph signals and their properties on arbitrary undirected graphs, in-

cluding the generalized bandlimiting, space-variant and time-varying graph wavelet trans-

forms, as well as multi-dimensional extensions on the basis of graph products. In the

course of this analysis, further properties such as the transform condition number and

degree of annihilation were compared.

Chapter 5 introduced a novel sampling and graph coarsening framework for (wavelet-

)sparse signals on circulant graphs and beyond, with an excursion into the problem of

sampling under noise, featuring a perturbation analysis. Inspired by Finite Rate of Inno-

vation (FRI) sampling framework, we devised its counterpart and extension in the graph

domain, which facilitates the perfect reconstruction of K-sparse graph signals on circulant

graphs from its dimensionality-reduced GFT vector of minimum size 2K, while simulta-

neously inferring an associated coarse graph on the basis of the previously derived graph

(e-)spline wavelet theory. Extensions to arbitrary graphs can be enforced via suitable

(graph) approximation schemes, while an alternative approach of sampling under connec-

tivity noise which employs perturbation models was also explored.

At last, Chapter 6 presented an application to image processing in form of a sparsity-

driven framework for wavelet analysis, paired with novel insights on the impact of graph

labelling, and concluding with the open problem of denoising on graphs. By modelling

a given image with distinct discontinuities and patterns as a bilaterally weighted graph,

the proposed algorithm conducts an initial partition into homogeneous regions before

applying sparsifying graph wavelet transforms on circulant approximations of the resulting

subgraphs. Maximum sparsity can be achieved by transform-variations which are localized

with respect to the image-intensity content and further exploit a smooth node-relabelling,

which is shown to be related to the optimal band-form of the graph. The effectiveness of

the algorithm and superiority over traditional tensor-product wavelets was demonstrated
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on the basis of real and artificial image examples.

Overall, the collective of derivations and results has elucidated how the connectivity of

circulant and suitable general graphs can be leveraged to induce a sparse graph signal

representation of certain classes of signals as well as how sparsity on graphs can be fur-

ther appropriated for dimensionality reduction (or sampling), while providing a range of

examples and ultimately an application in image processing.

At the same time, the analysis has uncovered certain challenges and ensuing new problems,

which need to be tackled in further investigations.

7.2 Open Problems and Future Work

Chapters 3 and 4 have focused on the identification of transforms and bases with predom-

inant regard to inducing a sparse graph signal representation when no noise or corruption

is present in the signal. Nevertheless, preliminary experiments and a closer investigation

of the transform condition number revealed that certain developed constructions may be-

come susceptible to noise. Therefore, it would be of interest to further investigate how

these may be amended to accommodate noise as well as explore alternatives. Due to the

complex connectivity of graphs and present variability, it nevertheless remains an open is-

sue to identify the ideal noise-robust basis (or a set of necessary properties or constraints),

beyond an individualized and/or application-dependent study.

In order to leverage the desirable properties of circulant graphs, or more generally, conve-

niently structured graphs, it is usually necessary to resort to suitable graph approximation

schemes. As noted in Chapters 5 and 6, in the current analysis, this has required the use

of the nearest circulant approximation or (circulant) Kronecker product approximation

schemes. In particular, while for matrices the minimization of an error norm may be

a conventional approximation step and measure, in the case of a graph this entails the

addition of edges (with possibly negative weights) which may change the inherent graph

properties, and which raises the question of how suitable such a scheme eventually is from

a theoretical viewpoint. While a prevailing number of GSP works is resorting to matrix-

theory driven approximation or optimization approaches and results, relatively few are

concerned with exploring the degree of graph-invasiveness or -alteration of such processes

as well as how this may be measured and/or circumvented.

The presence of noise on networks and/or network data is a notable open issue in GSP,

and Chapter 6 conclusively addressed the challenges of transferring the developed image

approximation framework to the noisy setting. Current limitations are imposed by the

fact that one of its driving components, the ideal node labelling of the graph for maximum

sparsity is selected based on a clean version of the graph signal (image); the addition of
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noise however renders the scheme unstable. We have discovered that if given access to

the ideal ordering for the clean signal, imposed on the noisy case, our current scheme can

outperform state-of-the-art algorithms such as the BM3D by a high margin. It is therefore

of interest to further explore the issue of an approximate smooth labelling under noise.
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Appendix A

Proofs of Chapter 3

A.1 Proof of Theorem 3.1

Theorem 3.1. Given the undirected, and connected circulant graph G = (V,E) of dimen-

sion N , with adjacency matrix A and degree d per node, define the higher-order graph-

spline wavelet transform (HGSWT), composed of the low-and high-pass filters

HLP =
1

2k

(
IN +

A

d

)k

HHP =
1

2k

(
IN −

A

d

)k
whose associated high-pass representer polynomial HHP (z) has 2k vanishing moments.

This filterbank is invertible for any downsampling pattern, as long as at least one node

retains the low-pass component, while the complementary set of nodes retains the high-

pass components.

Proof of Theorem 3.1. (appears in [9] and [7]) It is self-evident that since the high-pass

filter of Eq. (3.2) is a power k of the graph Laplacian matrix, whose associated polynomial

representation has 2 vanishing moments, the annihilation property is generalized to higher

order of 2k vanishing moments; thus we proceed to demonstrate invertibility of the filter-

bank. The core of the proof follows a similar line of argumentation as the one provided

in [55] for k = 1 with generalizations pertaining to the parameter k. For completeness we

present the entire proof here.

