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Abstract

In recent years a number of new methods have been developed to detect image forgery. Most

forensic techniques use footprints left on images to predict the history of the images. The

images, however, sometimes could have gone through a series of processing and modification

through their lifetime. It is therefore difficult to detect image tampering as the footprints

could be distorted or removed over a complex chain of operations. In this research we propose

digital forensic techniques that allow us to reverse engineer and determine history of images

that have gone through chains of image acquisition and reproduction.

This thesis presents two different approaches to address the problem. In the first part we

propose a novel theoretical framework for the reverse engineering of signal acquisition chains.

Based on a simplified chain model, we describe how signals have gone in the chains at different

stages using the theory of sampling signals with finite rate of innovation. Under particular

conditions, our technique allows to detect whether a given signal has been reacquired through

the chain. It also makes possible to predict corresponding important parameters of the chain

using acquisition-reconstruction artefacts left on the signal.

The second part of the thesis presents our new algorithm for image recapture detection

based on edge blurriness. Two overcomplete dictionaries are trained using the K-SVD ap-

proach to learn distinctive blurring patterns from sets of single captured and recaptured im-

ages. An SVM classifier is then built using dictionary approximation errors and the mean edge

spread width from the training images. The algorithm, which requires no user intervention,

was tested on a database that included more than 2500 high quality recaptured images. Our

results show that our method achieves a performance rate that exceeds 99% for recaptured

images and 94% for single captured images.
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Notations and definitions

Table 1: Notations

Continuous time signals

f(t) ∈ L2 Real continuously defined signals with t ∈ R, typically included in L2(R)
which is the Hilbert space of finite energy functions.

f (r)(t) r−th derivative of f(t). We note that the zero order derivative coincides

with the function itself f (0)(t). We may equivalently use d(r)

dt(r)
f(t).

〈f(·), g(·)〉 Inner product in L2(R), defined as 〈f(·), g(·)〉 =
∞∫
−∞

f(t)g∗(t)dt where

g∗(t) is the complex conjugate of g(t).

‖f‖2 L2-norm of f(t), defined based on the inner product as ‖f‖2 =
√
〈f, f〉.

f(t) ∗ g(t) The convolution of two continuous-time functions f(t) and g(t) is
∞∫
−∞

f(x)g∗(t− x)dx.

Discrete time signals and vectors

a[n] ∈ `2 Real or complex-valued discrete time signals with n ∈ Z, included in `2,
which is the Hilbert space of square-summable sequences.

a[z] z-transform of the sequence a[n] defined as a[z] =
∑

n∈Z anz
−n.

u,S Vector, and we also use boldface uppercase to indicate matrices, S.

‖A‖2F Frobenius norm, defined as ‖A‖2F =
∑

ij |Aij |2.
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24 NOTATIONS AND DEFINITIONS

Table 2: Definitions

Functions

δ(t) The delta Dirac δ(t) is a distribution function that satisfies
∞∫
−∞

f(t)δ(r)(t− t0)dt = (−1)rf (r)(t0), where f(t) is r times continuously

differentiable.

u(t) The Heaviside step function is a function defined as such:

u(t) =


0 if t < 0

1 if t > 0

1/2 if t = 0.

We also note that d
dtu(t) = δ(t).

Table 3: Symbols

x(t) Continuous-time input signal;

K Number of discontinuities, Number of Diracs;

ρ Rate of innovation of an FRI signal;

(tk, ak) Innovation parameters of a train of Diracs;

h(t) Sampling kernel;

ϕ(t) Sampling filter;

ϕ̃(t) Dual function of ϕ(t);

y(t) Filtered input;

y[n] Discrete samples;

N Number of samples;

T Sampling period;

fs Sampling frequency;

τp Polynomial moments;

P + 1 Number of moments;

hp Annihilating filter;

cn,p Coefficients for the polynomial reproducing property;

S Toeplitz matrix (in Chapter 3);

y(r)[n] Finite difference of order r of the discrete samples y[n];

y Vector of samples y=( y[0], y[1], ..., y[N − 1])T ;
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ts Step location of the unit step function;

tk Locations of discontinuities;

f(t) Continuous-time input signal of the acquisition chain;

g(t) Filtered input of the acquisition chain;

g[n] Original discrete samples obtained from the first acquisition;

f̂(t) Continuous-time signal reconstructed from the original discrete
samples.

ĝ(t) Filtered version of the reconstructed signal;

ĝ[n] Discrete samples obtained from reacquisition;

ϕ1(t) First sampling kernel in the chain of signal acquisition;

ϕ2(t) Second sampling kernel in the chain of signal acquisition;

T1 Sampling period of the first acquisition;

T2 Sampling period of the second acquisition;

L1 Support of the first sampling kernel ϕ1(t);

L2 Support of the second sampling kernel ϕ2(t);

T̄1 Estimated value of sampling period T1 obtained from the purposed
reverse engineering technique;

βP (t) 1-D B-spline function of order P ;

β̃P (t) 1-D Dual B-spline function of order P ;

λ(t) Linear filter for interpolation;

R Maximum order of a piecewise polynomial function;

q[n] Query discrete samples;

IO Original digital image;

IR Recaptured digital image;

IQ Query digital image;

IjSC Digital image at index j in the labeled set of single captured im-
ages.

IjRC Digital image at index j in the labeled set of recaptured images.

ISC Set of single captured images;

IRC Set of recaptured images;

B(m,n) Non-overlapping square block at the m and n vertical and hori-
zontal indices of the block respectively;

W Block size (pixels);

Y Grey scale values of an image block which contains edge(s);



26 NOTATIONS AND DEFINITIONS

yi Discrete signal of an edge profile at a row or column i in an image
block;

qi Line spread profile at a row or column i obtained from qi =

y
(1)
i /||y(1)

i ||2;

Q Line spread profile matrix;

QSC Line spread profile matrix obtained from a labelled set of single
captured images;

QRC Line spread profile matrix obtained from a labelled set of recap-
tured images;

η Number of lines in the block where a desirable edge profile is de-
tected.

λ̄m,n Average width of line spread profiles of the block B(m,n);

σm,n Block-based variance of the block B(m,n);

S Line spread profile matrix extracted from the training set (in
Chapter 4 and Chapter 5);

D Overcomplete dictionary;

DSC Overcomplete dictionary trained using line spread profiles from a
labelled set of single captured images;

DRC Overcomplete dictionary trained using line spread profiles from a
labelled set of recaptured images;

L Number of atoms used for K-SVD dictionary training;

xi Coefficients which provide the best L-sparse representation of the
profile qi based on the dictionary D;

X Coefficients matrix obtained from the concatenation of the column
vectors xi;

et(L) K-SVD training error when using L dictionary atoms for sparse
representation;

λ̄ Average width of line spread profiles for a given image;

ESC Representation error when using the dictionary DSC;

ERC Representation error when using the dictionary DRC;

Ed Difference of approximation errors given by Ed = ESC − ERC ;

θ Value obtained from blurriness measurement using CPBD blurri-
ness metric;

Table 4: Device Settings

γ Gamma correction value of an LCD monitor;

f/number Aperture setting for a digital camera, for example f/11 ;



Chapter 1

Introduction

1.1 Motivation

The boom of internet activities has contributed to an unprecedented growth of the sharing of

multimedia information. We live in a time where digital images distributed over social net-

works have widespread impact on societies. On-site pictures of plane accidents, sport events,

fatal epidemic, and warfare now can reach millions of people at almost the same time they

are published online. On the bright side it helps create mutual contributions and raises global

awareness on important issues. The prevalent use of digital images has, however, brought new

concerns. Now it is also possible for everyone to edit digital images using simple and easy-

to-use software on computers or smart phones. From time to time images are deliberately

manipulated in order to mislead public perception on crucial subjects, and in some cases for

fraudulent purposes. Such tampering has undermined the fidelity status of digital images as

the authenticity of images is difficult to prove.

The recent development in image forensics has made it possible to validate the authenticity

of digital images. Most techniques are based on footprints, artefacts produced and left on

images by specific devices or processes. For example, unique sensor noise and distortion

patterns are important traces that provide clues about the source of images. Image processing

techniques such as rotation, resizing, splicing, and medial filtering also leave artefacts which are

evidences of image manipulation. While digital techniques for tampering have become more

sophisticated, the state-of-the-art image forensic techniques can also maintain high detection

precision against image forgery.

In addition to image forgery detection, the detection of near-duplicate images is emerging

as an important forensic problem. A frequent misuse of image duplication is the theft of

intellectual properties. Usually a near duplication is obtained because a person who intends

to copy images does not have an access to digital files of the images. For example, the person

27
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(a) Original image (b) Professionally recaptured image

Figure 1.1: Example of (a) original and (b) recaptured images. When the original image is
not available it is very difficult to detect by inspection whether the image (b) was recaptured.

might want to obtain printed pictures on magazines or the images shown on screens. One way

to obtain the duplicates is to recapture images using a scanner or a digital camera. Digital

cameras today are capable of delivering high resolution images with pleasing colour and tone

reproduction at relatively low cost to the consumer. Moreover, with the widespread availability

of high quality colour ink-jet printers and liquid crystal display (LCD) devices, images can

be easily reproduced by recapturing the printed or displayed image with a digital camera. If

a high quality digital camera is used, such as a DSLR, and the image is recaptured from a

good quality print or a high resolution LCD monitor, then a recapture with high fidelity can

be obtained. An example of duplicated a image which was recaptured using a SLR camera

is shown in Figure 1.1(b). When the original image Figure 1.1(a) is not available, it is very

difficult for humans to determine whether the image is a recaptured version. According to the

experiment conducted by Cao and Kot [1], their test subjects could detect recaptured images

by observation with a success rate of approximately 51%.

Digital images today are not only easy to produce and tamper, they also “live” longer. With

the advances in cloud network and mass storage technologies, digital images can be stored over

a longer period of time and are easily accessible online. It is therefore possible that images

are used and processed more than once over their lifetime. This fact has made digital forensic

problem more complicated. Given an unknown image the question on what processes the

image has gone through is generally of interest. With the existing digital forensic techniques

it might be possible to provide some satisfying answers based on the links between footprints

left on images and the corresponding past processes. The issue, however, is that the useful

artefacts are corrupted over a complex chain of signal operations. Consider, for instance, the

case that an image is recaptured after manipulation. The traces such as noise and compression
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artefacts might be destroyed when the image is displayed on a low resolution screen before the

recapture. In addition, the qualities of lens and image sensor also determine the survival of

footprints over image acquisition. Noise and processing artefacts are often filtered out when

images are recaptured using a low quality camera or deliberately removed by professional

recapture settings. In Figure 1.2 we illustrate a counter forensic technique which exploits the

fact that a tampered image can evade major forgery detection techniques when the image is

recaptured. The original image in Figure 1.2(a) shows a scene of calm beach scene on a sunny

day. With the touch of image editing software, the tampered photo in Figure 1.2(b) depicts

the scene of landing invasion with battle ships, paratroopers, and intimidating tanks added

from other images. If the image was posted online it would be detected later as a hoax picture

because footprints left on the image by editing techniques would be detected by most forgery

detection algorithms.

Next we displayed the tampered image on a LCD screen and recaptured it. The resulting

image is shown in Figure 1.2(c). Again the traces of recapture are not obvious in this image

and ones might find it difficult to detect the recapture by visual inspection alone. More

importantly, the recapture has destroyed or distorted all the trace of manipulations which are

typically used for forensic analysis. It also adds new consistent footprints across the image

and makes the image look like an original. We later authenticated the image and found that it

could spoof major forgery detection techniques. For example, we tested the image with Izitru

[2], one of the most well-known and leading image authentication engines publicly available

online. According to the disclaimer stated on the website, the engine at the present time

cannot detect recaptured images, and in fact, the test result for manipulation detection was

negative and the tool identified the test image as an original image.

This authentication result suggests that image recapture is one possible way to bypass

the state-of-the-art forensic techniques from detecting tampered images. It highlights the

importance of an image recapture detection algorithm and a reverse engineering technique

that can retrieve the processing history of digital images.
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(a) Original image

(b) Tamperred image

(c) Recaptured version of the tamperred image

Figure 1.2: Examples of (b) a tampered image which was modified from the (a) original image.
The tampered image was then recaptured and most algorithms fail to detect tampering in the
recaptured version shown in (c).
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1.2 Problem Statement

As highlighted before, in its lifetime a digital image may go through a series of processing

stages and the issue is to retrieve the whole processing history of the image. In this thesis we

focus only on one type of chains based on image acquisition and reconstruction. Figure 1.3

shows this type of chain. In the figure a scene is first captured using the first digital camera.

This process is called image acquisition, where the spectral energy of light is converted into

digital data. The original digital image, IO, is obtained. After that the image is displayed on

an LCD screen and viewed by observers. At this stage the image is converted to an analogue

signal again, in form of light spectrum corresponding to the image signal. This process is

referred to as image reproduction. The reproduction can be also carried out through image

printing.

Scene
First Camera Digital Image

(Original)
LCD Monitor

Second Camera Digital Image
(Recaptured)

Analogue Digital Analogue Digital

Figure 1.3: A simple chain of image acquisition and reproduction. The original image is
obtained by capturing the scene using the first digital camera. The digital image is then
displayed on an LCD monitor before it is recaptured using the second digital camera. The
original and recaptured images look very similar.

Next we assume that the image is recaptured by one of the observers using a digital camera.

The image thus is acquired to a digital format again, given by the recaptured image IR. Now

the image IR is a near-duplicated version of the genuine image IO . We have shown in the last

section that, in practice, two images are almost identical when observed by the human eye.

Suppose we are given one of these two images without any prior information. The natural

question is how can we authenticate the query image IQ using only information present in the

query image? That is, how can we verify that the query image IQ is the original image IO, or

actually the recaptured image IR in Figure 1.3 ?

The second problem that is related to the first question is how much can we say about

the history of the query image IQ, in particular when we have detected that the image is

from a chain. As the one in Figure 1.3, how can we retrieve key information which is related
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to the properties of the LCD monitor, and the first camera? The answers lie in the traces

left by the past operators which are still present in the recaptured image. It is therefore

important that those footprints must survive through the second acquisition. In practice

several factors determine the presence of the past footprints on the recaptured image. It can

be the properties of the footprints themselves, or the specific conditions in which the image

was captured. Our third question then is under what conditions that determine the success

of the reverse engineering approach?

In this thesis we present methods which address these problems. We consider blurring

patterns introduced to images during acquisition as our footprints, and study how theses foot-

prints change after each processing stage in the chain in Figure 1.3. It is anticipated that the

reproduction and recapture processes would leave new footprints or alter the existing footprints

in some ways. We propose new methods to solve the problems in two different approaches.

We first describe in our theoretical framework how signals are changed at different stages of

the chain using a 1-D signal model. We then propose an approach for signal reacquisition

detection and an algorithm to reverse the processes in the chain model. An attempt to derive

sufficient conditions required for successful reverse engineering is also presented.

Next we apply the framework in the context of a practical image recapture detection

problem. We focus on addressing the first statement problem with the aim to maximise the

success rate of detection. In that part of the thesis it is shown how to develop the algorithm

that is robust to different capture conditions and universal to different types of devices.

1.3 Outline of the Thesis

This thesis has five additional chapters, which are briefly outlined below:

In the first part of Chapter 2, we provide a literature survey of image forensic techniques

and image recapture detection approaches. The survey is presented according to the types of

footprints left on digital images and types of features used for recapture detection. The second

part of the chapter describes how we model blurriness footprints introduced to images by an

acquisition process. We discuss how these footprints are important for our forensic analysis.

The literature review on the related research on blurriness metrics is also presented in this

chapter.

In Chapter 3, we propose a theoretical framework for reverse engineering of signal acquisi-

tion chains. We create a 1-D chain model using the A/D and D/A operators to simplify the

chain of signal acquisition and reproduction. Next the theory of sampling signals with finite
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rate of innovation (FRI) is introduced. We then present our proposed techniques for reacqui-

sition detection and the retrieval of chain parameters. To the end, we derive the sufficient

conditions that allow reacquisition detection and reverse engineering techniques to produce

the correct results.

A novel algorithm for image recapture detection is presented in Chapter 4. We propose

a more concrete technique to determine the acquisition history of digital images, based on

detecting image recapture. The overview of the algorithm is first introduced. Next we describe

how to extract line spread profiles in practice using an automatic edge detection algorithm.

Next a method for dictionary training using the K-SVD approach is presented. We discuss

how to train two overcomplete dictionaries to learn footprint patterns left on single captured

and recaptured images. Then two distinctive features and a method to build a classifier for

recapture detection are presented.

The experimental results on the performance of the proposed algorithm are presented in

Chapter 5. First the parameter settings and image database preparation are briefly described.

Next this chapter discusses how we conducted four experiments to test different aspects of the

algorithm. In the first experiment the classification precisions of our proposed algorithm in

detecting original and recaptured images are shown according to different camera models and

chain combinations. In the next experiment, we compare the performances of the algorithm

when using our proposed distinctive feature and blurriness metric. We show how our proposed

feature is more suitable for our recapture detection application than one of the state-of-the art

blurriness metric. The third experiment presents how we test the universality of the algorithm.

Finally, we conduct an experiment to compare the performances of our algorithm with two

well-known benchmark methods.