Applying the binomial theorem, we observe that

1

2k

(
IN ±

A

d

)k
=

1

2k

k∑
j=0

(±1)j
(
k

j

)(
A

d

)j
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and so we need to show that the nullspace of

1

2k

∑
j∈Z

(
k

2j

)(
A

d

)2j

+ K
∑
j∈Z

(
k

2j + 1

)(
A

d

)2j+1


is empty, where K is the diagonal matrix with entries K(i, i) = 1 if node i retains the low-

and K(i, i) = −1 if it retains the high-pass component. Assume the contrary and define

the vector z = Vr to lie in the nullspace, given eigendecomposition A
d = VΓVH , which

yields the following simplifications:

1

2k

∑
j∈Z

(
k

2j

)(
A

d

)2j

+ K
∑
j∈Z

(
k

2j + 1

)(
A

d

)2j+1
Vr = 0N (A.1)

⇔ ||V
∑
j∈Z

(
k

2j

)
Γ2jr||22 = ||KV

∑
j∈Z

(
k

2j + 1

)
Γ2j+1r||22 (A.2)

where Eq. (A.2) is the result of a rearrangement of terms in Eq. (A.1) and subsequent

application of the l2-vector norm on both sides of the equality. After further simplification,

we obtain

N−1∑
i=0

r(i)2

∑
j∈Z

(
k

2j

)
γ2j
i

2

−

∑
j∈Z

(
k

2j + 1

)
γ2j+1
i

2 (a)
=

N−1∑
i=0

r(i)2(A2
i −B2

i ) = 0,

(A.3)

where in (a), we let Ai and Bi represent the sum of even and odd terms in the binomial

series respectively. For the nullspace to be empty, we need to show that r = 0N , which

follows if (A2
i − B2

i ) 6= 0 and is strictly positive or negative ∀i. By utilizing the fact

that for a general binomial series (x + a)n, with terms Ai and Bi, the following holds:

(x2 − a2)n = A2
i −B2

i , we obtain

N−1∑
i=0

r(i)2(A2
i −B2

i ) =
N−1∑
i=0

r(i)2(1− γ2
i )k = 0.

The eigenvalues are given by |γi| ≤ 1, via the Gershgorin circle theorem, where γi > −1

unless the graph is bipartite [3]; thus we have that |r(i)| > 0 only if |γi| = 1 and r(i) = 0

otherwise. To examine these special cases, let the corresponding eigenvectors for γ1 = −1

and γ2 = 1 be given by Ṽ and r(0)√
N

1N respectively, such that z = r(0)√
N

1N + Ṽr̃, and sub-

stitute into Eq. (A.1). Here, the multipicity of γ2 = 1 is one, since the graph is connected

[3]. We consider the case of a non-bipartite graph first:

r(0)√
N

∑
j∈Z

(
k

2j

)
1N + K

∑
j∈Z

(
k

2j + 1

)
1N

 = 0N
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Noting that
∑

j∈Z
(
k
2j

)
=
∑

j∈Z
(

k
2j+1

)
, we need at least one entry K(i, i) = 1, such that

r(0) = 0.

In the bipartite case, due to spectral folding, if γ is an eigenvalue of A with eigenvector[
vB

vB{

]
, so is −γ with eigenvector

[
vB

−vB{

]
, where B is the set of the node indices in one

bipartite set [3], and partitions vB and vB{ interlace. Then γ1 = 1 and γ2 = −1 each have

multiplicity one with respective eigenvectors 1N and

[
1B

−1B{

]
, where |B| = |B{| = N/2,

giving

r(0)√
N

∑
j∈Z

(
k

2j

)
IN + K

∑
j∈Z

(
k

2j + 1

)
IN


︸ ︷︷ ︸

T1

1N

+
r(1)√
N

∑
j∈Z

(
k

2j

)
IN −K

∑
j∈Z

(
k

2j + 1

)
IN


︸ ︷︷ ︸

T2

[
1B

−1B{

]
= 0N .

(A.4)

Here we have used the property A
d v = γv, in

(
A
d

)j [ 1B

−1B{

]
= (−1)j

[
1B

−1B{

]
, leading to

an alternating pattern on the RHS when j is odd.

In particular, for any choice of downsampling pattern K, the terms T1 and T2 in the first

and second summands in Eq. (A.4), will respectively have zero entries along the main

diagonal, which lie in complementary index sets. Therefore, as long as at least one node

retains the low-pass component K(i, i) = 1, it follows that r(0) = 0 and r(1) = 0, which

again implies z = 0, completing the proof.

A.2 Proof of Theorem 3.2

Theorem 3.2. The higher-order graph e-spline wavelet transform (HGESWT) on a con-

nected, undirected circulant graph G, is composed of the low-and high-pass filters

HLP~α =

T∏
n=1

1

2k

(
βnIN +

A

d

)k

HHP~α =

T∏
n=1

1

2k

(
βnIN −

A

d

)k
where A is the adjacency matrix, d the degree per node and parameter βn is given by

βn = d̃αn
d with d̃αn =

∑M
j=1 2dj cos(αnj) and ~α = (α1, ..., αT ). Then the high-pass filter

annihilates complex exponential polynomials (of deg(p(t)) ≤ k − 1) with exponent ±iαn
for n = 1, ..., T . The transform is invertible for any downsampling pattern as long as the
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eigenvalues γi of A
d satisfy |βn| 6= |γi|, i = 0, ..., N −1 for n = 1, ..., T , under either of the

sufficient conditions

(i) k ∈ 2N, or

(ii) k ∈ N and βn, T such that ∀γi, f(γi) =
∏T
n=1(β2

n − γ2
i )k > 0 or f(γi) < 0.

If parameters βn, are such that βn = γi, for up to T distinct values, the filterbank continues

to be invertible under the above as long as βn 6= 0 and at least
∑T

i=1mi low-pass components

are retained at nodes in set Vα such that {v+i,k(Vα)}i=T,k=mi
i=1,k=1 (and, if eigenvalue −γi

exists, complement {v−i,k(V {α )}i=T,k=mi
i=1,k=1 ) form linearly independent sets, where mi is the

multiplicity of γi and {v±i,k}mik=1 are the eigenvectors respectively associated with ±γi.

Proof of Theorem 3.2. (appears in [7]) We can rewrite the simplified filters

HLP~α =

Tk∏
n=1

(
βnIN +

A

d

)
(A.5)

HHP~α =
Tk∏
n=1

(
βnIN −

A

d

)
(A.6)

noting that the new indices incorporate multiplicities, as follows

HLP~α =
Tk∑
i=0

si

(
A

d

)i

HHP~α = (−1)Tk
Tk∑
i=0

(−1)i+Tksi

(
A

d

)i
=

Tk∑
i=0

(−1)isi

(
A

d

)i
where the coefficients si are the elementary symmetric polynomials en(β1, . . . , βTk) in βn:

s0 = eTk(β1, . . . , βTk) = β1β2 . . . βTk

sk = ...

sTk−1 = e1(β1, . . . , βTk) = β1 + β2 + · · ·+ βTk

sTk = e0(β1, . . . , βTk) = 1.

We need to prove that the filterbank

∑
j∈Z

s2j

(
A

d

)2j

+ K
∑
j∈Z

s2j+1

(
A

d

)2j+1

with diagonal downsampling matrix K is invertible by showing that its nullspace is empty.

Similarly, as in A.1, we assume the contrary and let z = Vr lie in its nullspace, where
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VΓjVH =
(
A
d

)j
, such that∑

j∈Z
s2j

(
A

d

)2j

+ K
∑
j∈Z

s2j+1
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A

d

)2j+1
Vr = 0N (A.7)

⇔ ||V
∑
j∈Z

s2jΓ
2jr||22 = ||KV

∑
j∈Z

s2j+1Γ
2j+1r||22 (A.8)

where Eq. (A.8) results from rearranging Eq. (A.7) and taking norms of both sides, and

gives rise to

N−1∑
i=0

r(i)2

∑
j∈Z

s2jγ
2j
i

2

−

∑
j∈Z

s2j+1γ
2j+1
i

2 = 0, and hence

N−1∑
i=0

r(i)2
Tk∏
n=1

(βn − γi)
Tk∏
n=1

(βn + γi) =

N−1∑
i=0

r(i)2
T∏
n=1

(β2
n − γ2

i )k = 0. (A.9)

Given parameters βn such that |βn| ≤ 1, n = 1, ..., T , and with eigenvalues satisfying

|γi| ≤ 1, i = 0, ..., N − 1 by the Perron-Frobenius Theorem [93], we assume |βn| 6= |γi|.
Thus, all summands in Eq. (A.9) need to be of the same sign to guarantee r = 0N . As the

function f(γi) =
∏T
n=1(β2

n − γ2
i )k, for spectrum γ = {γi}N−1

i=0 , does not have exclusively

positive or negative range for odd k, we require k ∈ 2N. Furthermore, all terms remain

of the same sign at any k as long as parameters βn and T are suitably chosen. This is a

sufficient condition for guaranteeing invertibility at any downsampling pattern.

If, for some n, we have |βn| = |γi| with i ∈ [0 N − 1], giving |r(i)| ≥ 0, we can show

that for certain downsampling patterns, the transform continues to be invertible. In par-

ticular, this is the case when parameter α in βn = d̃α
d is such that α = 2πk

N for some

k ∈ [0 N − 1], i. e. HHPα annihilates the k-th (eigen-)vector in the DFT matrix. For

eigenvalues λk =
∑M

j=1 2dj cos
(

2πjk
N

)
of the non-normalized symmetric and circulant ad-

jacency matrix A with first row [0 d1 d2 . . . d2 d1], we thus have d̃α = λk for some

k ∈ [0 N − 1]. We proceed to show that the filterbank at hand is invertible for such α as

long as downsampling is conducted with respect to s = 1 ∈ S, and more generally, when

at least mi suitably chosen low-pass components are retained (for multiplicity mi of γi),

and by extension,
∑P

i=1mi components for P distinct βn that satisfy |βn| = |γi|.

Assuming wlog βn = γi, for P distinct eigenvalues (1 ≤ P < N), each of multiplicity mi

with corresponding eigenvector(s) {vi,l}mi−1
l=0 , we consider, for the case of a non-bipartite
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graph, the following nullspace representation

z =

P∑
n=1

mn−1∑
l=0

rn,lvn,l, ∀n,mn ≥ 1,

where index n signifies distinct eigenvalues (or βn) and rn,l are scalar coefficients. With(
A
d

)k
vi = γki vi, we obtain via substitution into Eq. (A.7)

∑
j∈Z

s2j

P∑
n=1

mn−1∑
l=0

rn,lβ
2j
n vn,l + K

∑
j∈Z

s2j+1

P∑
n=1

mn−1∑
l=0

rn,lβ
2j+1
n vn,l = 0N .

If Ki,i = 1, i = 0, ..., N − 1, then

P∑
n=1

mn−1∑
l=0

T∏
q=1

(βq + βn)krn,lvn,l = 0N

and if ∀i,Ki,i = −1, i = 0, ..., N − 1, then

P∑
n=1

mn−1∑
l=0

T∏
q=1

(βq − βn)krn,lvn,l = 0N

where in the case of the latter we observe that
∏T
q=1(βq−βn)k is always zero since βq = βn

for q = n. Therefore, we need the number of low-pass components to be greater than or

equal to the sum of multiplicities mn for all P distinct eigenvalues and, in addition, their

(node) locations D need to be suitably chosen to facilitate linearly independent partitions

vn,l(D) such that rn,l = 0. Note that for βn = −γi and −γi /∈ γ, the opposite is the case,

i. e. we need at least
∑P

n=1mn suitably chosen high-pass components to facilitate linear

independence of partitions {vn,l(D{)}n,l. If both ±γi exist, similar reasoning as for the

following bipartite case applies.