Finally, Chapter 6 concludes the thesis. We summarise the achievement of the research

and highlight possible directions for future research.

1.4 Original Contribution

The original contributions of this thesis are presented in Chapters 3, 4 and 5. In Chapter 3

we propose a novel technique for reverse engineering image acquisition chains using finite rate

of innovation principles. Our main contributions are as follows:

• An analytical method to describe footprints left by sampling and interpolation operators

in terms of signals with FRI.



34 CHAPTER 1. INTRODUCTION

• A theoretical framework for the reverse engineering of signal acquisition and reproduction

chains. This leads to an algorithm for detecting signal reacquisition and a technique to

retrieve important parameters in the chains.

• Sufficient conditions required for our theoretical framework to estimate correct answers.

In Chapter 4 we propose a method for detecting digital images that have gone through

image recapture. The innovative features of the algorithm are as follows:

• A novel algorithm for image recapture detection based on blurriness patterns on edges.

The algorithm has very high detection precision and is robust to different types of scenes,

different types of cameras, and different brightness conditions.

• An automatic block-based algorithm to extract features from image edges. The proposed

recapture detection algorithm is thus entirely automated. This helps reduce error from

human bias and allows the algorithm to work continuously with large database.

• The algorithm is universal to different types of cameras used. Therefore there is no

need to obtain training features from all possible cameras in the market to maintain the

detection. The features used provide high classification performance when compared to

the feature based on existing blurriness metrics.

To the best of our knowledge, Chapters 3, 4, and 5 of this thesis contain the original

research work which led to the following publications:

• T.Thongkamwitoon, H. Muammar, and P.L. Dragotti, ”An image recapture detection

algorithm based on learning dictionaries of edge profiles”, submitted to IEEE Transac-

tions on Information Forensics and Security, June 2014.

• T.Thongkamwitoon, H. Muammar, and P.L. Dragotti, ”Robust image recapture detec-

tion using a K-SVD learning approach to train dictionaries of edge profiles”, in Proc.

IEEE International Conference on Image Processing (ICIP), 2014.

• T.Thongkamwitoon, H. Muammar, and P.L. Dragotti, ”Reverse Engineering of Signal

Acquisition Chains using The Theory of Sampling Signals with Finite Rate of Innova-

tion”, in Proc. IEEE International Conference on Acoustic, Speech, and Signal Pro-

cessing (ICASSP), 2013.
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• T.Thongkamwitoon, H. Muammar, and P.L. Dragotti, ”Identification of Image Acquisi-

tion Chains Using a Dictionary of Edge Profiles”,in Proc. of European Conference on

Signal Processing (EUSIPCO), 2012.

In addition to the publications, the following prizes have been awarded to this research

project:

• The best demo/poster presentation, IEEE SPS Italy Chapter Summer School on Signal

Processing, 2013.

• The Educational Awards for Excellence 2013, Highly Commended (Second Place) for

Engineering and Technology, Anglo-Thai Society and The Royal Thai Embassy in the

United Kingdom, 2013.
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Chapter 2

State of the Art in Image Forensics and the
Analysis of Traces Left in Recaptured
Images

In this chapter we provide a literature survey of image forensic techniques. Given the focus

of this thesis on image recapture detection, particular emphasis is given to the analysis of

traces left on images during the recapture process. In this context it is noted that recapture

introduces further level of blur in images and that this footprint can be very useful for recapture

detection. For this reason we also present a mathematical model of the blur introduced by

cameras during the acquisition process and discuss blurriness metrics. The chapter is organised

as follows:

In the next section we review the state-of-the-art in image forensics and image recapture

detection. In Section 2.2 we provide an in-depth analysis of the footprints left on recaptured

images. Finally, given the importance of level of blur present in images, we present in Section

2.3 a model for the blur introduced during acquisition and a survey of methods developed to

measure blurriness in images.

2.1 Previous Related Work

2.1.1 Related Work in the General Area of Image Forensics

A common approach in image forensics is based on the recovery of footprints left on digital

images. Footprints are artefacts left on the signal after a processing stage and thus carry

important information corresponding to the past processing carried on the signals. Figure 2.1

provides an example of a typical chain of operations that are applied to images and that leave

different types of footprints. In this section we review how footprints are used to infer the

processing history of an unknown digital image. The techniques are grouped into 5 categories

37
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Figure 2.1: A chain of operations that produced footprints to a digital image. The footprints
might be left by ambient light of the scene, in-camera operations, and digital manipulations
applied to the image.
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Figure 2.2: Chromatic aberration is introduced when lens cannot focus all wavelengths of light
to the same point on a sensor plane.

according to the type of footprint involved.

Intrinsic property of acquisition devices

Artefacts introduced during the acquisition stage are the first footprints left on digital

images. This type of footprints is often used to trace sources of the images, that is, to detect

the device used to capture an image. As illustrated in Figure 2.1 when an image is acquired,

the properties of the image are altered by optical lens. The footprints left by chromatic

aberration of lens are studied in [3] and [4]. The aberration is a form of distortion which is

introduced when the lens cannot focus all light colours to the same convergence point. The

reason is different colours of light propagate in the lens with different speed and are focused

at different locations on the sensor as shown in Figure 2.2. Johnson and Farid [3] presents

a method to detect image tampering based on inconsistency of chromatic aberration across

images. The features introduced in that paper are then used in [4] to create a method to

identify cell phone source of images based on the Support Vector machine (SVM) training

approach.

Lens radial distortion is used as a footprint in [5] in order to identify the source cameras.

When straight lines in the object space are distorted by the radial effect, they are observed as
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curved lines in images. In that paper the degrees of distortion introduced by specific cameras

are measured and used to build a classifier for camera identification.

The noise patterns present on digital images are important footprints left by the cameras

that produced the images. Noise patterns are typically determined by a number of factors

including imperfections in CMOS/CCD production and the variations of electromagnetic or

thermal properties of substrate materials. These intrinsic variations cause different sensors

to have different sensitivities to a uniform level of light intensity. The measurement of these

variations is referred to as Photo Response Non-Uniformity (PRNU). The PRNU patterns are

generally unique to image sensors and were first used to identify source of images in [6] and

[7]. Footprint modelling based on noise patterns is extended in [8] and [9] in order to increase

the robustness of the algorithm and reduce the sensitivity in high spatial frequency regions

respectively.

Gou et al. [10] use features based on statistical properties of noise. The basic insight is

that manipulations will change the statistics of noise in specific ways. The detection is based

on an SVM classifier trained using noise features from original and tampered images. Their

method has been extended in [11, 12, 13] in order to deal with larger datasets and more types

of cameras and cell phones. Unique dust patterns on image sensors are employed in [14] to

identify source cameras.

Camera response function (CRF) can be described by a transfer function that converts

light intensity to image signals. The paper [15] proposes the estimation of a camera response

using a non-linear function. The estimation technique is later used in [16] to map camera

responses to specific devices, and the authors propose a tampering detection algorithm based

on the inconsistencies of camera responses in images. That is, inconsistencies highlight the

presence of tampering.

Footprints from Colour Filter Array (CFA) interpolation

In an acquisition process colour intensity is converted to an image signal. In practice, the

capture of all red, green, and blue colour components at a single pixel requires substantial

precision in manufacturing to align the three planes of colour sensors to the same location.

Most consumer cameras, in fact, capture a single colour per pixel using only one plane of image

sensor. Since each pixel of most CCD/CMOS sensor detects light intensity with no colour

specificity, a colour filter array (CFA) is required in order to separate light to a specific colour

channel. The CFA is typically placed on top of the image sensor. One of the most common
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patterns for the CFA is the Bayer filter, shown in Figure 2.3(a). Figure 2.3(b) illustrates how

separated colour components are obtained using the colour filter array.

Bayer Pattern
Colour Filter Array

Image Sensor

Pixel

(a)

Image Sensor

Colour Filter Array Green Blue

Green
 Component

Blue 
Component

Red 
Component

Red

(b)

Figure 2.3: Colour filter array (a) in the Bayer pattern. (b) The filter array is generally
placed on top of the image sensor in order to filter specific colour component for a single pixel
location.

In order to reproduce the correct colour at a certain pixel, it is necessary to reconstruct the

two missing colour components using the neighbouring pixels. This process is referred to as

demosaicing or CFA interpolation. Such interpolation introduces statistical correlation across

pixels. Moreover, the correlations are periodic because of the periodic patterns of the colour

filters. The paper [17] uses an Expectation-Maximization (EM) algorithm to detect seven

different types of demosaicking techniques. The detection is based on the computation of the

probability that a pixel has been generated using a certain interpolation given its neighbours.

The paper suggests that image tampering can be detected when the pixels or regions have low

correlation of periodic patterns with their neighbouring pixels. The same principle is used in

[18] to classify different types of correlations which are unique to camera models. A Support

Vector Machine (SVM) classifier was trained for camera model identification.

The traces from CFA interpolation and PRNU noise patterns are used jointly in [19] in

order to predict source and camera models used to capture images. In [20] an algorithm

to localise tampered region based on CFA demosaicking artefacts is proposed. The research

investigates the presence of fine demosaicking artefacts at 2 × 2 block level. The algorithm

employs Bayesian statistics to generate the spatial confidence map based on the presence of

the artefacts. Since the fine artefacts are likely to be removed by manipulations, the regions

of the image with low probability to detect the artefacts will be classified as the tampered

regions. Image tampering detection algorithm using artefacts from CFA interpolation and

demosaicking have been further improved in the following recent papers [21, 22, 23, 24].



2.1. PREVIOUS RELATED WORK 41

Footprints from image compression

Most digital images are stored in a compressed format, typically in JPEG. Different manu-

facturers often have own different compression settings in order to balance between compres-

sion ratios and image quality. Fan and de Queiroz [25, 26] proposed a method to retrieve

compression history of images through the estimation of the quantisation table used during

JPEG compression. The papers also discuss methods to estimate JPEG quantisation step

sizes through the observation of DCT coefficients of images. The key insight is that before

quantisation, the histograms of DCT coefficients of images are usually continuous. Quantisa-

tion typically introduces a comb-like pattern to the histogram because the DCT coefficients

are redistributed to discrete bins. The uniform space between bins corresponds to the step

size of the quantiser. In [27], Qadir et al. show in the experiments that the distribution of

the 1st digit probability of Discrete Wavelet Transform (DWT) coefficients of images follows

the Benfords law. The authors use this findings to develop a technique to detect JPEG2000

compression and estimate compression rate.

Although multiple JPEG compression is not a conclusive sign of image tampering, it is an

indication that images have been resaved. The resaved images are suspicious because they

might have been manipulated before being saved again. In [28] Lukas and Fridrich suggest

that double compression introduces peaks in the DCT histogram. Figure 2.4(a) shows a

histogram of DCT coefficients of an original image which is compressed once. When the image

is compressed again, the peaks or comb-like patterns would be introduced to the histogram

as shown in Figure 2.4(b) due to repeated quantisation. When the step size of the first JPEG

quantisation is larger than the step size of the second compression, total number of histogram

bins would increase. Some bins in the histogram would be empty. In contrast, if the step size

of the second quantisation is smaller, total number of histogram bins would decrease. Some

bins in the new DCT histogram would receive more samples from their neighbours in the

original histogram. In both cases, the new histogram would have a comb-like pattern.

The comb-like pattern would introduce periodicity in the histogram of DCT coefficients

of images. Popescu and Farid [30] propose a double JPEG detection algorithm based on

the detection of this periodicity on the Fourier domain. The authors also claim that the

characteristics of the periodicity depend on the quality parameters. On this basis it is possible

not only to detect double JPEG compression but also to estimate the quality parameters used.

The paper [31] uses this principle to detect localised footprints of double JPEG compression.

Further methods to detect double JPEG compression have been presented in recent literature
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Figure 2.4: Examples of the histograms built from DCT coefficients of (a) a single compressed
image and (b) a double compressed image. The histograms are created using the Stegano-
graphic software library provided in [29]

[32, 33, 34, 35]. In [36], the authors propose a technique to predict number of compression

stages applied to images using the Benfords law. The prediction is based on distribution of

the first significant digits of DCT coefficients.

Blocking artefacts are typically introduced by lossy JPEG compression. At high compres-

sion rate, high frequency details are removed by quantisation. When images are decoded, they

are reconstructed from the remaining low frequency DCT coefficients. The block patterns are

left because pixels in the same block share the same average colour value. In [37], the al-

gorithm for forgery detection based on inconsistencies of blocking artefacts is proposed. The

insistencies are produced because images from different sources are likely to have been encoded

with different parameters and therefore have different blocking patterns. A similar principle is

used in [38]. The authors argue that the manipulation using copy-paste, or resizing techniques
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might cause block grid mismatch. The algorithm they developed detects manipulation based

on this inconsistency.

Geometry and physics-based footprints

Environment of image scenes such as lighting conditions, shadow, and colour temperature

when images are captured are also important traces left on images. When manipulation

is performed using images from different sources, the resulting tampered images often does

not look very convincing because of lack of consistency of these scene conditions. Forgery

detection using inconsistency of 3D lighting was first explored by Johnson and Farid [39]. The

authors propose a method to predict light source directions in the scenes. The tampering

is detected when lighting directions on objects in images are not consistent with those of

scene context. The method is improved in later work by the same authors [40]. The paper

describes how to estimate complex 3-D lighting condition using low-parameter representation

to reduce computational complexity. They then extended the method to cover the case of

complex lighting environment with the assistance of 3-D human head model [41] and spotlight

reflections in human eyes [42].

Riess and Angelopoulou [43] introduce features based on illumination conditions such as

flash light, indoor lighting, daylight lighting when the scenes are captured. Given an image, the

method creates image map which comprises segmented regions according to colour similarity.

The algorithm then investigates the consistency of colour temperatures of each region with

the dominant illuminating colour of the image. If the inconsistency is detected, it is likely

that the image was tampered. In [44, 45, 46] the inconsistencies of shadow geometry, sizes,

and directions have been used to detect tampered images.

Geometrical distortion and image perspective describe how scenes were captured. When

the geometrical shapes of objects are not consistent with the perspective of images, it is possi-

ble that the image of those objects were added later by manipulation. In [47], an algorithm to

detect manipulation on pictures of signs and billboards is proposed. The technique is based on

the detection of inconsistency of 3-D perspective mapping of characters onto a planar surface.

The paper [48] creates a model to estimate motion blur in images and image manipulation is

detected when the motion blur patterns are not consistent.
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Unique software-based tampering traces

Image tampering often leaves footprints of specific photo-editing techniques. Such tech-

niques include cloning, cut and paste, shape transform, splicing, and a number of filtering

operations. One of the most common and simple techniques is region duplication. The pur-

pose of duplication is to replace a picture area containing a person or objects using a portion

of pixels copied from some background region within the same image. Algorithms to detect

basic pixel cloning have been proposed in the literature [49, 50, 51]. The detection is based

on the correlation between the original image segment and newly created region using a cut-

and-paste technique. In [49] the authors first divide an image into a number of blocks and

compute a block-based discrete cosine transform (DCT). The DCT coefficients of all blocks

are compared in order to search for block matching. If the blocks are matched, it is likely

that some regions of the image are duplicated. Popescu and Farid [50] adopt this method and

propose an additional feature using a principal component analysis (PCA) on small image

blocks. Both DCT and PCA features are used to create more robust algorithm. These meth-

ods, however, focus on simple duplication problems and did not cover the case that the pasted

region was modified before. More recent approaches for a copy-and-move problem which are

robust to rotation, lighting and geometrical distortions have been proposed in [52, 53, 54, 55].

Geometrical transformations are often used in region duplication to create a convincing

forgery. The transformations include rotation, resizing, and stretching and are often applied

to the cropped portion of image before it is pasted to another file. All of these transformations

require a resampling process. For the upsampling or up-scaling case, some pixel values are

obtained by interpolating adjacent pixels. Such interpolation introduces correlation among

neighbouring pixels. Popescu and Farid [56] apply the technique previously used in their

work [17] to detect correlation introduced by resampling operation based on the expectation

maximization (EM) algorithm. The probability that a specific pixel has been resampled is

obtained using the result of linear prediction for each pixel value and the probability that the

pixel is correlated with its neighbours. A probability map is created using probability values

from each pixel. From this map it is possible to identify the region with high possibility of being

resampled. This method is, however, computationally expensive. Kirchner [57] improves this

method using a fixed linear filter and achieves faster and more reliable algorithm. Alternative

algorithms to detect image resample are presented in [58, 59]. Specifically, in [58] periodicity

is detected using the average of an image’s second derivative along its rows or columns, in [59]

instead, the detection method is based on the variance of the signal’s derivative.
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A cut-and-paste forgery often uses image sources that have different brightness levels. In

such a case, brightness and contrast enhancement are needed to equalise the intensities of the

newly pasted region to the level of the whole forged image. Contrast adjustment however

alters the histogram of the distribution of intensities. Stamm and Liu [60] observed that the

contrast enhancement creates spike and gap patterns on the redistributed histogram. The
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(e) Enhanced image with high contrast
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Figure 2.5: Examples of (a) an original image and its enhanced versions (c) and (e) that have
gone through contrast and brightness adjustment. The corresponding histograms of image
intensity are shown in (b), (d), and (f) respectively.
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patterns are introduced because the range of image intensities is expanded thus the newly

mapped values are redistributed to a wider range of histogram bins. The expansion often

leaves some empty bins or creates a peak pattern on the histogram. Examples of an original

image and its corresponding versions that have gone through contrast adjustment and the

original image are shown in Figure 2.5 (a), Figure 2.5 (c), and Figure 2.5 (e) respectively.