For bipartite graphs, let mi denote the multiplicity of eigenvalue γi and −γi respectively

(due to symmetry of the spectrum [3]), and {vi,l}mi−1
l=0 and

{[
vBi,l
−vB

{

i,l

]}mi−1

l=0

the corre-

sponding eigenvectors, resulting in a nullspace representation of the form:

z =

P∑
n=1

mn−1∑
l=0

(
rn,lvn,l + r̃n,l

[
vBn,l
−vB

{

n,l

])
mn ≥ 1,

whose substitution into Eq. (A.7) yields

∑
j∈Z

s2j

P∑
n=1

mn−1∑
l=0

rn,lβ
2j
n vn,l + K

∑
j∈Z

s2j+1

P∑
n=1

mn−1∑
l=0

rn,lβ
2j+1
n vn,l
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+
∑
j∈Z

s2j

P∑
n=1

mn−1∑
l=0

r̃n,lβ
2j
n

[
vBn,l
−vB

{

n,l

]
−K

∑
j∈Z

s2j+1

P∑
n=1

mn−1∑
l=0

r̃n,lβ
2j+1
n

[
vBn,l
−vB

{

n,l

]
= 0N .

Thus, for Ki,i = 1, i = 0, ..., N − 1, we obtain

P∑
n=1

mn−1∑
l=0

T∏
q=1

(βq + βn)krn,lvn,l +

P∑
n=1

mn−1∑
l=0

T∏
q=1

(βq − βn)kr̃n,l

[
vBn,l
−vB

{

n,l

]
= 0N

and for Ki,i = −1, i = 0, ..., N − 1

P∑
n=1

mn−1∑
l=0

T∏
q=1

(βq − βn)krn,lvn,l +
P∑
n=1

mn−1∑
l=0

T∏
q=1

(βq + βn)kr̃n,l

[
vBn,l
−vB

{

n,l

]
= 0N .

Hence, we require at leastmn low-and at mostN−mn high-pass components per βn at suit-

ably chosen locations D and D{ such that the corresponding partitions of {vn,l(D)}mn−1
l=0

and

{[
vBn,l
−vB

{

n,l

]
(D{)

}mn−1

l=0

are linearly independent, leading to rn,l = 0 and r̃n,l = 0. In

general, we need the number of retained low-pass components to be
∑P

n=1mn ≤ N/2 and

D such that the above partitions form linearly independent sets for n = 1, ..., P .

Consider the relevant case, when we downsample by 2 w. r. t. s = 1 such that D =

(0 : 2 : N − 1) (corresponding to D = B in the bipartite case) and |D| = |D{| = N/2

(see also Cor. 3.5). When eigenbasis V is represented as the N × N -DFT matrix, the

relation VD,0:N−1 = [ṼṼ] holds, where Ṽ denotes the N/2 × N/2 DFT-matrix. Thus,

the transform is invertible for βn = γi, if corresponding eigenvalue(s) γi with multiplicity

mi are suitably located in the DFT-ordered spectrum γDFT = {γi}N−1
i=0 such that the

associated eigenvectors {vi,l}mi−1
l=0 remain linearly independent after downsampling, i. e.

their pairwise column positions (j, j′) in VD,0:N−1 are not of the form (j,N/2+ j). Equiv-

alently, the above can be extended for the bipartite case when −γi exists, since we also

have VD{,0:N−1 = [ṼṼ] up to a normalization constant per column.

A special case occurs, when β = d̃ = 0; we need to show that KA
d z = 0N as long as∑N−1

i=0 r(i)2γ2
i = 0. The latter yields r(i) = 0, except when γi = 0. Since, however, the

eigenvector(s) for γi = 0 lie in the nullspace of A
d , we have r(0) 6= 0, thus the filterbank

is not invertible for any downsampling pattern, including the case when downsampling is

conducted with respect to s = 1. When A
d on the other hand is invertible with γi 6= 0, so

is the filterbank.
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A.3 Proof of Corollary 3.3

Corollary 3.3. Let G = (V,E) be an undirected, circulant graph with adjacency matrix

A and degree d =
∑M

j=1 2dj per node with symmetric weights dj = Ai,(j+i)N . Then the

low-pass filter HLP~α in Eq. (3.3) is invertible unless (i) G is bipartite while βn satisfies

|βn| = |γi| or (ii) βn = −γi, i ∈ [0 N − 1].

Proof of Corollary 3.3. (appears in [7]) Consider the simplest case with k, T = 1 and one

parameter β: we need to show that the nullspace z of low-pass filter HLPα in

1

2

(
βIN +

A

d

)
z = 0N (A.10)

is empty by contradiction. In a similar fashion as in previous proofs, we let z = Vr, with
A
d = VΓVH and obtain

||βVr + VΓr||22 = 0

⇔
N−1∑
i=0

r(i)2(β2 + 2βγi + γ2
i ) =

N−1∑
i=0

r(i)2(β + γi)
2 = 0.