The expansion of intensity range can be observed in the histograms in Figure 2.5 (d) and

Figure 2.5 (f). This is in contrast with the histogram of original image in Figure 2.5 (b) which

is smooth and centred at the mid-tone area. From the histograms of adjusted images when

the level of image contrast is increased, intensities of most pixels are shifted toward darker or

brighter tones. The histogram bins in low-key and high-key areas would receive more number

of samples due to the tone shift. Such redistribution creates more observable peaks at some

bins in low-key or high-key areas as shown in Figure 2.5 (f). These unique histogram patterns

are therefore used in [60] to detect contrast enhancement.

An improved version of the algorithm is proposed in [61] by the same authors. The paper

suggests that the spike patterns can be detected by observing the Fourier transform of image

histograms. Since the histograms of unadjusted images are typically smooth, the energy of the

histogram will concentrate at the low frequency range. The histograms of enhanced images,

on the other hand, have a spike patterns. The patterns cause the energy of the histogram to

concentrate in the high frequency regions.

Median filtering is an efficient tool to smooth signals while edge details are preserved. For

this reason, median filters are often used for image tampering. The research [62] observes that

median filtering leaves streaking artefacts in images. The artefacts can be described by the

fact that pixels in adjacent rows or columns share the same value. The paper [63] proposed by

Kirchner and Fridrich presents a method to detect images that are altered by median filtering

using streaking artefacts. The detection is based on the ratio of the number of difference that

equals to zero to the number of difference that equals to one. Using these criteria, the filtered

images are likely to have the value of this ratio greater than one. Similarly in [64] the detection

of median filtered images is based on the probability of zero values on the first order difference

map in textured regions. These methods are highly efficient in detecting streaking artefacts

in uncompressed images. The authors [65] propose an alternative approach to the method

[63] to detect streaking artefacts in the images that have been compressed with JPEG. The

approach is based on subtractive pixel adjacency matrix (SPAM) features. Further methods

to detect traces from median filtering can be found in [66, 67].
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Figure 2.6: The Nyquist boundary for the unfiltered sensor (solid), green (dashed) and
red/blue channels (dotted) of the Bayer CFA. All frequencies are in cycles/pixel [70].

2.1.2 Footprints left on Recaptured Images

In this section we provide an overview of some of the more common features found in images

that have been recaptured from LCD monitors. We assume that lens geometric distortion,

such as barrel or pincushion distortion, has been minimised, that distortion due to the capture

geometry has been eliminated and that the individual monitor pixels are not resolved by the

recapture camera. We also assume that there are no specular reflections from the monitor

front panel due to ambient light sources. Although the following footprints are often found

in recaptured images, they can be removed by proper recapture settings or are unreliable

footprints for detection. We therefore anticipate that blurriness is the only useful footprint

for our research.

Aliasing

Aliasing is sometimes introduced in digital camera images when the scene is insufficiently

band-limited or contains detail with very high spatial frequencies [68]. In cameras that are

equipped with a Colour Filter Array [69] the colour channels are normally sampled at fre-

quencies that are lower than the native frequency of the image sensor. The green channel of a

Bayer CFA can be described by a quincunx lattice arrangement and has a frequency response

equivalent to the native ‘unfiltered’ sensor only in the horizontal and vertical directions. The

red and blue channels are sampled on a rectangular lattice at one half the frequency of the

native sensor. The diagram in Fig 2.6 shows the Nyquist boundaries and replication points

for the red (R), green (G) and blue (B) colour channels of the Bayer CFA.

Most camera manufacturers fit optical anti-aliasing filters [71] to band-limit the high fre-
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(a) Recaptured image (b) 2D FFT of the noise residual

Figure 2.7: An image recaptured from an LCD monitor with aliasing patterns. Peaks in the
2D FFT response of the recaptured image noise residual are clearly visible.

quency components in the scene and prevent aliasing. However, the cut-off frequency of the

filter is normally set above the Nyquist frequency to preserve the camera response at frequen-

cies in the range 30-80% of the Nyquist frequency. The recapture of an image displayed on

the screen of an LCD monitor is, therefore, highly likely to introduce aliasing due to the high

frequency periodic pattern of the monitor pixel grid structure. Indeed, casually recaptured

still images or videos of LCDs are often characterised by the presence of aliasing artefacts,

also referred to as colour moiré, over the visible region of the display. These artefacts are very

difficult to eliminate through post-processing. Therefore, aliasing can be used as a feature

for detecting recaptures. When aliasing artefacts are present in the recaptured image, the 2D

DFT of the noise residual is likely to exhibit peaks in the 2D spectrum. In Figure 2.7(a) an

image recaptured from an LCD monitor with noticeable aliasing is shown. The 2D DFT of its

noise residual, shown in Figure 2.7(b), clearly shows the peaks in the frequency domain asso-

ciated with the alias pattern. Detection of these peaks allows the identification of recaptured

images [72, 70]. These aliasing artefacts, nevertheless, can be removed when the recapture is

setup properly. In Section 5.1 we discuss, in practice, how to prepare a database of alias-free

recaptured images.

Blurriness

Naturally occuring scenes contain a wide range of edges that vary in contrast and sharp-

ness. When a scene is acquired with a digital camera, a certain level of blur, or distortion,

is introduced into the image by the acquisition device. This occurs despite the fact that the
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image was correctly focussed by the camera at the time of capture. Imperfections in the lens,

such as spherical aberration can introduce blur, as can diffraction. The latter is introduced

when the diameter of the lens aperture is very small (due to a large aperture setting). Addi-

tional distortion may be introduced by processing carried out internally in the camera, such

as sharpening, contrast enhancement or CFA demosaicing. The blur characteristics may, to

a large extent, be considered unique to the camera at the time of acquisition. Given the

importance of this footprint, we discuss how to model blurriness introduced by acquisition

processes in much more detail in Section 2.2.

Noise

The two main sources of noise associated with images captured with a digital camera at

normal and high levels of scene illumination are temporal noise, comprising mainly of shot

noise, and fixed pattern noise which is dominated by Photo Response Non-Uniformity (PRNU)

noise. The distribution of image noise in the recaptured image will be predominantly influ-

enced by the noise characteristics of the recapture camera, the brightness setting of the LCD

monitor, the capture distance and the scene content. The noise characteristics of the camera

used to capture the original scene are likely to be also present in the recaptured image, but

they will be band-limited due to the blurring effect introduced by the recapture process. The

unique PRNU fingerprint of a camera’s image sensor has been shown to be a highly successful

tool for identifying the source camera from an image or a set of images [73]. The method has

been applied successfully to detect the presence of the PRNU pattern in a scan of a printed

image[74]. However, very small levels of rotation of the print are enough to significantly re-

duce the detection performance, since misalignment is introduced between the PRNU pattern

and the recapture device (the scanner). This limits the applicability of their approach to our

application since successful identification of the original capture device would require very low

levels of misalignment between the LCD monitor pixel grid and the camera’s image sensor,

which in practice, would be very difficult to achieve. Thus, in this thesis, image noise is not

considered as a reliable feature for recapture detection.

Contrast, Colour and Illumination Non-Uniformity

Almost all digital cameras and LCD monitor devices today, support the sRGB colour

encoding specification [75]. In addition to specifying the gamut of colours that can be repre-

sented, the sRGB specification also describes forward and reverse non-linear tone transforma-
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tion curves. In an ideal image capture display environment, the overall system tone response

between input scene intensities and output display intensities at the monitor is linear. In

practice, digital cameras apply a tone response function that deviates slightly from the ideal

sRGB response, but is intended to provide a ‘more pleasing’ image that is slightly higher in

contrast. In a recapture image chain where the response function of both the original and

recapture cameras deviates from the sRGB specification as described above, the overall re-

captured image is likely to appear higher in contrast relative to the single captured image.

There may be some noticeable loss of detail and clipping of pixel values in the light and dark

regions in the recaptured scene when compared with the original capture. For image contrast

to be used as a feature for recapture detection, a reliable, scene content independent method

for the recovery of the global scene contrast or tone response function is required. There exist

methods in the literature [76, 77] however, they are dependent on scene content and may not,

therefore, provide a reliable tool for recapture detection.

Colour related artefacts that may be present in recaptured images include colour balance

errors, such as unwanted tints affecting the whole image, and increased colour saturation.

Colour balance errors in a recaptured image can be minimised by calibrating the display

monitor and by presetting the white point of the recapture camera to the LCD monitor white

point before recapture. Thus, colour balance errors present in the recaptured image will have

likely been introduced by the original camera that was used to capture the scene and not

during the recapture process. The increase in colour saturation present in the recaptured

image is likely to be due to the increase in overall image contrast as described above. Colour

differences between original and recaptured images from LCD monitors are likely to be highly

dependent on device characteristics and settings. Furthermore, reliable extraction of colour

features is highly dependent on scene content.

The transition to LED backlighting from cold cathode fluorescent (CCFL) backlight in LCD

monitors has resulted in improved colour gamut, dynamic range and display non-uniformity.

However, as monitor display sizes have increased, obtaining even backlight illumination re-

mains a challenge for some low cost display devices. A luminance gradient may be noticeable

in recaptured images containing large regions that are low in texture or detail. Identification

of the luminance gradient would enable recaptured images to be detected. However, the accu-

racy of detection is likely to be highly dependent on scene content, and, therefore, luminance

gradient is also not considered in this thesis as a reliable feature for recapture detection.
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2.1.3 Related Work in Image Recapture Detection

The problem of detecting recaptured images is a relatively new area of research in image

forensics. We have discussed in Section 1.1 why image recapture detection algorithms are

important for image authentication and securities. In this section we provide a survey on

approaches how to detect recaptured images. The papers [78, 79] pioneered the methods to

detect images scanned from printed materials, such as photographs or magazines. According

to the paper, the recapture is detected based on specularity and dithering patterns left by

printers on printed images. In [74], Goljan et al. claim that PRNU patterns of the first

acquisition device can be detected in recaptured images and an algorithm for camera model

identification based on PRNU left on scanned images is proposed.

The papers [80, 81] study some specific features in images such as the non-linearity of the

tone response curve, the spatial distribution of the specularity in the image, image contrast,

colour, chromaticity and sharpness and the authors use them to create an algorithm to detect

images recaptured from prints and from LCD monitors. Jiang et al. [82] develop an algorithm

to identify printers from printed-and-scanned images based on the Benfords law. The feature

vectors are built from the first digit probability distribution of multi-size block DCT coefficients

of images. The features are used to train an SVM model for printer classification.

Printed materials are not the only source of recaptured images. Images can also be reac-

quired by capturing images from LCD displays. In [1], Cao and Kot propose an algorithm

for recapture detection based on three different features. The features based on fine texture

patterns introduced during image recapture are used. The patterns are detected by computing

Local Binary Pattern (LBP) features at multiple scales. The standard deviation of wavelet

coefficients from multiple subbands are used as the second feature in order to detect the loss of

image details. The detection of detail loss is important because it may be due to the relatively

low display resolution used for recapture when compared to the camera’s image sensor. The

third feature used is the apparent increase in saturation in colours of the recaptured image.

All three features are used to train an SVM classifier for recapture detection. The paper [83]

later suggests that the LBPV feature is more efficient than the conventional LBP feature, and

shows that the detection precision can be improved using the LBPV.

Yin and Fang [84] propose two different features based on the noise and the traces of

double JPEG compression. To estimate the noise features the image was denoised using three

different discrete wavelet transforms. Statistical features such as mean, variance, skewness

and kurtosis were computed from the histogram of the extracted noise residual. The traces of
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double JPEG compression is detected using the MBFDF algorithm [85]. These two features

are used to create a recapture detection algorithm. Ke et al. [86] train a SVM classifier to

detect recaptured images from LCD monitors using a 136 dimension feature set. The features

are based on the descriptions of blurriness, texture, noise and colour features. Their method

gives a detection rate of 97.2% when tested with a dataset of recaptured images taken with

smart-phone cameras. The images used in their dataset [87] are low in resolution and quality,

however, due to the smart-phone cameras used to perform the recapture.

2.2 Modelling of Blurriness Footprints

Digital images are often not perfectly sharp. A number of factors can reduce the sharpness

quality of images. Poor capture conditions including camera shake, subject movement, and

off-focus capture could result in blurred photographs. Some blurring patterns in fact are

introduced by the acquisition process. Figure 2.8(a) exemplifies how the acquisition process

can blur a sharp edge of an image. First an image of a given observed view is projected to

an image sensor through a series of lens and optical filters by a focusing mechanism of the

camera. Despite an in-focus condition, blurring distortions are often introduced to the image

by the optical devices and an image sensor due to the imperfect properties of the devices.

The amount of blur increases as the increase in number of pieces of lens and the drop of the

quality of the materials. The image is then discretised to a digital format by an image sensor

and blurring distortion can also be added to the image during this process.

The blurring patterns are determined by intrinsic properties of acquisition devices. When

capture images of the sharp edge using different devices, edges present in the resulting images

are often different in shape. The different patterns of edges can be represented in a one

dimensional (1D) form of signals using edge profiles. Edge profiles are obtained through

measuring the intensity of a single line that spans across edges. The acquisition in Figure 2.8(a)

can be modelled using the 1D system shown in Figure 2.8(b). The sharp edge input x(t) now is

approximated using a step function. When it is acquired by the acquisition device, the input

becomes blurred before being uniformly sampled to a discretised format with a sampling

period T . The blurriness introduced to the input are described by the distortion caused by

the pre-filter h(t). The filter is determined by the imperfections of the device. The edge profile
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Figure 2.8: Simplified models of (a) image acquisition which describes how a sharp edge
becomes blurred through an acquisition process and (b) corresponding signal diagram.

is obtained from the following measurement:

y[n] = x(t) ∗ h(t)|t=nT

=

∞∫
−∞

x(t)ϕ(t/T − n)dt

= 〈x(t), ϕ(t/T − n)〉, (2.1)

where the sampling kernel ϕ(t) is the time reversed and scaled version of the filter’s impulse

response h(t) and n is a pixel indices of edge profile.

In two-dimensional image system, the sampling kernel ϕ in general can be modelled using

the point spread function (PSF) of the device. The PSF describes response of an image

acquisition device to a point source for in-focus condition. It determines the blurring pattern

observed from the image of the point source. The PSF is typically characterised by intrinsic

properties of the devices. An example of point spread function is shown in Figure 2.9.

In practice, nevertheless, it is very difficult to measure the PSF of the device since it is

difficult to create an infinitesimal point source. The alternative is to measure its line spread

function (LSF). Line spread functions measure a spread response of an image system to a

single line signal. By definition, a line spread function is a 1-D function corresponding to the

first derivative of the edge spread function (ESF) [89]. However, with the assumption that

the PSF of a device is circularly symmetric and space invariant, the corresponding LSF can

be derived from its PSF by integrating over crosssections of the PSF along points that lie on
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Figure 2.9: Example of a point spread function, excerpted from [88].
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Figure 2.10: Examples of line spread functions measured from (a) Canon EOS 400D with
Canon EF-S 18-135mm IS lens and (b) Nikon D40 with 18-55mm kit lens. While performing
a slanted edge testing, the focal lengths of the cameras were fixed at 135mm and 55mm
respectively.

a straight line. The LSF is therefore a 1-D representation of corresponding two-dimensional

PSF.

The parameter ϕ(t) in the 1-D acquisition model in Figure 2.8(b) can be approximated using

the LSF of the device. One way to measure the LSFs experimentally is to follow the slanted

edge testing standard described in the international standard, ISO 12233 [90]. Examples of line

spread functions of Canon EOS 400D and Nikon D40 models are shown in Figure 2.10(a) and

Figure 2.10(b) respectively. The measurements were obtained using SFRMAT 3.0 software

library [91].

Equation (2.1) suggests that the degrees and patterns of blurriness on edge profile y[n] are

dictated by the blurring kernel ϕ(t) and the shape of the input edge x(t). When a straight

sharp edge is acquired by different devices, different patterns of the resulting edge profiles are

largely determined by the kernels ϕ(t) of the devices. The edge profiles are therefore unique

footprints left by the device on the image. In this research we use this relation between devices

and edge profiles to trace back the acquisition history of images.
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2.2.1 Related Work in Blurriness Measurement

Since we are particularly interested in modelling the blurriness introduced into images, it is

worth reviewing the major techniques proposed to model and measure blurriness. A classical

model for image degradation due to blurriness is presented in [92, 93, 94, 95]. The model

describes a blurred image as the result of the convolution of sharp input image and the

response of an imaging system which can be modelled using the point spread function (PSF).

In [94], an extensive review for blind deconvolution techniques to decouple the blurriness and

restore image quality is provided. A summary of blur identification techniques for image

restoration is discussed in [96]. The paper [95] suggests that images with sharp edges would

contain high spatial frequency components. The degree of blurriness is determined by the loss

of DCT components in a high frequency band. In [97], different types of edge structures are

defined according to their representations using Haar wavelet transform. A class of blurred

edges corresponds to a group of edges with wavelet coefficients with low amplitude in high

frequency wavelet subbands.

A number of approaches quantify the degrees of sharpness based on blurriness of edges. The

authors [98] propose a sharpness measurement method based on the ratio of width/amplitudes

of lines and edges. A technique to measure global blurriness of images using a no-reference

perceptual blur metric was pioneered by Marziliano et al. [99]. The method is based on the

measurement of the degree of smoothing effect on edges. The blurriness metric is calculated

from the average value of edge width in an image. Edge width is defined as the length from

the beginning to the end of a local edge. The blurriness metric based on a just noticeable

blur (JNB) is introduced in [100]. The authors conduct experiments in order to obtain the

threshold of edge width, That is, the width at which the subjects start to notice blurriness.

The probability to detect blur is computed using the ratio between the width of a given

edge and the edge width threshold. The blurriness metric is calculated using a probability

summation technique. The work is improved in [101] by evaluating the cumulative probability

of blur detection (CPBD).

The metric [99, 100, 101] provide quantified level of blurriness of images in a global sense

and are primarily used for quality assessment. In our view, nevertheless, they can be used

to classify groups of devices based on the quality of images they produced. For this reason,

we discuss how to use the CPBD metric [101] as one of our features for the proposed image

recapture detection algorithm of Chapter 5. The comparison of performance of the algorithm

using CPBD metric and our proposed feature is also presented.
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2.3 Summary

This chapter has provided a literature survey of image forensic and recapture detection tech-

niques. The approaches have been presented according to the types of footprints left on images.

These footprints have been used to retrieve sources of images and detect image forgeries. We

have also discussed about the footprints often found in recapture images. The footprints we

have referred to, however, are not reliable and can be removed through a proper recapture

setting. As a result in this thesis we have assumed that the only useful footprints are blurri-

ness patterns left by acquisition devices. We later have presented the mathematical model of

the blur introduced by cameras during the acquisition process. Finally a review on blurriness

metrics and relevant methods to measure blurriness levels in images has been given.



Chapter 3

Reverse Engineering of Signal Acquisition
Chains using the Theory of Sampling
Signals with FRI

3.1 Introduction

In this chapter we propose a theoretical framework to address the problem of reverse engi-

neering a chain of processing operators highlighted in Section 1.2. We model the chains of

image acquisition and reproduction in Figure 1.2 by focusing only on multiple A/D and D/A

operators. Moreover, the chains of A/D and D/A conversions are described using generalised

sampling theory [102, 103] and we focus only on the case where the digital signal is recap-

tured at most once. Our framework is based on the fact that the features we are particularly

interested in, for example edges, can be modelled using the theory of signals with finite rate

of innovation (FRI). In particular, 1-D version of straight edge, a feature that is abundant in

natural images, can be modelled using the step function.

An understanding of when the processing footprint left by an operator is completely re-

moved by other operators or when a processing chain becomes too complex to be completely

retrieved is, generally, of interest. It is anticipated that some operators may accidentally

completely remove some footprints related to previous processing. For example, lossy com-

pression can remove many fine features from a signal. It would, therefore, be nice to obtain

an understanding of the circumstances under which a chain can always be precisely recovered

and when two processing chains, overall, produce the same artefacts and, therefore, become

indistinguishable.

An attempt at addressing this question is presented in this chapter. In Section 3.2 we

set-up the problem. Theory of sampling signals with finite rate of innovation [104, 105] is

used to provide some precise answers and an overview of this theory is provided in Section

57
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3.3. Finally in Section 3.4 we discuss the conditions under which we can detect recapture and

identify the parameters of the original A/D and D/A operators.

3.2 Problem Setup

Our research problem discussed in Section 1.2 is now modelled using a 1-D signal and the dia-

gram presented in Figure 3.1. The diagram comprises a cascade of A/D and D/A conversions

which are the most fundamental components of the acquisition chain. We model the input

signal as a box function f(t) = u(t− t1)−u(t− t2), where u(t) is the unit step function, t1 and

t2 are unknown delays of the unit step functions and t1<t2. Initially, we consider t2 → ∞.

Thus, the input f(t) can be approximated by a step u(t− ts). The role of t2 will be discussed

in Section 3.4.3.

The sharp edge is first acquired by the first acquisition device with sampling kernel ϕ1(t)

and a uniform sampling period T1. The discretised output g[n] is given by g[n] = 〈f(t), ϕ1(t/T1−

n)〉 according to the classical sampling scheme described in Figure 2.8(b). The discrete sam-

ples g[n] represent an observed edge profile in an original digital image. The characteristics

of the profiles are determined by the sampling kernel ϕ1(t) and sampling period T .

After that, it is possible that the signal is reacquired. For example, in the case of images, the

digital image might be displayed on an LCD screen before being recaptured. In that context

the screen plays the role of the D/A converter. We assume this conversion is performed using

the linear filter λ(t). Therefore given the samples g[n] the reconstructed signal is given by:

f̂(t) =
∑
n∈Z

g[n]λ(t/T2 − n). (3.1)
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Figure 3.1: Problem statement diagram for signals with FRI in the chain of signal acquisition.
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We assume that λ(t) is a polynomial spline or a MOMS function [106] of order R, and there-

fore f̂(t) is a piecewise polynomial function of maximum order R. We also assume f̂(t) 6= f(t).

The signal then goes through a second acquisition process where the acquisition device is

modelled using ϕ2(t) and a uniform sampling period T2. As for the previous acquisition the

acquired edge profiles ĝ[n] is given by ĝ[n] = 〈f̂(t), ϕ2(t/T − n)〉.

Given a query image with an extracted edge profile q[n], we would like to reverse engineer

the acquisition history of the image. We assume that the known sampling kernel ϕ2(t) has the

special properties that it can reproduce polynomials or exponentials as introduced in [105].

The key questions are as follows:

(a) What stages in the chain are the samples q[n] from? That is, was q[n] obtained by

acquiring f(t) directly with ϕ2(t) or was q[n] the reacquired signal ĝ[n] as in Figure 3.1?

(b) In the case of reacquisition, how can we retrieve the following important parameters: i)

the maximum order R of polynomial used for interpolation ii) the sampling period T1,

and iii) the sampling kernel ϕ1(t)?

(c) Under what conditions on ϕ2 and T2, can we solve (b)?

In the following section we provide an overview of the theory of sampling signals with FRI,

and in Section 3.4 we describe how we apply this theory to develop our method to answer the

above questions.
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3.3 The Theory of Sampling Signals with FRI

To navigate through this chapter easily, Table 3.1 provides the most frequent notations that

are used for our analysis.

Table 3.1: Frequently used notations

Symbols Meaning

x(t) Input signal

tk, ak, K Innovation parameters of the train of Diracs, number of Diracs

ϕ(t) Antialiasing filter prior to sampling (typically a polynomial

reproducing kernel)

y[n], N , T Samples, number of samples, sampling period

τp, P + 1 Moments, number of moments (normally order of the kernel

N ≥ P + 1 ≥ 2K )

hm Annihilating filter

3.3.1 Introduction to Signals with Finite Rate of Innovation

The notion of signals with finite rate of innovation and the corresponding sampling scheme

were first introduced by Vetterli et al. in 2002 [104]. The theory describes how to sample

and perfectly reconstruct special classes of non-band limited signals. According to the theory,

FRI signals can be sampled at the sampling rate which are determined by how sparse the sig-

nals are per unit of time. Such sparsity can be described by the rate of innovation of the signals.

Given a signal x(t) expressed by a set of known functions {fr(t)}R−1r=0 , arbitrary shift tk,

and amplitudes αk,r as:

x(t) =
∑
k∈Z

R−1∑
r=0

αk,rfr(t− tk), (3.2)

the only free parameters of this signal are amplitudes αk,r and shifts tk since the functions

{fr(t)}R−1r=0 , are known. The rate of innovation of the signal x(t) is defined by the following:

ρ = lim
τ→∞

1

τ
Cx(−τ

2
,
τ

2
), (3.3)

where Cx(ta, tb) is a counting function which count the number of free parameters of the func-

tion x(t) over the interval [ta, tb].

A signal with finite rate of innovation (FRI) is, therefore, defined as a signal which can be

represented as in Equation (3.2) and has a finite ρ as presented in Equation (3.3).
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(b) Piecewise Polynomials
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(c) 2D Piecewise Constant

Figure 3.2: Examples of signals with finite rate of innovation (a) stream of Diracs (b) Piecewise
Polynomials and (c) 2D Piecewise Constant

In addition, it is useful to consider a local rate of innovation over a window of size τ . Thus,

we can write the rate of innovation at time t in terms of ρτ (t) = 1
τCx(t − τ

2 , t + τ
2 ), which

converges to ρ as window size τ expands to infinity. The definition of local rate innovation is

important when dealing with the local reconstruction of FRI signals.

3.3.2 Examples of FRI Signals

In this section we illustrate different examples of FRI signals which are useful for our forthcom-

ing analysing. We are particularly interested in specific classes of signals with FRI which are

stream of Diracs, streams of differentiated Diracs and piecewise polynomials (see Figure 3.2).

A stream of K Diracs can be written as follows:

x(t) =
K−1∑
k=0

akδ(t− tk). (3.4)

From the equation we realise that the FRI signal x(t) has 2K degrees of freedom and is

completely specified by the knowledge of the K amplitudes ak and the K locations tk. Now

we recall the definition of derivative of Diracs, which is useful to the analysis of piecewise

polynomial signals. The Dirac function is a distribution function whose r−th derivative satis-

fies
∞∫
−∞

f(t)δ(r)(t− t0)dt = (−1)rf (r)(t0), where f(t) is r times continuously differentiable. A

stream of K differentiated Diracs can be expressed in the following form:

x(t) =
K−1∑
k=0

Rk−1∑
r=0

ak,rδ
(r)(t− tk). (3.5)

In this case, the signal x(t) is the combination of different derivative of Diracs δ(r) with

maximum order Rk at the location tk. The third type of FRI signals that we are considering is

a piecewise polynomial signal. When the polynomial function is of maximum degree R−1 ≥ 0,
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the FRI signal can be expressed as follows:

x(t) =
K−1∑
k=0

R−1∑
r=0

ak,r(t− tk)r. (3.6)

We note that if we take the R−th order derivative of the above signal we obtain a stream

of differentiated Diracs. The function can be described as follows:

x(R)(t) =

K−1∑
k=0

R−1∑
r=0

r!ak,rδ
(R−r−1)(t− tk). (3.7)

3.3.3 Sampling Signals with Finite Rate of Innovation

Consider the signal x(t) given by:

x(t) =

K−1∑
k=0

akδ(t− tk). (3.8)

We are interested in the situation where the input signal x(t) is acquired through our

standard acquisition model of Figure 2.8(b). The resulting N discrete samples y[n] are given

by Equation (2.1) as follows:

y[n] = x(t) ∗ h(t)|t=nT

=

∞∫
−∞

x(t)ϕ(t/T − n)dt

= 〈x(t), ϕ(t/T − n)〉. (3.9)

The input is distorted by the sampling kernel ϕ(t) which we assume is a function that can

reproduce polynomials as described in [105]. For polynomial reproducing kernels we mean

functions ϕ(t) satifying

∑
n∈Z

cn,pϕ(t/T − n) = tp ; p = 0, 1, 2, ..., P, (3.10)

for a proper choice of coefficients cn,p.

The polynomial function is reproduced from the weighted sum of shifted version of the

kernel ϕ(t). The conditions a kernel has to satisfy in order to be able to reproduce polynomials

are called Strang-Fix conditions and are discussed in [107]. The coefficients cn,p used to
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reproduce the monomial tp can be calculated as follows:

cn,p = 〈tp, ϕ̃(t/T − n)〉

=
1

T

∞∫
−∞

tpϕ̃(t/T − n)dt ; p = 0, 1, 2, , P, (3.11)

where ϕ̃(t) is a dual of the ϕ(t). Specifically ϕ̃(t) is such that 〈ϕ̃(t), ϕ(t− n)〉 = δn.

Call τp =
∑

n cn,py[n]; p = 0, 1, 2, ..., P the moments of the observed samples, where the

coefficients cn,p are those in Equation (3.10) that reproduce tp. One can derive the moments

τp of the stream of Diracs x(t) as follows:

τp =
∑
n

cn,py[n]

(a)
= 〈x(t),

∑
n

cn,pϕ(t/T − n)〉

(b)
= 〈

K−1∑
k=0

akδ(t− tk),
∑
n

cn,pϕ(t/T − n)〉

(c)
=

∞∫
−∞

K−1∑
k=0

akδ(t− tk)tpdt

=

K−1∑
k=0

akt
p
k ; p = 0, 1, 2, ..., P, (3.12)

where (a) follows from the linearity of the inner product, (b) from the input x(t) =
∑K−1

k=0 akδ(t−

tk), (c) from the properties of polynomial reproduction kernel in Equation (3.10). The result

of the integration in (c) is the m− th order moment of the original signal x(t).

Once the moments τp; p = 0, 1, ..., P and P ≥ 2K have been computed, the following

Toeplitz matrix is constructed:

S =


τK τK−1 · · · τ0
τK+1 τK · · · τ1

...
...

. . .
...

τP τP−1 · · · τP−K

 . (3.13)

Note that, one can show [105] that S has always rank K where K is the number of Diracs

in x(t) and that x(t) is determined from the knowledge of the null space of S.

The estimation of the number of degrees of freedom of the input signal using this matrix S is

crucial for our forensic analysis. It allows us to retrieve the number of Diracs or discontinuities
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K in the input signal x(t) through the computation using discrete samples y[n]. We use this

principle to develop our forensic technique in Section 3.4.

Now, nevertheless, it is worth to describe the method to reconstruct the signal x(t) using the

FRI sampling theory. The perfect reconstruction technique of FRI sampling theory is based

on the annihilating filter method or, often referred to Prony’s method [108]. The introduction

of annihilating filter method for sampling theory of signals with finite rate of innovation was

made by Vetterli et al. [104]. The goal of the algorithm is to retrieve a pair of unknown

parameters (ak, tk) in the power sum series of K components as follows:

τp =
K−1∑
k=0

ak(tk
p) ; p = 0, 1, 2, ..., P, (3.14)

The annihilating filter H(z) is defined as a filter which has roots at the locations tk

H(z) =

K∑
p=0

hpz
−p =

K−1∏
k=0

(1− tkz−1). (3.15)

The filter H(z) has a finite impulse response hp of length K + 1. Then, one can derive that

hp ∗ τp =

K∑
i=0

hiτp−i =

K−1∑
k=0

akt
p
k

K∑
i=0

hit
−i
k︸ ︷︷ ︸

=0

= 0. (3.16)

It is proven that the annihilating filter H(z) annihilates all the components of the series of

powersum τp. Assuming h0 = 1 , Equation (3.16) shows that the coefficients of the filter H(z)

can be retrieved when any 2K consecutive values of τp are known by solving the following

Toeplitz system: 
τK−1 τK−2 · · · τ0
τK τK−1 · · · τ1
...

...
. . .

...
τ2N−1 τ2N−2 · · · τK−1

 ·

h1
h2
...
hK

 = −


τK
τK+1

...
τ2K−1

 . (3.17)

After the filter coefficients hi are obtained, the parameters tk can be calculated by finding

the roots of H(z) as in Equation 3.15. With the results, one can solve the Equation (3.14) in

order to find the parameters ak using Vandermonde system:
1 1 · · · 1
t0 t1 · · · tK−1
...

...
. . .

...

tK−10 tK−11 · · · tK−1K−1

 ·


a0
a1
...

aK−1

 =


τ0
τ1
...

τK−1

 , (3.18)
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and all unknown parameters ak, tk are now determined. Finally we can perfectly reconstruct

the original stream of Diracs x(t) in Equation (3.8) using the retrieved parameters.

From the sampling setting next we consider an input signal which is a piecewise polynomial

signal with K pieces of maximum degree R > 0, that is:

x(t) =

K∑
k=1

R∑
r=0

ak,r(t− tk)r. (3.19)

Clearly the (R + 1) order derivative x(R+1)(t) = d(R+1)x(t)

dt(R+1) is given by a train of differentiated

Diracs at the locations tk as follows:

x(R+1)(t) =

K−1∑
k=0

R∑
r=0

r!ak,rδ
(R−r)(t− tk). (3.20)

We observe that x(R+1)(t) is an FRI signal and the rate of innovation of the signal is determined

by the total number of differentiated Diracs at the different locations tk. We also note that

the finite difference of the discrete samples z(1)[n] satisfies [105]:

z(1)[n] = y[n+ 1]− y[n]

= 〈x(t), ϕ(t/T − n− 1)− ϕ(t/T − n)〉

= 〈dx(t)

dt
, ϕ(t/T − n) ∗ β0(t/T − n)〉, (3.21)

where β0 is the box function. Therefore, the moments of the derivative of x(t) are given by

τp =
∑

n c
(1)
n,pz(1)[n], where c

(1)
n,p are the polynomial reproduction coefficients of Equation (3.10)

for the new kernel ϕ(t) ∗ β0(t). The moments of the R + 1 derivative of x(t) can be obtained

similarly. It is again possible to show that the Toeplitz matrix S of the moments of x(R+1)(t)

has rank rank equal to the number K of polynomial pieces in x(t). Finally the locations of

discontinuities tk in the piecewise polynomial function can be determined in the similar way

using annihilating filter method.
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3.4 Reverse Engineering Technique using the FRI Theory

3.4.1 Chain Structure Identification and Recapture Detection

We are given a query digital signal q[n] and we want to determine whether this is the result

of acquiring the unit step function, f(t) = u(t− ts), with ϕ2(t) or whether this is the result of

reacquisition. An illustrative example of the two possible shapes of q[n] is shown in Figure 3.3.