Hence, it follows from inspection that the low-pass filter is invertible unless β = −γi. If

−γi ∈ γ, similar reasoning as for the bipartite case applies. In the case of a bipartite

graph, where |β| = |γi| and γi,−γi of respective multiplicity mi exist, with eigenvectors

z =

mi−1∑
l=0

(
r(l)vl + r̃(l)

[
vBl
−vB

{

l

])
,

we observe after substitution into Eq. (A.10) that

mi−1∑
l=0

r(l)(βvl + γivl) +

mi−1∑
l=0

r̃(l)

(
β

[
vBl
−vB

{

l

]
− γi

[
vBl
−vB

{

l

])
= 0N .

Due to spectral folding, one eigenvector-set always cancels out for β = ±γi, so that

we cannot guarantee zero coefficients, and hence invertibility. By extension, Hk
LPα

is

invertible, while Hk
LP~α

requires invertibility of each individual factor HLPαn for parameters

βn, under the above.
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Proofs of Chapter 4

B.1 Proof of Corollary 4.3

Corollary 4.3. The time-varying graph wavelet transform, consisting respectively of the

filters

(i) in Eqs. (4.8) and (4.9), with parameters βt,n = 1 and S = 1 ∀t, is invertible for any

downsampling pattern, as long as at least one node retains the low-pass component for

connected graphs with non-negative weights, and otherwise, for a suitable set of retained

nodes Vα such that the partitioned eigenvectors {vt,j(Vα)}t,j corresponding to γt,i = 1 (and

for bipartite graphs, also {ṽt,j(V {α )}t,j for γt,i = −1) of multiplicity j are linearly indepen-

dent. If the graphs are bipartite, non-negativity is sufficient.

(ii) in Eqs. (4.8) and (4.9), is invertible for any downsampling pattern as long as |βt,n| 6=
|γt,i| and subject to restrictions (a) the eigenvalues of HLPHHP are non-zero and of the

same sign or (b) k ∈ 2N; otherwise, if for some βt,n = γt,i, and the graph is non-bipartite,

invertibility follows, under the previous conditions, from linear independence of the corre-

sponding partitions {vt,j(Vα)}t,j for suitable Vα.

(iii) in Eqs. (4.6) and (4.7), is invertible under the same conditions as (ii), where in (b)

it is additionally required that ht, h̃t ≶ 0 ∀t; otherwise, if βt,n = γt,i holds on each graph

Gt such that all HHPt share the same nullspace v, invertibility follows under the preced-

ing provided the corresponding partitions v(Vα) (and ṽ(V {α ) in the bipartite case, for ṽ

inducing −γt,i on each graph Gt) are linearly independent for suitable Vα.

Proof of Cor. 4.3. (i)

Consider a sequence of symmetric normalized adjacency matrices {Ãt}Tt=0 which possess

169



B.1. Proof of Corollary 4.3

the same eigenbasis, i.ė. Ãt = VΓtV
H and construct the following filters

HLP = C
T∏
t=0

(IN + Ãt)
k

HHP = C̃
T∏
t=0

(IN − Ãt)
k,

whose coefficients C =
∏T
t=0 ht and C̃ =

∏T
t=0 h̃t, we set to C = C̃ = 1 for simplicity and

wlog. We proceed to prove that the transform W = 1
2(IN + K)HLP + 1

2(IN −K)HHP is

invertible by showing that its nullspace z = Vr is empty, evaluating the system:

(HLP + HHP )Vr + K(HLP −HHP )Vr = 0N

⇔ V

(
T∏
t=0

(IN + Γt)
k +

T∏
t=0

(IN − Γt)
k

)
r + KV

(
T∏
t=0

(IN + Γt)
k −

T∏
t=0

(IN − Γt)
k

)
r = 0N

⇔ ||V

(
T∏
t=0

(IN + Γt)
k +

T∏
t=0

(IN − Γt)
k

)
r||22 = ||KV

(
T∏
t=0

(IN + Γt)
k −

T∏
t=0

(IN − Γt)
k

)
r||22

⇔ rH

(
T∏
t=0

(IN + Γt)
k +

T∏
t=0

(IN − Γt)
k

)2

r = rH

(
T∏
t=0

(IN + Γt)
k −

T∏
t=0

(IN − Γt)
k

)2

r

⇔ rH4

(
T∏
t=0

(IN + Γt)
k(IN − Γt)

k

)
r = 0N

⇔
N−1∑
i=0

|r(i)|2
T∏
t=0

(1 + γt,i)
k(1− γt,i)k = 0.

For any symmetric normalized (or otherwise suitably normalized) adjacency matrix of an

undirected graph, we have |γt,i| ≤ 1, noting that i refers to the position in the spectrum

whereas t denotes the t-th graph, hence all we need to show is that r(i) = 0 when γt,i = ±1

for some t, i, to prove that r = 0N .

The multiplicity of ±1 is one if the graph is connected (acc. to the Perron Frobenius Thm.

), however, as a result of the differing graph topology the cases |γt,i| = 1, ∀t may not

always be associated with the same eigenvector of the shared basis V. When all Ãt are

non-negative and connected (irreducible), one can further deduce from Perron-Frobenius

theory that the eigenvector associated with the spectral radius 1 is a unique positive vector

(Thms. 8.3.4, 8.4.4 [97]), (or, if a positive eigenvector exists, it is associated with 1), hence,

γt,i = 1 must be shared by the same eigenvector across graphs. In particular, if the graph

is regular and connected, the corresponding common eigenvector is the all-constant vector

with z = r(i)1N (and its bipartite complement, where applicable), requiring at least one

node to be retained (the proof of Thm. 3.1 applies). Otherwise, if e. g. negative weights
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arise, the latter no longer holds, which would require for the linear independence of a

system of (at most) T + 1 downsampled eigenvectors, that at least T + 1 suitably chosen

nodes are retained (or more, with multiplicities).