In Figure 3.3(b) we show the case of a single acquisition of f(t) shown in Figure 3.3(a), whereas

Figure 3.3(e) shows a reacquired signal obtained after linear interpolation of (b) to yield 3(d)

and sampling of 3(d) with ϕ2(t). We note that g[n] and ĝ[n] are hardly distinguishable yet

they still contain all the information necessary to reverse engineer the acquisition chain as is

shown next.
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Figure 3.3: Comparative plots of discrete samples (b) g[n] and (e) ĝ[n] obtained from acquiring
the continues inputs (a) step input f(t) and (d) the reconstructed signal f̂(t) respectively. The
corresponding reconstruct locations based on the samples (b) g[n] and (e) ĝ[n] using the FRI
sampling theory are shown in subfigures (c) and (f) respectively.
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The input signal f(t) is a unit step function which is described by only one free parameter

– the location of step ts. When the input signal f(t) is acquired, the observed samples g[n]

are distorted by the sampling kernel. All possible g[n], however, are still determined by one

free parameter. In contrast, f̂(t) is obtained by polynomial interpolation and is a polynomial

function with discontinuities at multiple locations of period T1. The signal is a special case of

FRI signals in (3.19).

We thereby use this principle to create an algorithm for reacquisition detection. We first

aim to detect whether a query q[n] was singly acquired or was reacquired. Since a step

function is a piecewise polynomial of maximum degree R = 0, the moments are computed

using a first order finite difference of the query as τp =
∑

n cn,pq
(1)[n]. The moments are then

used to construct the Toeplitz matrix S. The matrix S of size 2x2 is sufficient for reacquisition

detection since the matrix is always rank-deficient with rank = 1 if q[n] was acquired from a

step input. If, on the other hand, S is full rank, it means q[n] was obtained by reacquisition.

Algorithm 1 Reacquisition Detection

Objective: Detect whether the unknown samples q[n] are obtained from acquiring
an original signal (the step function) or a reconstructed signal?

1) Compute the first order finite difference q(1)[n].

2) Compute the coefficients c
(1)
n,p, where where c

(1)
n,p are the polynomial reproduction

coefficients of Equation (3.10) for the new kernel ϕ(t) ∗ β0(t).

3) Calculate the sequence

τp =
∑

n c
(1)
n,pq(1)[n]; p = 0, 1.

4) Build the rectangular Toeplitz matrix S (3.13) with size 2× 2 using the measure-
ments τp.

5) Validate whether the matrix S is full rank or rank-deficient? If S is full rank, the
samples q[n] are from reacquisition. On the other hand, if S is rank-deficient, q[n]
are from original acquisition.
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3.4.2 The Retrieval of Chain Parameters

From the result of our analysis it is possible to retrieve the acquisition history of the given

signal q[n]. When a query signal is detected as having been reacquired, the question arises of

how important image chain parameters such as the sampling period T1 and the interpolation

function λ(t) can be retrieved.

The Retrieval of Interpolation Function

Firstly, the maximum order R of the polynomial interpolation function λ(t) can be retrieved

from the properties of FRI reconstructed signals. According to Section 3.3.1, piecewise poly-

nomial functions of maximum degree R are fully suppressed by differentiation by order R+ 1.

If we measure the number of degrees of freedom using Toeplitz matrix S, the matrix will be

full rank until a finite difference of order r ≥ R + 1 is applied to query samples q[n]. When

r = R+1, the matrix will be rank deficient with rank, K, equal to the number of K pieces of a

piecewise polynomial function. Figure 3.4 summarises the retrieval algorithm, using iterative

finite difference and rank measurements, for order R until S is rank deficient.
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Figure 3.4: Algorithm 2, the iterative algorithm for the retrieval of maximum order R of
polynomials used in interpolation function λ(t).

Sampling Rate Retrieval

Once the matrix S is rank-deficient and has rank K, we realise that the number of locations

or discontinuities in the input x(t) is finite. Recall that if K > 1 the query signal q[n] is

obtained from recapturing the reconstructed signal f̂(t). We the can use the annihilating

filter method as discussed in Section 3.3.3 to estimate the continuous function f̂(t) and all

discontinuity locations tk in the function. Each tk represents the location of samples g[n] used

in the interpolation. From the retrieval results in Figure 3.3(f), the distances between the

differentiated Diracs f̂ (2)(t) are uniform and the sampling period T1 can be estimated from

the average of the distances.
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Algorithm 3 The estimation of the sampling period T1

Objective: Estimate the sampling period T1 based on the retrieved locations tk of
discontinuities in the interpolated signal f̂(t).

1) Calculate the sequence

τp =
∑

n cn,py[n]; p = 0, 1, 2, ..., P

from the given N samples q[n].

2) Choose M ∈ [K,P ] and build the rectangular Toeplitz matrix S (3.13) with size
M ×M using the measurements τp.

3) Find the rank K of the matrix S by computing Single Value Decomposition
(SVD). Recall that, S = UΣV ∗ and Σ is diagonal. The rank of the matrix S is the
number of non-zeros elements in the diagonal matrix Σ.

4) Validate whether the matrix S is full rank or rank-deficient? The matrix is
rank-deficient only if K < M . Otherwise, the matrix S is full rank.

5) If the matrix S is full rank, repeat Algorithm2 in Figure 3.4 over R iterations
until the new matrix S(R) is rank-deficient.

6) The rank K obtained from S(R) is the number of discontinuities in the stream of
Differentiated Diracs f̂ (R)(t).

7) Apply the annihilating method to estimate the locations tk of discontinuities.

8) Estimate the sampling period T1 from the retrieved tk.

Numerical Simulation

In this experiment we simulate a process in which the step signal f(t) = u(t − ts) has

gone through the chain of acquisition and reproduction as described in Section 3.4.1. For

the sake of simplicity we set the sampling period T1 = 1 with a signal resolution at 1/64.

After the reacquisition process we obtain the discretised samples ĝ[n]. We apply the theory of

sampling signals with FRI and use the annihilating filter method to estimate the location tk

in Figure 3.3 (f) using the obtained ĝ[n]. The results for location retrieval are shown in Table

3.2.

We observe that the annihilating filter method provides good precision in estimating the

locations tk. The average error of the estimation is 0.068 %. Then we use the results to

estimate the sampling period T1. In Table 3.3 we obtain the estimation T̄1 = 1.0013 which is
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Table 3.2: The retrieved locations tk of the discrete samples g[n] estimated using the annihi-
lating filter method

Location t1 Location t2 Location t3 Location t4

Actual locations 2.00000 3.00000 4.00000 5.00000

Estimated Locations 1.99790 2.99783 4.00235 5.00174

Errors (%) 0.105 0.072 0.059 0.035

Table 3.3: The estimated periods with the average

Periods Estimated Periods

T12 0.99993

T23 1.00453

T34 0.99939

Average 1.00128

close to the actual value of T1 = 1 previously set in the simulation.

3.4.3 Sufficient Conditions for Reverse Engineering

The estimation of the samples g[n] can be obtained using the retrieved f̂(t) and T1 through

the reverse sampling. Finally, the retrieval of ϕ1 can be further achieved using the best match

between the samples and all possible dictionary elements as proposed in [109]. We omit this

proof and instead focus on providing the sufficient conditions on ϕ2 and T2 that allow us to

retrieve the chain.

Firstly, the maximum degree P of polynomial which the second kernel ϕ2 can reproduce

must be sufficiently large. From [105], the kernel must be able to reproduce polynomials of

maximum degree P > 2(R+1)K−R−2 in order to achieve perfect reconstruction of a piecewise

polynomial of maximum degree R with K discontinuities. In our case, the unit step input

signal is sampled with uniform sampling period T1 and the samples are then interpolated to

the continuous domain again. The number of discontinuities can be computed as K 6 L1
T1

+ 1,

where L1 is the support of the first sampling kernel ϕ1. Therefore, the order P which provides

the precisely retrieved results is given as follows:

P > 2(R+ 1)
L1

T1
+R. (3.22)

Secondly, we consider the role of t2 which is now a constant with t2 > t1. The input, a
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rectangular pulse f(t) = u(t - t2) - u(t - t1), is then acquired and reproduced by the chain.

Since signal reconstruction creates a new group of K piecewise polynomials from samples

of a unit step input, one needs to ensure that the two groups of piecewise polynomials are

sufficiently distant in order to avoid overlap. The minimum interval required is greater than

2KT1. From[105], a piecewise polynomial function with two groups of K pieces of maximum

degree R can influence an interval of size 2K(L2 +R+ 1)T2. One therefore can calculate the

bound:
T1 > (L2 +R+ 1)T2, (3.23)

where L2 is the support of ϕ2(t).

The derived sufficient conditions in Equation (3.22) and (3.23) impose the constraints that

the second device must have better qualities when compared to the first acquisition device. The

first condition suggests that the second sampling kernel must be able to reproduce polynomial

of sufficiently high degree. This minimum degree P is determined by the length of the first

sampling kernel L1, sampling period of the first acquisition T1, and the maximum order R

of the polynomial interpolation. This condition ensures that proper linear combinations of

the kernel and its shifted versions can reproduce polynomials such that the FRI signal f̂(t) is

uniquely reconstructed from the samples ĝ[n].

The second condition imposes a constraint on the maximum sampling period T2. That is, it

is required to sample the signal in the second acquisition stage with sufficiently high sampling

rate compared to the rate used in the first acquisition. In image case, we are required to

recapture image using a camera with the sufficiently high resolution.

When sampling signals with these requirements, a one-to-one mapping between discrete

samples and chain structures is guaranteed. While we cannot guarantee that the conditions

provided are necessary for a one-to-one mapping, we can provide a counter example to show

that signals obtained from different acquisition chains may not be distinguished when the

sufficient conditions are violated.

Let qa[n] and qb[n] be query discrete samples acquired from different chain structures. The

signal qa[n] is obtained from a single acquisition of the step input fa(t) = u(t− 3T2/2)−u(t−

4T2) using a box spline kernel [110] and T1a = T2 or ϕ1a(t) = 1
T2
β0(

t
T2

). From Figure 3.5, one

can compute qa[n] = 〈fa(t), β0(t/T2 − n)〉 = [0 1/2 1 1].

The signal, qb[n], is from a reacquisition. Given fb(t) = u(t − 5T2/4) − u(t − 4T2) is the

initial input, the signal is first sampled using ϕ1b(t) = 2
T2
β0(

2t
T2

) or T1b = T2/2. The resulting

samples are given by [ 0 0 1/2 1 1 1 1 1]. Then the samples are reconstructed using linear

interpolation and the reconstructed signal f̂b(t) is obtained. The reconstructed signal is next
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Figure 3.5: Counter examples when sampling fa(t) and f̂b(t) with a sampling kernel ϕa(t) =
ϕb(t) = β0(

t
T2

)

reacquired using ϕ2b(t) = ϕ1a(t) = 1
T2
β0(

t
T2

) as shown in Figure 3.5. The samples qb[n] is given

by qb[n] = 〈f̂b(t), β0(t/T2−n)〉 = [0 1/2 1 1]. We have qa[n] = qb[n] despite the fact that each

set of samples has been obtained from different acquisition chain structures. The signals from

different chains become indistinguishable because the kernels used can reproduce polynomials

to degree P = 0 which violates the sufficient conditions. Thus, a one-to-one mapping is not

guaranteed and the proposed algorithm cannot retrieve a unique chain solution.

3.5 Summary

This chapter has presented our proposed reverse engineering technique based on the theory of

sampling signals with finite rate of innovation. We first reviewed how to sample and perfectly

reconstruct FRI signals. Next we have discussed how to apply the sampling theory of signals

with FRI to retrieve signals in the previous stages of signal acquisition chains. Our technique

is capable of detecting whether the signal was recaptured based on interpolation artefacts left

on edges. Once the image is classified as recaptured, we have shown that it is possible to re-

trieve important parameters in the acquisition chains using our reverse engineering technique.

Finally, we proved sufficient conditions required such that we can detect the recapture and

reverse engineer the chain process.



Chapter 4

Image Recapture Detection using Features
from Edge Profiles

In Chapter 3 we have presented the theoretical framework to determine whether a signal was

originally acquired or whether it was reacquired in the chain of A/D and D/A conversions. We

also argued that with particular conditions it is possible to retrieve important parameters in

the chain the signal has gone through. In this chapter we address the problem of recaptured

detection from a more applied point of view and propose an algorithm to detect whether

images were recaptured from an LCD monitors. Our method is based on the analysis of

blurring patterns on edges. The process of displaying an image on a monitor and recapturing

it with a second digital camera increases the level of blur relative to the originally captured

image. The largest contributor to the increase in blur seen in the recaptured image is the drop

in spatial resolution of the image due to the LCD monitor. Moreover, each stage of the image

acquisition chain introduces a unique pattern of distortion into the image. In particular,

besides the loss in sharpness, increase in distortion, such as ringing, that is introduced in

the edge when it is captured, displayed and recaptured propagates through the chain and

is present in the final image. The edges in the image, therefore, contain useful information,

that can provide vital clues which enable us to reliably detect whether an image has been

originally captured or whether it has been recaptured from a monitor display. For this reason,

the algorithm described in this chapter makes extensive use of this feature.

4.1 Overview of Our Proposed Method

We stated, in Chapter 2, that, for practical reasons, the line spread function is used to model

blurriness patters which are footprints left on images. Our fundamental idea is that the

LSFs estimated from edges from single captured images are markedly different from the LSF

obtained from recaptured images. This conjecture is supported by the measurements in Fig-

73
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Figure 4.1: The comparison of line spread functions obtained from slanted edge testing using
single captured images and recapture simulation. The cameras used from single capture are
Nikon D70s and Canon EOS 600D. The LSF for recapture is created using the recapture
combination of the two cameras.

ure 4.1. The edges we encounter on a daily basis are, nevertheless, not always straight and

sharp. In practice it is very difficult to precisely estimate line spread functions of devices

from edges found in natural images using the slanted edge testing technique. As a result we,

instead, model blurriness patterns by measuring, and statistically combining, the line spread

profiles of edges. This feature is computed from the first derivative of edge profiles.

The proposed algorithm consists of a training stage, in which a support vector machine

(SVM) classifier is trained with known images, and a detection stage where the trained clas-

sifier is used to classify a given image. A diagram of the classifier training process is shown

in Figure 4.2. Two sets of known images are used: a set of single capture images, ISC , and a

set of recaptured images IRC . The images in each set are indexed with the superscript j and

originate from a wide range of known cameras. The number of the images in each set, P and

R, may differ.

The first step of the classifier stage is to determine a set of edge profiles from each image in

each set that represent the sharpest edges found in the image. The first derivative of the edge

profiles is then taken to determine a corresponding set of line spread profiles for the image.

Thus, for a given image from the set of single capture training images, a matrix Qj
SC , is

generated in which each column of the matrix corresponds to an extracted line spread profile.

The equivalent matrix for an image from the recaptured set is Qj
RC .

Two over-complete dictionaries are constructed by training using the K-SVD approach

[111]. The first over-complete dictionary, DSC is trained using the set of single captured

images and the second, DRC , using the set of recaptured images. Each dictionary is trained

to provide an optimal sparse representation of the line spread profiles extracted from the
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Figure 4.2: Diagram showing an overview of the training process for our proposed algorithm.
Following the dictionary learning process, the learned dictionaries, DSC and DRC, are used
to compute a pair of parameters {Ed,λ̄} for each training image. The classifier is then trained
using all pairs of parameters {Ed,λ̄} which are labelled according to the class of training
images.
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Figure 4.3: Overview working diagram of the classification scheme of our proposed recapture
detection algorithm

training set of images.

To characterise the differences between the line spread profiles of originally captured and

recaptured images, we introduce two parameters related to edges: a sparse representation error

Ed and an average line spread width λ̄. These parameters were chosen because they provide a

concise but informative description of the differences between the line spread profiles of original

and recaptured images. The first metric, Ed, represents the difference in the errors, ESC and

ERC , between the extracted line spread profiles and their sparse representations determined

using the dictionaries, DSC and DRC , respectively. The rationale being that ESC < ERC

if the image considered was original and ESC ≥ ERC if the image was a recaptured image.

The value of Ed is determined by taking the differences between ESC and ERC . The second

metric, λ̄, provides a description of the width of an extracted line spread profile. Large values

of λ̄ correspond to blurry edges, while small values to sharp edges.

For each image, j, in the training set of single and recaptured images, IjSC and IjRC , a pair

of parameters, {Ejd,λ̄
j}SC and {Ejd,λ̄

j}RC respectively, are obtained. The parameter pairs are
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Figure 4.4: Working diagram of the proposed automatic block-based edge detection algorithm.

collected on an image by image basis and the set of parameter pairs is then used to train

a 2-dimensional SVM classifier. When the training procedure is complete a hyperplane that

optimally separates the two sets of images based on their values Ed and λ̄ is determined.

A diagram of the detection stage is shown in Figure 4.3. For any given single or recaptured

image, a line spread profile matrix, Q, is obtained using the same method that was applied to

the training images during classification. The parameters, Ed and λ̄ are calculated using the

trained dictionaries, DSC and DRC . The parameters are fed to the trained classifier and are

classified as single or recaptured based on their location in the Ed, λ̄ feature coordinate space

relative to the SVM hyperplane.

The method for extracting the line spread profile is described in Section 4.2. In Section 4.3

we describe the dictionary learning procedure. A detailed description of the line spread width

parameter, λ, and of the classifier training and recapture detection procedure are provided in

Section 4.4.

4.2 Automatic Edge Detection and Feature Extraction

The diagram in Figure 4.4 illustrates how our proposed algorithm extracts line spread profiles

from edges found in the image. Firstly, the query image is converted to greyscale and all

edges contained in the image are detected using a Canny Edge Detector [112]. Edge profiles

are extracted locally. Therefore, the query image is divided into a number of non-overlapping

square blocks B(m,n) of size W ×W with W = 16 pixels. Here m and n are the vertical and

horizontal indices of the block respectively.

For each block we first check whether it contains a horizontal or near horizontal sharp single

edge. We then rotate the block by 90◦ to see whether it contains vertical or near vertical edges.

The block selection procedure is implemented by examining the binary mask of the block and

counting the number of columns, η, containing only one non-zero value. The block will be

detected only when the condition η ≥ βW is satisfied where β has been set experimentally to

β = 0.6. An example of a block that meets the selection criteria is shown in Figure 4.5(a) and
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two examples of blocks that fail to meet the selection criteria are shown in Figure 4.5(b) and

Figure 4.5(c).
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Figure 4.5: Examples of blocks with a binary mask of edges that are detected (a) and discarded
(b and c). The block in Figure (a) satisfies all our selection criteria. Blocks in Figure (b) and
c) do not qualify because the majority of columns in the block shown in Figure (b) contain
double edges and in Figure (c) the number of columns containing an edge is less than βW .

The detected blocks, B(m,n), shown in Figure 4.4, are then ranked according to their

sharpness and edge contrast. This enables us to select regions that are in focus and that

contain the most prominent edge features. Block sharpness is determined using the technique

described in Section 4.4 in which the average width λ̄m,n of line spread profiles of the blocks

is estimated. The contrast of a block is measured by computing the block-based variance,

σm,n, of the input image at the detected block. Next, suitable blocks are chosen based on the

distributions of λ̄m,n and σm,n built over all the detected blocks. Only blocks whose average

width, λ̄m,n, falls within the narrowest 10% of the detected block widths and whose value of

σm,n falls within the largest 20% of computed values are selected.

For selected blocks, let Y ∈ IRW×W be a matrix which represents the grey scale values of

a block. Each column, yi; i = 1, 2, · · · ,W , of the matrix Y may, therefore, be considered to

represent an edge profile of the image. We determine a normalised line spread profile, qi, by

evaluating qi = y
(1)
i /||y(1)

i ||2 where y
(1)
i is the first derivative of yi. The differentiated edge

profile is normalised in order to standardise the feature.

Our feature vector, qi, now contains the line spread profile at column i of the input block.

The spread profile, qi, is then cropped and centered before zero-padding is applied in order

to maintain a length of W elements. Once the line spread profiles for all the selected blocks

in the image have been determined, a line spread profile matrix, Q ∈ IRW×M is formed by

concatenating the total M line spread profiles, qi, from all the selected blocks. This feature

matrix is used for training and testing purposes.
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4.3 Dictionary Learning Algorithm

The objective of dictionary learning is to obtain two overcomplete dictionaries, DSC and DRC ,

that provide an optimal sparse representation of line spread profiles from single captured

and recaptured images, respectively. Dictionary training can be used as a tool to learn the

characteristics of the distortion patterns present in edges found in most naturally occurring

images. The key insight being that the descriptions in single capture and recaptured images

are fundamentally different due to the sharpness degradation introduced by the recapture

process.

The first step in dictionary training is to determine the training feature matricies, SSC and

SRC , for single captured and recaptured images, respectively. For each set of training images,

ISC and IRC , the set of line spread profiles, Qj
SC and Qj

RC , is constructed using the method

described in Section 4.2. The supercript, j, denotes the individual images contained in each

training set. The training feature matricies, SSC and SRC , are determined by concatenating

horizontally the extracted line spread profiles matricies, Qj
SC and Qj

RC , over all the training

images in each respective set. Thus, the resulting training feature matrix, S ∈ IRW×N , contains

N training line spread profiles qi ∈ IRW , where i = 1, 2, · · · , N , and N >> W .

Given the training feature matrix S, the goal of dictionary training is to obtain the best

dictionary, D ∈ IRW×K , that provides an optimal sparse representation for all the line spread

profiles in the training matrix S, that is

min
D,X
‖S−DX‖2F subject to ∀i, ‖xi‖0 ≤ L, (4.1)

where X ∈ IRK×N is built from the column vectors xi used to represent the feature qi and

i = 1, 2, . . . , N . The notation ‖A‖2F refers to the Frobenius norm, which is defined as ‖A‖2F =∑
ij |Aij |2. The constant L is the maximum number of atoms permitted. The choice of L is

generally a trade off between approximation precision and sparsity and we discuss its selection

later in this section.

Our dictionary is designed using the K-SVD learning approach [111]. The K-SVD method

is an iterative learning scheme based on two important steps for each round of computation:

sparse coding and dictionary update.

In sparse coding, given an initial dictionary D, X is chosen such that each of its columns

xi provides the best L-sparse representation of qi. Specifically:

min
xi
‖qi −Dxi‖22 subject to ‖xi‖0 ≤ L (4.2)
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Figure 4.6: The root-mean-squared error computed from K-SVD training with sets of single
captured and recaptured images. The errors reduce over 100 training iterations for L = 1, 3,
and 5.

In practice, this is achieved using the orthogonal matching pursuit (OMP) algorithm [113]

which is known to provide near-optimal sparse coding. Next, given X, D is updated so as to

achieve

min
D
‖S−DX‖2F . (4.3)

In K-SVD, the dictionary atoms are updated, one column at a time, at the kth column index,

where k = 1, 2, . . . ,K. The residual error in (4.3) is computed using only the training profiles

that use the kth atom for approximation. Next, the atom which minimises the residual error

can be obtained using a singular value decomposition (SVD) approach. We replace the kth

column with this new atom. The process is then repeated for all K columns. Given the new

D, a new X is found by sparse coding and the process is repeated. As a result, the training

error is reduced over several iterations and the dictionary D has been trained to fit all training

profiles in S. Figure 4.6 shows the errors computed from 100 iterations of K-SVD training

for sets of single and recaptured images with values for L equal to 1, 3, and 5. The overall

training error is reduced as the value for L is increased.

By training two dictionaries, DSC and DRC , using the training feature matrices SSC and

SRC , we ensure that the patterns from line spread profiles extracted from single captured

and recaptured images will have been learned. Each dictionary provides an optimal sparse

representation of the line spread features from each class of images.

We now discuss the selection of the optimal number of atoms, L, in the dictionary. Since

each dictionary was trained using the specific blurring patterns from a given class of images,

only one dictionary will provide a good sparse approximation of line spread profiles from the
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Figure 4.7: (a) The root-mean-squared error from K-SVD training using single captured
images over 160 iterations when the number of atoms used is varied from L = 1, 2, 3, ... 10.
(b) The optimal number of atoms used is obtained by observing the number of atoms at which
the errors begin to converge. This can be estimated from the number of atoms that correspond
to the peak of the second derivative of the training error. From our experiment, the optimal
value L = 3.

query image. We, therefore, require a value for L that is large enough to provide a good

approximation. However, if too many atoms are used, the algorithm is unable to discrim-

inate between the two image classes since both dictionaries are now able to provide good

approximations.

To determine the optimal value for L the idea is that the approximation error, et(L), de-

creases with L. However, once the essential information of the signal has been captured, et(L)

will stop decaying rapidly since the algorithm is now capturing noise and non-discriminative

information. This transition point can be detected by finding the peak of the second derivative

of et. The effect on the training error, et, when the number of atoms used for representation

is varied is shown in Figure 4.7(a). The optimal number of atoms is then calculated from the

peak of the second derivative of the error function. From Figure 4.7(b) we can determine that

the peak of the second derivative for our training sets occurs at approximately L = 3.
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4.4 Classification for Recapture Detection

We extract two important feature parameters, λ̄ and Ed, from the line spread profile matrix Q

which we use for classification. The first parameter, λ̄, which models the average line spread

profile width, is computed as follows: the value of λ is defined as the distance that allows 95%

of the spectral energy of the spread function to be captured and is represented by the grey

area shown in the Figure 4.8.

 

λ 

Figure 4.8: The criteria for the calculation of the width λ of the spread function. The width is
the minimum distance that allows the shape of the edge spread function to be approximated
using an estimate of the energy spectral density.

To determine λ̄ we compute the spread widths, λi, for all the line spread profiles qi ∈ IRW

taken from Q ∈ IRW×M and by then taking the average.

Note that a blurred edge generally has a wider spread function compared to a sharp edge.

Thus, the value of λ̄ computed from a recaptured image is expected to be greater than the

value obtained from the equivalent single capture image. The distributions of λ̄ obtained

from experiments using single captured and recaptured training sets are shown in Figure 4.9.

We can conclude that the mode of the distribution of edge spread width values from the set

of recaptured images is higher than the mode of the distribution obtained from the single

captured image set. In addition, the sharp peak that can be observed in the distribution of

edge widths from single capture blocks indicates that a larger number of single capture blocks

contained very sharp edges when compared to the recaptured blocks where the distribution

of edge widths is smooth and bell shaped. Note that the small number of blocks with blurred

edges that appear at the tail of single capture distribution are from the acquisition of low

contrast, poorly defined, edges in the scene.

The second parameter used is the difference of approximation errors Ed. The value of Ed

is used to compare the abilities of the two dictionaries, DSC and DRC , to provide a sparse

representation of line spread profiles from a query image. Given a line spread profile matrix

Q from an unknown image, we define an approximation error using a dictionary trained

from single captured images DSC as ESC = ‖Q−DSCX1‖2F , where X1 is the corresponding
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(a) Single capture dataset
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(b) Recapture dataset.

Figure 4.9: The distributions of average width of line spread profiles computed from (a) single
capture dataset and (b) recapture dataset.

coefficients matrix computed using DSC . In the same way, a representation error using a

dictionary trained from recaptured images is given by ERC = ‖Q−DRCX2‖2F .

The approximation errors, ESC and ERC , describe how well each dictionary fits the line

spread profile matrix Q. To perform recapture classification we compare ESC with ERC . A

query image is classified as recaptured if ESC ≥ ERC . Otherwise it is considered as single

captured. We define the difference of approximation errors (Ed) as follows:

Ed = ESC − ERC = ‖Q−DSCX1‖2F − ‖Q−DRCX2‖2F . (4.4)

One way that Equation (4.4) may be interpreted is that the image is more likely to be single

captured if Ed is negative. If Ed is positive the image is more likely to be recaptured. The

histogram of error Ed computed from experiments using single captured images and recaptured

images are shown in Figure 4.10(a) and Figure 4.10(b) respectively.

In our training process a set of pairs of parameters, λ̄ and Ed, extracted from each image in

the training set is formed. The parameter pairs are then labelled as either single or recaptured,

depending on the class of training images used. They are then used for training the classifier.
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(b) Recapture dataset.

Figure 4.10: The histograms of error Ed computed from (a) single capture dataset and (b)
recapture dataset.

Figure 4.11 is a plot in the feature coordinate space, (λ̄, Ed), of the parameter pairs from all

the images used for training purposes. A support vector machine (SVM) classifier was trained

and the classification hyperplane (solid line in Figure 4.11) was generated.

From Figure 4.11, we can observe that the difference in representation error, (Ed), can be

used as a feature to effectively distinguish between single and recaptured images. The majority

of images in the single and recaptured groups were separated correctly by the criterion Ed = 0

(dotted line). However, the hyperplane obtained from the SVM training process (solid line)

resulted in better classifier performance since the mean width of the edge spread function, λ̄,

was taken into account. We have assumed that the distribution of features from the training

images is typical of the type of images we are likely to encounter on a daily basis. The trained

classifier is, therefore, used for our recapture detection algorithm.

We note that other no-reference blur metrics that operate on the whole image [100, 101]

could be used instead of λ̄. In Section 5.2.3 we evaluate the recapture detection performance

of the algorithm when the spread width λ̄ are replaced by the CPBD blurring matrices.

However, we have observed through the experiments that the blurring metrics are less effective

at classifying single and recaptured images than λ̄, especially when combined with other

discriminative features such as Ed. For this reason we have decided to use λ̄ in our work.
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Figure 4.11: A plot of the distributions of features extracted from training images with the
average width of spread function (λ̄) shown on the horizontal axis and the difference of rep-
resentation error (Ed) on the vertical axis. The hyperplane for recapture classification was
obtained using SVM training and is defined as the line that separate the features from the re-
captured (star) and single captured (circle) images with minimum classification error. A query
image is classified based on the coordinate location of the feature pair, λ̄, Ed, determined from
the image.

4.5 Summary

In this chapter we have proposed a novel and practical algorithm to detect recaptured images.

The algorithm is based on differences between the edge blurring patterns present in original

and recaptured images. The algorithm uses two important features to extract the differences.

The first feature Ed represents the degrees of similarity between line spread profiles ex-

tracted from a given image and the spread profiles that dictionaries approximate. It is com-

puted from the difference between the errors ESC and ERC when approximate line spread

profiles of the given image using dictionaries DSC and DRC respectively. We have first trained

the dictionaries DSC and DRC to learn provide optimal sparse representations of the profiles

from single captured and recaptured images. The dictionary that can better approximate the

given profiles, therefore, would produce smaller approximation error. Since we have defined

Ed = ESC−ERC , the error Ed is likely to be negative for original captured images and positive
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for recaptured images.

The second features we have used is the average width of spread profiles λ̄. It is com-

puted from the average value of the distance that allows 95% of the spectral energy of the

line spread profiles to be captured. We have statistically shown that the width parameters

computed from recaptured images have greater values when compared to the width from single

captured images. We finally trained an SMV classifiers using pairs of the features λ̄ and Ed

obtained from labelled sets of single captured and recaptured images. The resulting hyper-

plane that optimally separates features from single capture and recapture sets is ready to use

for classification.
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Chapter 5

Experiments

In this chapter we discuss experiments on the performance evaluation of our proposed algo-

rithm. The performance is measured in terms of precision of detecting images from known

single captured and recaptured classes. In the first section we present how to prepare image

database for performance testing. In particular the conditions for recapturing images without

introducing visible aliasing artefacts are discussed. In experimental sections we describe pa-

rameter setting and test the algorithm in three different aspects. First we test the performance

of the algorithm we have presented in Chapter 4. Then we modify the algorithm and replace

our proposed feature λ̄ by the state-of-the-art blurring metrics before it is tested with the

same datasets. The precision of our algorithm and the modified version are compared in order

to prove the discrimination ability of our distinctive features. Finally we test the universality

of our proposed algorithm. The precision of the algorithm is measured when it is tested with

images taken from cameras that were not included in the training stage.

5.1 Database of Recaptured Images

A database of images recaptured from an LCD monitor was developed for the purposes of

testing and evaluating the performance of the recapture detection algorithm described in

Chapter 4. The recapture database comprises 315 single capture images from nine cameras

and 2520 images recaptured using eight cameras. The database will be made publicly available

in order that it can be used as a common database for researchers in the field of image forensics

who wish to benchmark their algorithms. Currently available image databases include the

‘Dresden Image Database’ [114]. This is probably the most well known still image database

for forensic applications, but it does not include any recaptured images.

Note: The contributions of this chapter are shared with Dr. Hani Muammar who prepared a dataset for
alias-free recaptured images.

87
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Table 5.1: A table of the digital cameras used in the recapture database.

Camera Make and Model Year Sensor Type MPixels Original Recapture

Capture

Kodak V550 (silver) 2005 1/2.5 ” CCD 5 Yes No

Kodak V550 (black) 2005 1/2.5 ” CCD 5 Yes No

Kodak V610 2006 1/2.5 ” CCD 6 Yes No

Nikon D40 2006 APS-C CCD 6 Yes No

Panasonic TZ10 2010 1/2.33 ” CCD 12.1 No Yes

Nikon D3200 2012 APS-C CCD 24.2 No Yes

Canon 60D 2012 APS-C CMOS 18 No Yes

Nikon D70s 2004 APS-C CCD 6 Yes Yes

Panasonic TZ7 2009 1/2.33 ” CCD 10 Yes Yes

Canon 600D 2012 APS-C CMOS 18 Yes Yes

Olympus E-PM2 2012 Four thirds CMOS 16.1 Yes Yes

Sony RX100 2012 1 ” EXMOR CMOS 20.2 Yes Yes

5.1.1 Image Capture and Display Equipment

Nine cameras were used to photograph the original scenes and eight to recapture the images

from the LCD monitor. Five of the cameras used to carry out the original captures were

used for recapture thereby resulting in a total of twelve cameras in the database. A list

of cameras used, their specifications, and usage is shown in Table 5.2. They include six

compact digital cameras with fixed zoom lenses, five digital single lens reflex (DSLR) cameras

with interchangeable lenses and one compact camera with interchangeable lenses. With the

exception of the three Kodak cameras and the Panasonic TZ7, all cameras provided both

automatic and manual exposure settings. The two Kodak V550 models are equivalent in

specification and differ only in their finish. They are indicated as silver and black in Table 5.2.