For the remaining graph cases, assume the non-bipartite case first. Let z =
∑

t,j rt,jvt,j

where vt,j is the eigenvector for γt,i = 1 of the t-th graph, including multiplicities j, and

rt,j ∈ r denote the re-labelled coefficients for simplicity. In the case, when eigenvectors

are shared by selected eigenvalues across graphs, the latter may be reduced. Hence

Wz =
∑
t,j

rt,j

(
T∏
t=0

(1 + γt,j)
k +

T∏
t=0

(1− γt,j)k
)

vt,j +
∑
t,j

rt,j

(
T∏
t=0

(1 + γt,j)
k −

T∏
t=0

(1− γt,j)k
)

Kvt,j

= 0N ,

thus if Ki,i = 1, ∀i ∑
t,j

2rt,j

T∏
t=0

(1 + γt,j)
kvt,j = 0N

and if Ki,i = −1, ∀i ∑
j,t

2rt,j

T∏
t=0

(1− γt,j)kvt,j = 0N

the latter of which always vanishes since at least one factor is always 0, with γt,i = 1.

Thus one needs to ensure that the downsampled 1
2(IN + K)vt,j are linearly independent

for a suitable pattern K which governs all graphs; in the simplest case of v = 1N and

multiplicity one, it is easy to deduce that r = 0N must hold.

When the graph is also bipartite, we have z =
∑

t,j(rt,jvt,j+r̃t,jṽt,j), for ṽt,j corresponding

to −γt,i = −1, and therefore,

Wz =
∑
t,j

rt,j

(
T∏
t=0

(1 + γt,j)
k +

T∏
t=0

(1− γt,j)k
)

vt,j +
∑
t,j

rt,j

(
T∏
t=0

(1 + γt,j)
k −

T∏
t=0

(1− γt,j)k
)

Kvt,j

+
∑
t,j

r̃t,j

(
T∏
t=0

(1− γt,j)k +

T∏
t=0

(1 + γt,j)
k

)
ṽt,j +

∑
t,j

r̃t,j

(
T∏
t=0

(1− γt,j)k −
T∏
t=0

(1 + γt,j)
k

)
Kṽt,j

= 0N ,

thus if Ki,i = 1, ∀i

∑
t,j

2rt,j

T∏
t=0

(1 + γt,j)
kvt,j +

∑
t,j

2r̃t,j

T∏
t=0

(1− γt,j)kṽt,j =
∑
t,j

2rt,j

T∏
t=0

(1 + γt,j)
kvt,j = 0N
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and if Ki,i = −1, ∀i

∑
t,j

2rt,j

T∏
t=0

(1− γt,j)kvt,j +
∑
t,j

2r̃t,j

T∏
t=0

(1 + γt,j)
kṽt,j =

∑
t,j

2r̃t,j

T∏
t=0

(1 + γt,j)
kṽt,j = 0N

and we need to ensure that the corresponding complementary partitions of {vt,j}t,j and

{ṽt,j}t,j after downsampling are respectively linearly independent. From the Perron-

Frobenius Thm. [47], it is known that the eigenvector associated with the maximum (sim-

ple) eigenvalue of the adjacency matrix of a connected undirected (irreducible) graph is

positive; hence, in the case of bipartite graphs, the eigenvector associated with γt,i = −1

cannot be positive, as per spectral folding. This reveals that even when γt,i = 1 were

associated with a different eigenvector on each bipartite graph, it cannot correspond to an

eigenvector which would induce γt,i = −1 on any other graph and thus possibly invalidate

the above derivation. Further, if the graph has nonnegative weights, and is not necessarily

connected, the eigenvector associated with the spectral radius (γmax = 1) is nonnegative

(Thm. 8.3.1, [97]), similarly re-affirming the former. Hence, it is only for nonnegative

bipartite graphs that this destructive case can be excluded.

(ii) Consider the product transform with filters

HLP = C

T∏
t=0

S∏
n=1

(βt,nIN + Ãt)
k

HHP = C̃
T∏
t=0

S∏
n=1

(βt,nIN − Ãt)
k

and coefficients as above. Following the above and previous proofs, the transform W may

be reduced to the system

rH

(
T∏
t=0

S∏
n=1

(βt,nIN + Γt)
k(βt,nIN − Γt)

k

)
r = 0N

N−1∑
i=0

|r(i)|2f(γ0,i, ..., γT,i) =
N−1∑
i=0

|r(i)|2
T∏
t=0

S∏
n=1

(βt,n + γt,i)
k(βt,n − γt,i)k = 0

where γt,i is the i-th eigenvalue of the t-th graph, and thus we deduce that, provided

k ∈ 2N (or alternative conditions that ensure f(γ0,i, ..., γT,i) > 0 or f(γ0,i, ..., γT,i) < 0,

∀γt,i), invertibility is upheld for βt,n 6= ±γt,i at any downsampling pattern, since r = 0N .

For βt,n = γt,i, and assuming S = 1 for simplicity, let z =
∑

t,j(rt,jvt,j + r̃t,jṽt,j) denote

the nullspace with eigenvectors (vt,j , ṽt,j) respectively corresponding to (γt,j ,−γt,j), and

index j indicating multiplicities for a single chosen parameter βt,n (per graph). Thus if
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Ki,i = 1, ∀i

∑
t,j

2rt,j

T∏
t=0

S∏
n=1

(βt,n + γt,j)
kvt,j +

∑
t,j

2r̃t,j

T∏
t=0

S∏
n=1

(βt,n − γt,j)kṽt,j

=
∑
t,j

2rt,j

T∏
t=0

S∏
n=1

(βt,n + γt,j)
kvt,j = 0N

and if Ki,i = −1, ∀i

∑
t,j

2rt,j

T∏
t=0

S∏
n=1

(βt,n − γt,j)kvt,j +
∑
t,j

2r̃t,j

T∏
t=0

S∏
n=1

(βt,n + γt,j)
kṽt,j

=
∑
t,j

2r̃t,j

T∏
t=0

S∏
n=1

(βt,n + γt,j)
kṽt,j = 0N .

When the graph at hand is not bipartite and no opposing sign eigenvalues exist, the

terms ṽt,j vanish and prior analysis applies; hence a suitable downsampling pattern Vα is

required so that the partitions of {vt,j(Vα)}t,j are linearly independent. In the case of a

bipartite graph however, there is ambiguity as to whether a certain eigenvector associated

with βt,n = γt,i on one graph may correspond to −γt,i on another, thus invalidating the

proof.

(iii) The proof is similar to the preceding, except since the eigenvalues of each filter are

given as a sum of the filters eigenvalues on each individual graph, the coefficient sets

{ht}t,{h̃t}t need to be respectively of the same sign in addition to having k ∈ 2Z+.

Under equivalent transformations as in previous proofs, one arrives at the following familiar

condition on the filter eigenvalues

N−1∑
i=0

|r(i)|2
(

T∑
t=0

ht

M∏
n=1

(βt,n + γt,i)
k

)(
T∑
t=0

h̃t

M∏
n=1

(βt,n − γt,i)k
)

= 0,

for which we have r = 0N provided their spectral product is non-zero and of the same

sign; this can be i. a. achieved for positive coefficients and k ∈ 2N. Otherwise, if at least

one βt,n per graph is selected to be of the form βt,n = γt,i corresponding to the same

eigenvector(s) vj , such that all {HHPt}t share the same nullspace, one proceeds as before

to discover that for non-bipartite graphs, if Ki,i = 1, ∀i

∑
j

2rj

(
T∑
t=0

ht

M∏
n=1

(βt,n + γt,j)
k

)
vj = 0N
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and if Ki,i = −1, ∀i:

∑
j

2rj

(
T∑
t=0

ht

M∏
n=1

(βt,n − γt,j)k
)

vj = 0N .

Here, the latter version vanishes, and invertibility follows for suitable downsampling pat-

tern Vα, as before, i. e. the partitions {vj(Vα)}j need to be linearly independent.

In the bipartite graph case, this is upheld, and additionally, the partitions {ṽj(V {α )}j ,
where ṽj are the eigenvectors corresponding to −βt,n = −γt,i, are required to be linearly

independent for suitable V {α , however, nonnegativity is no longer a requirement since the

individual graph filters are summed and at least one non-zero term always remains.
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C.1 Proof of Corollary 5.1

Corollary 5.1. Consider an undirected, circulant graph G of dimension N and bandwidth

B̃, and let x be the multiresolution decomposition of graph signal xW , which is a 1-piece

polynomial of maximum degree D ≤ 2k − 1, on G via the j-level GWT matrix W.

(i) Let W be the HGSWT of order 2k, with corresponding low-and high-pass graph filter

matrices each of bandwidth B = kB̃, and assume that B is sufficiently small such that∑l
n=0

B
2n ≤

N
2l+1 at each level l ≤ j − 1. The resulting x = PWxW is K-sparse, where

K = N
2j

+B(2(j − 1) + 21−j), when B = 2j−1r, r ∈ Z+.

(ii) Let W be the HCGSWT of order 2k, with corresponding low-and high-pass graph filter

matrices of bandwidth T and B = kB̃ respectively, such that B +
∑l

n=1
T
2n ≤

N
2l+1 at each

level l ≤ j − 1 The resulting x is K-sparse, where K = N
2j

+ Bj + T (j + 21−j − 2), when

T = 2j−1r, r ∈ Z+.

(iii) Let W be the HGSWT at j = 0, with the alternative ‘minimum’ downsampling

pattern, which retains only one low-pass component. Then x is K-sparse with K = 2B.

Proof of Corollary 5.1. (appears in [6])

(i) The number of non-zero high-pass coefficients after applying one level of the HGSWT

is B; due to the additional ‘border effect’ of the low-pass filter at subsequent levels, we

obtain the following series after j levels

S = B +

(
B +

B

2

)
+

(
B +

B
2 +B

2

)
+ · · · =

j−1∑
n=0

(j − n)
B

2n
.
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Using the finite summation results

j−1∑
n=0

j

2n
= j(2− 2−j+1), and

j−1∑
n=0

n

2n
= 2(1−j)(−j − 1 + 2j)

and considering the N
2j

low-pass coefficients, we obtain K = N
2j

+B(2(j− 1) + 21−j) as the

total number of non-zeros. For large B, the number of high-pass coefficients at each level

l ≤ j − 1 is bounded
∑l

n=0
B
2n ≤

N
2l+1 . If B = 2j−1r, the formula for S is exact, otherwise,

since S has to be an integer, we need to adjust the formula by adding/subtracting a term

sl at each level l, depending on whether downsampling requires rounding up or down. In

particular, at each level, the high-pass filter is applied on the odd-numbered nodes 1, 3, ...

of the (previously) low-pass filtered and sampled graph signal ỹ; we thus note that if the

length of the non-zero ‘border’ support (before downsampling) of the high-pass filtered ỹ

at the beginning of the resulting labelled sequence is an even number, while that at the

end of the sequence is odd, we need to round up, and vice versa.

(ii) Following the reasoning of the previous proof, we need to consider the border ef-

fect caused by filtering with the low-pass filter of bandwidth T ; we therefore end up with

the following series summation for the total number of non-zeros

K =
N

2j
+B +

(
B +

T

2

)
+

(
B +

T
2 + T

2

)
+ · · · = N

2j
+ jB +

j−1∑
n=1

T (j − n)

2n
,

giving the formula K = N
2j

+jB+T (j−2+21−j) subject to a correction term ±sl per level.