All the images were recaptured from an NEC MultiSync EA232WMi 23” IPS LCD monitor

with LED backlighting and a resolution of 1920 x 1080 pixels.

5.1.2 Original scene capture

The database comprises mainly natural scenes photographed indoors and outdoors under

different types and levels of illumination. Some examples of originally captured scenes (top

row) and the recaptured images (bottom row) are shown in Fig 5.1. A significant proportion

of the images were taken outdoors under sunny or overcast conditions. Those taken indoors

were acquired mostly under natural illumination, but also included a scene with a MacBeth
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(a) Architectural scene (b) Recaptured architectural scene

(c) Natural scene (d) Recaptured natural scene

(e) Wildlife scene (f) Recaptured wildlife scene

(g) Indoor scene (h) Recaptured indoor scene

Figure 5.1: Images from the recapture database showing examples of originally captured and
recaptured scenes.

Colorchecker test chart captured under natural illumination and using the camera’s internal

flash, where available. Each scene in the database was photographed once by each of the test

cameras under equivalent, or nearly equivalent, illumination conditions. This allowed for a

one to one correspondence between a scene and each test camera. All the cameras were set to
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automatically select the exposure setting, ISO and white balance setting, with the exception

of the Macbeth test chart scene where different ISO settings were selected. The database

contains 35 images per camera giving a total of 315 single captured images over all 9 cameras.

5.1.3 Recapture

A high priority when developing the recapture database was that the recaptured images would

be high in perceived quality and finely recaptured. All image recaptures were conducted in

a darkened room, to eliminate unwanted reflections from the monitor and the surrounding

environment. The single captured images were prepared for display by resizing them using a

bicubic interpolation kernel to the pixel dimensions of the NEC monitor. The camera used to

recapture the images from the LCD monitor was placed on a sturdy tripod. Before recapturing

the images, the LCD monitor was calibrated to the sRGB standard with γ = 2.2 and a monitor

white point luminance of 240 cd/m2. The lens focal length of each camera was set to a value

that minimised the level of geometric distortion introduced in the recaptured image as much

as was practically possible.

It addition, it is important to minimise aliasing which is one of the most common visible

artefacts left on recaptured images. In general it is very difficult to obtain alias-free images

unless a precise calibration is performed. All recaptured images used in our experiments were

prepared by Dr. Hani Muammar. The monitor to camera distance was determined by applying

the alias frequency maximisation method described in [70]. The procedure for determining the

capture distance and lens aperture setting is described with the aid of the following example

in which a Canon 600D camera was used to recapture images from the NEC monitor. The

image sensor in the Canon 600D camera has a pixel pitch of 4.306 52 µm. The pixel pitch of

the NEC monitor is 0.2650 mm. According to the estimation technique presented in [70], a

capture distance of 1445.2 mm was used for a lens focal length of 30 mm. An aperture setting

of f/11 was used to eliminate visible aliasing from the recaptured image due to aliasing in the

green channel. The aperture settings and capture distances used for each camera model are

shown in Table 5.2.

After setting the camera to monitor distance, the camera’s image sensor was aligned with

the plane of the monitor faceplate. The camera’s ISO setting was manually set to a value that

did not introduce excessive levels of image noise in the recaptured images, and the camera

was allowed to select the exposure automatically. To eliminate colour balance errors by the
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Table 5.2: Distance and camera settings used for recapture, listed by camera models.

Camera Model Capture Distance (mm.) Focal Setting (mm.) Aperture Setting

Nikon D3200 1600 30 f/10

Nikon D70s 790 29 f/20

Canon 600D 1450 30 f/13

Canon 60D 1450 30 f/13

Sony RX100 1500 18 (Exif) f/5.6

Olympus E-PM2 1350 25 f/9

Panasonic TZ7 830 6.1 (Exif) f/4

Panasonic TZ10 830 6.1 (Exif) f/4

recapture camera, the camera’s white point was preset by estimating it from a white patch

displayed on the monitor. The recaptured images were cropped to remove the LCD monitor

surround.

5.2 Experimental Results

5.2.1 Experimental Design and Parameter Setting

Our algorithm was tested by applying it to the set of single and recaptured images from the

database described in Section 5.1. The single and recaptured images were initially divided

into two groups; one for training and the other for testing purposes. Each set of 35 single

capture images from the nine cameras used to capture the original scenes was partitioned

into 15 images for training and 20 images for performance evaluation. This resulted in a

total of 135 images for training and 180 images for testing. As mentioned in Section 5.1,

the recaptured images in the database were taken over 72 different single/recapture camera

combinations resulting in a total of 2520 images. These were divided into 1080 images for

training and 1440 images for testing. The set of training images was further reduced to 216

images by randomly selecting three images from each recapture camera combination. This was

done to eliminate any bias introduced during training due to large differences in the number

of single and recaptured images. All the images were resized to a width of 2048 pixels because

of differences in the size of the images resulting from variations in the camera image sensor

pixel counts. The image height during resizing was set to a value that preserved the original

aspect ratio of the image.

The K-SVD software library that is publicly provided by the authors [111] was used to train



92 CHAPTER 5. EXPERIMENTS

Table 5.3: Classification precision of the algorithm in detecting original captured images. The
algorithm is tested with the original capture dataset and the results are listed according to
the cameras used for capture.

Camera Model No. of
Classification Results

Performance (%)
images Single Recapture

Kodak V550 (Black) 20 18 2 90

Kodak V550 (Silver) 20 15 5 75

Kodak V610 20 18 2 90

Nikon D40 20 20 0 100

Nikon D70s 20 19 1 95

Canon EOS 600D 20 20 0 100

Sony RX100 20 20 0 100

Olympus E-PM2 20 20 0 100

Panasonic TZ7 20 20 0 100

Average 94.44

our dictionaries. The training feature matrices SSC and SRC were built from the edge spread

features qi with length W=16 collected using the blocks selected from single captured and

recaptured images respectively. One in every four spread features were used in order to reduce

the size of the training data. Before being used for K-SVD dictionary training each spread

feature was interpolated by 4x to increase the number of data points to 64. The initial set of

atoms was constructed from the line spread functions of the nine single capture cameras and

63 different line spread functions determined from randomly selected image recapture camera

combinations. The dictionaries were trained over 160 iterations of the K-SVD algorithm at

which point the errors converged to a predetermined minimum value.

Total 351 pairs of training features were extracted from the 351 training images according

the method discussed in Section 4.4. The obtained features were labelled according to the

classes of images before being used for SVM training. The resulting classification hyperplane

is shown in Figure 4.11.

5.2.2 Performance Evaluation of the Proposed Algorithm

Our proposed algorithm was tested with the test image set described in Section 5.2.1 and the

results are shown in Table 5.3 and Table 5.4. In Table 5.3 the results are presented according to

the cameras used for single capture. A total of 170 out of the 180 single captured images were

correctly classified corresponding to a 94.44% true negative rate (TN). In Table 5.4 the results

are presented in groups according to the camera used to recapture the images. Performance is
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Table 5.4: Classification precision of the algorithm in detecting recaptured images. The
algorithm is tested with the recapture dataset and the results are listed according to the
cameras used for recapture.

Camera Model No. of
Classification Results

Performance (%)
images Single Recapture

Nikon D3200 180 0 180 100

Nikon D70s 180 1 179 99.44

Canon EOS 600D 180 2 178 98.89

Canon EOS 60D 180 1 179 99.44

Sony RX100 180 0 180 100

Olympus E-PM2 180 7 173 96.11

Panasonic TZ7 180 0 180 100

Panasonic TZ10 180 1 179 99.44

Average 99.17

consistently good, spanning from a 96.11% true positive (TP) rate for the E-PM2 to a 100%

success rate for the Nikon D3200, Sony RX100 and Panasonic TZ7 models.

It is interesting to note the drop in detection rate for single captured images that were

originally captured using the Kodak cameras. One possible reason is that the images captured

using these cameras are, on average, less sharp than the images obtained by the other ‘single

capture’ cameras. This may be due to the fact that they are all budget compact cameras that,

with the exception of the Nikon D70s DSLR camera, are production models released three or

more years earlier than the other cameras used in this test (see Table 5.1). The newer cameras

in the set are likely to have benefited from advances in lens design enabling them to generate

significantly sharper images than earlier camera models.

5.2.3 Blurring Metric as a Feature for Classification

According to Section 4.4, the level of blurriness is one of the features that can classify single

captured and recaptured images. We have used the width of line spread profiles λ̄ as a metric

to determine the degrees of blurriness of edges. From the feature coordinate in Figure 4.11,

we note that while the error Ed is probably the more important feature, λ̄ is also useful in

that it has increased the discrimination ability of the classifier. The feature λ̄ , however, is

not the only metric for blurriness measurement. In this section we test the algorithm when

our proposed feature λ̄ is replaced by a state-of-the-art blurriness metric. The purpose of the

test is to compare the abilities to detect recaptured images of our proposed distinctive feature

and one of the existing metrics. We consider using the CPBD metric [101] as it is one of
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the well-known no-reference image blur metrics [99, 100, 101] used to quantify the sharpness

quality of digital images. The way to interpret CPBD metric is that a sharp image would have

high CPBD value. When the blurriness in the image increases, the resulting CPBD metric

would decrease monotonically. Consequently we can expect that the CPBD metric measured

from single captured images would have greater values when compared to the values measured

from recaptured images.

In Table 5.5 the average of CPBD metrics computed from single captured images and their

corresponding recaptured versions are compared. The CPBD values are calculated using a

MATLAB software package made publicly available by Narvekar and Karam [101]. We can

observe that the CPBD values of the images from all cameras drop after the images were

recaptured. The average CPBD value for single captured images is 0.581 while the average

CPBD for recaptured images is 0.409. To build a new SVM classifier using the CPBD metric

as one of the features, we repeat the training process of Section 4.1. We compute CPBD

values, denoted by θ, for all the training images. A new pair of features {θ,Ed} for each image

is constructed using the obtained θ and the already computed error Ed. After that all pairs

of training features are used to train an SVM classifier in order to obtain the new hyperplane.

The scatter plot of features with the resulting hyperplane is shown in Figure 5.2.

We can observe that the hyperplane (solid line) increases the classification ability of the

classifier when compared to the classifier that uses only the feature Ed (dotted line). However,

the slope of the hyperplan suggests that the discrimination ability of the classifier is largely

determined by the feature Ed. In addition, this hyperplane has lower degree of slope when

Table 5.5: CPBD metrics of images according to cameras used for original capture. The
metrics computed before and after image recapture are compared.

Camera Model
CPBD Metric

Single Capture After Recapture

Kodak V550 (Black) 0.526 0.382

Kodak V550 (Silver) 0.531 0.383

Kodak V610 0.500 0.359

Nikon D40 0.623 0.450

Nikon D70s 0.619 0.411

Canon EOS 600D 0.521 0.397

Sony RX100 0.618 0.443

Olympus E-PM2 0.611 0.403

Panasonic TZ7 0.676 0.418

Average 0.581 0.409



5.2. EXPERIMENTAL RESULTS 95

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−12

−10

−8

−6

−4

−2

0

2

4

6
x 10

−3

CPBD Blurring Metric

D
iff
er
en
ce

o
f
A
p
p
ro
x
im

a
ti
o
n
E
rr
o
r
E

d

 

 

Single Capture
Recapture
Hyperplane

Figure 5.2: A plot of the distributions of features extracted from training images with CPBD
metric (θ) shown on the horizontal axis and the difference of representation error (Ed) on the
vertical axis. The hyperplane for recapture classification was obtained using SVM training
and is defined as the line that separate the features from the recaptured (star) and single
captured (circle) images with minimum classification error. A query image is classified based
on the coordinate location of the feature pair, {θ, Ed} determined from the image.

compared to the hyperplane obtained from our proposed algorithm using λ̄ feature. We

therefore argue that the feature λ̄ used in our proposed algorithm has higher ability to extract

distinctive characteristics between line spread profiles from single captured and recaptured

images.

The hyperplane obtained from the training process is then used for testing purpose. We

repeat the performance evaluation of the modified algorithm following the similar process

and parameter setting previously stated in Section 5.2.1. The classification precision of the

algorithm when it is tested with single captured images is presented in Table 5.6. The results

show that the modified algorithm using the CPBD metric is slightly better than our proposed

algorithm with a classification precision of 95.56 % against 94.44 %.achieved using the spread

width λ̄.

The results in Table 5.7, nevertheless, suggest that our proposed algorithm using λ̄ has

higher classification precision in detecting recaptured images. The algorithm using λ̄ feature

has higher precision for all 8 groups of images recaptured from 8 different cameras. The
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Table 5.6: The classification precision of the algorithm in detecting single captured images
according to the feature used for blurriness measurement.

Camera Model
Performance (%)

Spread Width λ̄ CPBD Metric

Kodak V550 (Black) 90 95

Kodak V550 (Silver) 75 95

Kodak V610 90 90

Nikon D40 100 100

Nikon D70s 95 90

Canon EOS 600D 100 100

Sony RX100 100 100

Olympus E-PM2 100 90

Panasonic TZ7 100 100

Average 94.44 95.56

Table 5.7: The classification precision of the algorithm in detecting recaptured images accord-
ing to the feature used for blurriness measurement.

Camera Model
Performance (%)

Spread Width λ̄ CPBD Metric

Nikon D3200 100 97.22

Nikon D70s 99.44 98.33

Canon EOS 600D 98.89 98.33

Canon EOS 60D 99.44 98.89

Sony RX100 100 98.89

Olympus E-PM2 96.11 62.22

Panasonic TZ7 100 98.33

Panasonic TZ10 99.44 97.78

Average 99.17 93.75

overall precision of our algorithm is 99.03 % which is higher than the performance of 93.75 %.

achieved when using the CPBD metric.

Our proposed blurring feature λ̄ is therefore overall superior. This is because most blurring

metrics including the CPBD metric were introduced to measure the global level of blurriness

in images, since these metrics are used normally for quality assessment of digital images

rather than forensics. It is therefore necessary for these metrics to highlight global degrees of

blurriness as they are based on the measurement of blurriness levels perceived by the human

visual system. These metrics are often influenced by content of images and the depth of field

(DOF) of cameras. For examples, when edges with various degrees of sharpness are present in
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a captured scene, the value of blurring metrics would be determined by the average sharpness

of all edges in the image. In addition, when the image is taken using a narrow depth of

field, large areas of images in off-focused area are blurred. These factors will increase the

value of blurriness making these metrics less able to discriminate between single captured and

recaptured images.

This is contrast with the method based on line spread profile width λ̄. In Section 4.2, the

parameters λ̄ is computed using only a group of sharpest blocks in images and the majority

of blurred edges are discarded. In this way the obtained width value would not be affected by

the blurriness in off-focused areas. This makes the λ̄ more suitable for our recapture detection

application.

5.2.4 Universality of the Algorithm

In the previous section we assumed that the edge profiles of a wide range of image capture

devices and recapture chains are known. In practice, the range of devices and image chains

that are characterised may be limited. In this section, the performance of the algorithm was

tested when applied to images acquired from unknown capture devices. It is anticipated that,

in practice, the edge profiles of single and recaptured images are fundamentally different,

and that recapture detection is possible even though a small range of devices and chains

representative of the population have been characterised. An experiment was devised in

which the algorithm was trained with single and recaptured images taken with a different

set of cameras to that used to capture the images used for testing. Table 5.8 illustrates the

configuration of the training and testing image sets. Note that the cameras used for single

capture and recapture differ for the training and testing sets. A total of 60 single captured

images and 108 recaptured images were used for training. For testing purposes, 100 single

captured images and 720 recaptured images were used.

The new hyperplane resulting from the training of the K-SVD dictionary and SVM, was

used for performance evaluation. The recapture detection results are shown in Table 5.9. A

recapture detection rate, or true positive (TP) rate, of 99.31% was obtained over all cameras.

For the detection of single captured images, a true negative (TN) rate of 97% was obtained.

We can conclude, therefore, that the overall performance of the algorithm has been maintained

despite using images from different cameras for training and testing.

The experimental work conducted in this section has shown that the proposed algorithm

is robust to a wide range of images and can be applied successfully to a wide range of capture
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Table 5.8: Group configuration for images used to test the universality of the algorithm

Image Set Single Capture Camera Recapture Camera

Training

Nikon D40 Nikon D3200

Canon EOS 600D Canon EOS 600D

Kodak V550 Black Case Olympus - E-PM2

Kodak V610 Panasonic TZ10

Testing

Nikon D70s NikonD70s

Olympus - E-PM2 Canon EOS 60D

SONY RX100 SONY RX100

KodakV550 Silver Case Panasonic TZ7

Panasonic TZ7

Table 5.9: Recapture detection performance of the algorithm for the universality testing

Camera Model No. of
Classification Results

Performance (%)
images Single Recapture

Single Capture Database

See Table 5.8 100 97 3 97.00

Recapture Database

Nikon D70s 180 2 178 98.89

Canon EOS 60D 180 1 179 99.44

Sony RX100 180 0 180 100

Panasonic TZ7 180 2 178 98.89

Average 99.31

devices. Furthermore, it is able to cope with query images from unknown sources and image

chains.