(iii) By Thm. 3.1, we need to retain at least one low-pass component for invertibility

of the filterbank, therefore we choose to assign the low-pass component to only one node,

while the remaining nodes retain the high-pass components. While this downsampling

approach is not conducted with respect to the generating set of the circulant graph, and

therefore less rigorous from a graph-theoretical perspective, it achieves a maximally sparse

representation in the graph wavelet domain. The number of non-zeros is 2B, where 2B−1

is the number of non-zero high-pass coefficients.

C.2 Proof of Theorem 5.1

Theorem 5.1. (Graph-FRI) Define the permuted GFT basis U of undirected circulant

graph G such that UH is the DFT-matrix. We can sample and perfectly reconstruct a

(wavelet-)K-sparse graph signal (with multiresolution) x ∈ CN , on the vertices of circulant

G using the dimensionality-reduced GFT representation y = UH
Mx, y ∈ CM , where UH

M

are the first M rows of UH , as long as M ≥ 2K.
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Appendix C. Proofs of Chapter 5

Proof of Thm. 5.1. (Prony’s method [120]):

Given the representation y = UH
Mx, where ||x||0 = K and UH

M are the first M rows of

the DFT-matrix, we can represent the n-th entry of y as yn = 1√
N

∑K−1
k=0 xcke

−i2πckn/N

with weights xck of x at positions ck, and apply Prony’s method to recover x, provided

M ≥ 2K. We redefine yn =
∑K−1

k=0 αku
n
k with locations uk = e−i2πckn/N and amplitudes

αk = xck/
√
N , which are successively recovered. In the following, we summarise the

reconstruction algorithm: given the samples yn, we construct a Toeplitz matrix TK,l, and

determine the vector h, which lies in its nullspace, also known as ‘the annihilating filter’:

TK,lh =



yl+K yl+K−1 . . . yl

yl+K+1 yl+K . . . yl+1

...
. . .

. . .
...

yl+2K−2
. . .

. . .
...

yl+2K−1 yl+2K−2 . . . yl+K−1





1

h1

h2

...

hK


= 0K

which can be accomplished via the SVD-decomposition of TK,l. It can be shown that

TK,l is of rank K for distinct uk (Prop. 1, [120]). In particular, this corresponds to the

matrix-form expression of
∑

0≤k≤K−1 αku
n
kP (uk) = 0 for l ≤ n < l +K, with polynomial

P (x) = xK +
K∑
k=1

hkx
K−k =

K∏
k=1

(x− uk−1)

whose roots {uk}K−1
k=0 can be subsequently determined from h. At last, we can recover the

corresponding amplitudes {αk}K−1
k=0 by solving a system of K linear equations given by

yn.
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on Graphs: Sampling Theory,” IEEE Transactions on Signal Processing, vol. 63,

no. 24, pp. 6510–6523, Dec 2015.

[69] P. Liu, X. Wang, and Y. Gu, “Coarsening graph signal with spectral invariance,”

in IEEE International Conference on Acoustics, Speech and Signal Processing,

ICASSP 2014, Florence, Italy, May 4-9, 2014, 2014, pp. 1070–1074. [Online].

Available: http://dx.doi.org/10.1109/ICASSP.2014.6853761

184



BIBLIOGRAPHY

[70] F. Dorfler and F. Bullo, “Kron Reduction of Graphs With Applications to Electrical

Networks,” Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 60,

no. 1, pp. 150–163, Jan 2013.

[71] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’ networks,”

Nature, vol. 393, no. 6684, pp. 440–442, 06 1998. [Online]. Available:

http://dx.doi.org/10.1038/30918

[72] S. Costa, J. Strapasson, M. Alves, and T. Carlos, “Circulant

graphs and tessellations on flat tori,” Linear Algebra and its Ap-

plications, vol. 432, no. 1, pp. 369 – 382, 2010. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0024379509004418

[73] G. J. Tee, “Eigenvectors of block circulant and alternating circulant matrices,” New

Zealand Journal of Mathematics, vol. 36, no. 8, pp. 195–211, 2007.

[74] D. Geller, I. Kra, S. Popescu, and S. Simanca, “On circulant matrices,” Preprint,

Stony Brook University, 2004.

[75] I. Kra and S. R. Simanca, “On circulant matrices,” Notices of

the AMS, vol. 59, no. 3, pp. 368–377, 2012. [Online]. Available:

http://www.ams.org/notices/201203/rtx120300368p.pdf

[76] D. Kalman and J. E. White, “Polynomial Equations and Circulant Matrices,” The

American Mathematical Monthly, vol. 108, no. 9, pp. 821–840, Nov. 2001. [Online].

Available: http://www.jstor.org/stable/2695555

[77] D. S. G. Pollock, “Circulant matrices and time-series analysis,” International

Journal of Mathematical Education in Science and Technology, vol. 33, no. 2, pp.

213–230, 2002. [Online]. Available: http://dx.doi.org/10.1080/00207390110118953

[78] G. Strang and T. Q. Nguyen, Wavelets and Filter banks. Wellesley-Cambridge

Press, 1997.

[79] A. Agaskar and Y. M. Lu, “A Spectral Graph Uncertainty Principle,” IEEE Trans-

actions on Information Theory, vol. 59, no. 7, pp. 4338–4356, July 2013.

[80] N. Sharon and Y. Shkolnisky, “A class of Laplacian multiwavelets bases

for high-dimensional data,” Applied and Computational Harmonic Anal-

ysis, vol. 38, no. 3, pp. 420 – 451, 2015. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1063520314000918
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