5.3 Performance Comparison

Next we compare the performance of our proposed algorithm with state-of-the-art techniques

for detecting recaptured images in our alias-free recapture dataset. Our comparison is pri-

marily based on the method presented by Cao and Kot [1] because it is one of the first and

most referenced approaches for detecting recaptured images from LCD monitors. In addition,

this chosen method was previously tested on a set of finely recaptured images thus it is most

comparable to our method. The classification of this technique relies on the combination of 3

types of features as follows:
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Local Binary Feature (LBP)

The Local Binary Pattern (LBP) [115] is widely used for texture analysis. The LBP feature

and its statistics are used in [1, 86, 116] for recapture detection because the authors found

that the LBP features extracted from recaptured and single captured images are markedly

different. Such differences are characterised by texture anomalies introduced to recaptured

images during a recapture process , for examples textures tiny cells of an LCD monitor and the

unique polarity inverse driving patterns. In our experiments, the images were first converted

to grayscales before we extracted the Rotation Invariant Uniform LBP LBP riu28,1 , LBP riu216,2 ,

and LBP riu224,3 from each image using the LBP MATLAB software package provided at [117].

The resulting features extracted from individual image were three normalised histograms with

10, 18, and 26 histogram bins respectively. The histograms were then concatenated to form a

feature row of 54 elements.

Multi-Scale Wavelet Statistics (MSWS)

In [1], the authors suggest that once images are recaptured, the loss of image details is

inevitable. The detail loss is caused by mismatch between the resolutions of the LCD screen

and the image sensor. In the paper the Multi-Scale Wavelet Statistics (MSWS) was used to

measure the detail loss that marks the differences between recaptured and original images.

First, three levels of 2D wavelet decomposition is applied separately to R, G, and B chan-

nels of a given image using a standard Haar filter. Only detail coefficients HL, LH, HH of

each decomposition level were used. This results in 3 × 3 × 3 = 27 sets of detail coefficients

for all colour channels and all levels of decomposition. Next, mean and variance of each set of

detail coefficients were computed. We therefore obtain 54 features that represent Multi-Scale

Wavelet Statistics of the image.

Colour Features

RGB colour features including average pixel values, colour channel correlations, neighbour

distribution centers of mass, and pairs energy ratios were initially used in [118] for blind

source camera identification. The method has high precision because tones of images are

often unique to camera models. In [1], these features are used with colour moments computed

from HSV colour space [119] for recapture detection purpose. In the experiment, the first 4

colour features were extracted separately from the RGB colour channels thereby resulting in

12 features. The additional 9 features including mean, standard deviation and skewness of
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colour components in the HSV space were then computed. The total number of dimensions

for colour features is 21.

After implementing algorithms to extract all features used in [1], we ran the algorithms to

extract the features from the same training set we used in our technique. Total 129 features

were obtained for each given image and labelled as a recaptured or original captured accord-

ing to the class of the images. The extracted features were then used to train a probabilistic

support vector machine (PSVM) classifier using the LIBSVM tools following the technical

guideline in [120]. This results in a hyperplane which can classify a given image to a recap-

tured or original captured group based on its extracted features. The classifier was then tested

with the testing set.

Higher-order Wavelet Statistics

In addition to the technique presented in [1], recapture detection algorithm based on fea-

tures from Higher-order Wavelet Statistics was frequently used as a benchmark to compare

performance in detecting recaptured images. These features were first used in forensic prob-

lems to discriminate between photographic and computer graphic images [121, 122]. They

were used in [1, 86] to compare recapture detection performances because the features can ex-

tract unique fine texture patterns that present in original images. These patterns, in contrast,

are likely to be absent in computer graphic or recaptured images. The feature extraction in-

volves image decomposition using separable quadrature mirror filters (QMFs) [123, 124]. The

resulting vertical, horizontal, and diagonal subbands are used to compute mean, variance,

skewness, kurtosis, and error statistics. We used the software library provided with [122]

to extracted features and obtained 216 features for a given RGB image. We then repeated

all training process using a PSVM classifier and obtained the algorithm for recapture detection.

The performances of the methods [1] and [121], and our proposed techniques in classifying

original and recaptured images are presented in Table 5.10. We compare the performances in

terms of true positive (TP) rate, false negative (FN) rate, true negative (TN) rate, false positive

(FP) rate, and the number of features used when the algorithms were tested with our dataset.

According to the results, our propose method outperforms both the existing techniques in

classifying original and recaptured images. Our technique has higher true positive (TP) rate

at 99.03 % compared to the TP rates of the methods [1] and [121] at 92.02% and 90.04%

respectively.
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Table 5.10: The comparison of performances of the algorithms in classifying original and
recaptured images.

Method Number of Features
Performance (%)

TP FN TN FN

MSWS+LBP+Colour Features [1] 129 92.02 7.98 84.44 15.56

Higher-order Wavelet Statistics [121] 216 90.04 9.96 87.22 12.78

Proposed Method 2 99.03 0.97 94.44 5.56

Our propose method also has highest performance in detecting original captured images

from the original capture set with the TN rate at 94.44 %. This rate is higher than the TN

rates of the methods [1] and [121] at 84.44% and 87.22% respectively.

In addition to the higher performances, our method uses only 2 features extracted from

each given images when compared to 129 and 216 features required in the methods [1] and

[121] respectively. Our method, however, requires block-based edge extraction and dictionary

learning processes to obtain a smaller number of features.

The main reason that our proposed method has higher classification performance is that the

features we used can better extract distinctive characteristics between original and recaptured

images in our dataset. In particular the aim of our method is to detect images that were finely

recaptured to create near-duplicate spoofs of original images. The database we used hence

was created from the settings that allow to obtain alias-free recaptured images. We also tried

to eliminate the tiny patterns of surface texture of the LCD screen such that the recaptured

images are not easily detected by human inspection. Our base line is that the algorithm must

be able to detect recaptured images when these traces are minimally visible. These patterns

and textures, however, were useful traces for the methods [1] and [121] but are not used in

our technique. When these patterns are not present in the test images, this did not affect the

performance of our algorithm but decreased the classification abilities of the existing methods,

in particular the method using LBP features.

The other important reason is that our features were extracted locally. They are the

selected edge profile features that are most likely to mark the differences between original and

recaptured images. Edge profiles outside the regions of interest, for examples off-focused areas

and the blocks without edges, were discarded. This is contrast to the methods to compute

texture features in [1] and [121] where the statistics of wavelet coefficients were computed

globally. These wavelet statistics generally have high discriminative power when larger areas
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of images are spanned with high details. On the other hand, when images contain large areas

of plain space and only small regions with fine textures, the loss of fine textures in recaptured

images would not significantly change the statistical values of wavelet coefficients because they

were averaged across the images. The wavelet statistics extracted globally therefore have less

sensitivities and lower discriminative power compared to our features for these types of images.

5.4 Summary

In this section we have presented experiments to evaluate performance of our proposed al-

gorithm in detecting recaptured images. We first described how to create a database for

alias-free recaptured images. These images were used to test our algorithm. The results have

shown that the proposed algorithm is robust to a wide range of images and can be applied

successfully to a wide range of capture devices. Furthermore, it is able to cope with query

images from unknown sources and image chains. Finally we have tested the performances of

well-known methods using our dataset. The results have shown that our algorithm has better

performances in classifying original captured and recaptured images when compared to those

benchmark methods.
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Conclusions

6.1 Thesis Summary

We have presented in this thesis two different forensic techniques for the reverse engineering

of image acquisition chains. Our techniques are based on blurriness footprints introduced

to digital images during acquisition processes. In the first approach we have proposed a

theoretical framework to address the problem using the theory of sampling signals with finite

rate of innovation. We simplify the problem by describing chains of processing operators

using a 1-D signal model and focussing on the case that signals are reacquired at most once.

In particular conditions, the proposed technique allows to retrieve the acquisition history

of unknown discrete signals. We have been able to provide a precise answer whether the

given signal was recaptured before or obtained directly through the original acquisition. In

reacquisition case, our technique makes possible for estimating the parameters of the chain

the signal has gone through including the sampling period, and the interpolation function.

The main requirement necessary to this framework is that the characteristics of the most

recent acquisition device must be known in advance. For example in an image system, line

spread functions of the devices used for last capture must be known. The sampling kernels

assumed in that context are the kernels that can reproduce polynomials, such as B-spline

functions. Using the FRI sampling theory we can estimate the number of K discontinuities

of unknown continuous signals from their corresponding samples. Our reacquisition detection

algorithm is based on the fact that the original signal and reconstructed signals are described

differently in terms of number of discontinuities in the FRI signals. Specifically the original

signal is assumed to be a sharp straight edge which can be modelled using the step function.

The function is an FRI signal with a number of discontinuity K = 1. In contrast, we have

found that particular types of signal reconstruction, e.g. polynomial interpolation, produce
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piecewise polynomial functions which are FRI signals with K > 1.

The FRI sampling theory also allows us to achieve perfect reconstruction of the continuous

signals. This reconstruction technique permits to reverse engineer the acquisition process and

to retrieve important parameters of the chain the signals have gone through. Finally we have

proven two sufficient conditions that make the reverse engineering technique feasible. The

sufficient conditions impose the constraints that the second device must have better qualities

when compared to the first acquisition device. That is, first the second sampling kernel must

be capable of reproducing polynomial of sufficiently high degree. This order is determined by

the length of the previous sampling kernel, sampling rate of the previous acquisition, and the

order of polynomial interpolation. Second, the reacquisition must be performed at sufficiently

high sampling rate when compared to the sampling rate of the first acquisition.

Our second approach has focused on detecting recaptured images. We have explained how

to verify whether a given query image was genuine or a recaptured image. Our forensic analysis

is based on unique characteristics of blurriness patterns introduced to edges during acquisition

processes. We have described the blurring patterns using line spread profile features extracted

from edges present in digital images. From our studies, line spread profiles obtained from

single captured images are markedly different from the profiles from recapture images. We

have extracted such differences using two features, namely width of line spread profiles λ̄

and the error Ed. The first feature is the measurement of the level of blurriness introduced

to images. The image with higher degrees of blurriness would result in larger value of line

spread profile width λ̄. Our experimental data has suggested that image recapture increases

the degrees of blur to the images. We have observed that the increased levels of blurriness are

significant and markedly different from the levels measured from single captured images. Such

differences have been used for classification between original captures and recaptured images.

The second feature Ed corresponds to the shapes of line spread profiles. We have found that

the shapes of line spread profiles from single captured and recaptured images are different.

We trained two different overcomplete dictionaries to learn the shapes of line spread profiles

extracted from each group of images. The error Ed is obtained from the difference between

sparse approximation errors of the profile based on the two overcomplete dictionaries. The

value of Ed is determined by the similarity between the profiles from the query image and the

approximated profiles that each dictionary generates. The value is likely to be negative for a

single captured image and positive for a recaptured image. Next we trained an SMV classifier

using pairs of features {λ̄, Ed } extracted from separated sets of labelled single captured and
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recapture images. The result of training was the hyperplane which was used to classify a pair

features from a query image. The trained classifier was then used for recapture detection.

We have created a dataset for experiments. The dataset comprises 315 original images

captured from 9 different cameras and 2520 recaptured images obtained from 72 different

recapture combinations. The recapture was setup to remove aliasing artefacts which are one

of the visible traces of recapture. The images were divided for training and testing purposes.

The experimental results have shown that our proposed algorithm has high performance in

detecting recaptured images. The detection precision of the algorithm is 99.17% against the

dataset of 1440 recaptured images. The precision of the algorithm is 94.44% when it was

tested with 180 single captured images.

We also conducted three additional experiments. The first experiment was to compare

the classification abilities of the algorithm when using our feature λ̄ and the CPBD blurring

metric. We have proved that our proposed feature is more suitable for the image recapture

detection algorithm. In the second experiment, we tested the universality of the proposed

algorithm. The results have suggested that our algorithm could maintain high classification

precision although it was tested with images from unknown sources and image chains. Finally

we compared the performances of our algorithm with two well-known benchmark methods

using our dataset. The results have shown that our method outperforms both algorithms in

detecting recaptured and original captured images when using a smaller number of features.

We have suggested that our algorithm has higher performances because our method has been

able better to extract local distinctive features that mark the difference between original and

recaptured images. In particular we gained better performances when artefacts from aliasing

and tiny cells of the LCD screen were not present in the images, and also when images

contained small areas with fine details.

6.2 Future Research

To conclude this thesis we discuss some open questions and possible directions for future

research. We split this discussion into two parts: the extensions for theoretical framework for

reverse engineering of signal processing chains and the improvement of the image recapture

algorithm.

Theoretical framework for reverse engineering of signal processing chains

The theoretical framework proposed in this thesis is based on the most simple chains of
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operators. In particular, we have assumed that the signal is reacquired at most once. It

would be interesting to consider the problem of more complex chain structures, for example a

longer chain of multiple A/D and D/A conversions. A possible future research question might

address a method to retrieve the number of acquisitions and reconstructions the signals have

gone through.

In addition, for the focus of the research we have formulated the problem using only acqui-

sition and reconstruction operations in this thesis. Chains of processing in practice, however,

comprise more than two types of operators. The extended chains of acquisition might also

include other operators, such as quantisation and transform coders. The proposed frame-

work might be extended and use the analytical technique presented in [125, 126]. This new

problem setup can lead to the development of forensic techniques for detecting or identifying

quantisers and coders in complex chains of operators. The future research might also study

the chains with combinations of sampling operations in the continuous and discrete domain.

The understanding in this type of chains would allow to detect whether images were digitally

manipulated with resizing or rotating techniques before recapture.

The extension can also consider the analysis of the impact of noise on the proposed algo-

rithms similarly to the work of Blu et al. [127]. In particular, deriving performance bounds,

such as the Cramer-Rao bounds, would provide much insights as to how the noise affects the

reverse engineering schemes.

Other possible future research might include the extension to 2-D signal models and dif-

ferent classes of sampling kernels.

The improvement of image recapture algorithm

In Chapter 5 we have shown that the proposed method has high performance in classifying

original captures and recaptured images. The algorithm, however, has failed to produce correct

results for some few cases. In particular, when no sharp edges are present in the scenes, some

original images are classified as recaptured because the blurriness pattern measured from those

images deviates from the typical training patterns. On the other hand, recaptured images can

also be misclassified in some cases. For example, if the monitor or second devices have very

high quality, the resulting recaptured images can be very sharp. The edges extracted from

these images could be sharp enough and very similar to edges obtained from original captured

images, making the classification more difficult. In addition, image sharpening algorithm can

also spoof our algorithm if recaptured images are enhanced and have sharper edges.
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One way to improve the algorithm is to train the classifier with larger and richer kinds of

images. The major reason, however, is that the algorithm is heavily dependent on the feature

from acquisition blurriness. The future research might lie in combining the features used in

the proposed algorithm with other types of features including noise, saturation, contrast, and

the loss of high frequency details. We believe that the improvement using these features will

increase the robustness of the algorithm.

The algorithm can also be improved using side information from relevant database. First

the query image might be used to retrieve a near duplicate image from online or available

database. If the similar image is found, it is likely that one of the images is a duplicate or

recaptured version. Then we can use the techniques proposed in this thesis to extract features

that can distinguish between two versions of images. If the query image has higher degree of

blurriness or better matched with the dictionary of recaptured images, it is anticipated that

the image is a recaptured version.

The extended problem also includes the detection of other operators, such as compression,

quantisation, and image enhancement applied to images before recapture. We are also in-

terested in understand how footprints left from those operations are transformed or survive

through image recapture.
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F. Pérez-González, Eds., no. 7128, 2011, pp. 268–280.

[24] W.-H. Chuang and M. Wu, “Robustness of color interpolation identification against

anti-forensic operations,” in International Workshop on Information Hiding, 2012.

[25] Z. Fan and R. L. d. Queiroz, “Maximum likelihood estimation of JPEG quantization

table in the identification of bitmap compression history,” in International Conference

on Image Processing (ICIP), 2000, pp. 948–951.

[26] Z. Fan and R. de Queiroz, “Identification of bitmap compression history: JPEG de-

tection and quantizer estimation,” in IEEE Transactions on Image Processing, vol. 12,

no. 2, 2003, pp. 230–235.

[27] G. Qadir, X. Zhao, and A. T. S. Ho, “Estimating JPEG2000 compression for image

forensics using Benford’s law,” in Proc. SPIE 7723, Optics, Photonics, and Digital Tech-

nologies for Multimedia Applications, vol. 7723, 2010.

[28] J. Lukas and J. Fridrich, “Estimation of primary quantization matrix in double com-

pressed JPEG images,” in Digital Forensic Research Workshop, Aug. 2003.

[29] V. Holub, J. Fridrich, and T. Denemark, “Universal distortion function for steganogra-

phy in an arbitrary domain,” in EURASIP Journal on Information Security, 2014.



112 BIBLIOGRAPHY

[30] A. C. Popescu and H. Farid, “Statistical tools for digital forensics,” in Information

Hiding, ser. Lecture Notes in Computer Science, vol. 3200. Springer, 2004, pp. 128–

147.

[31] J. He, Z. Lin, L. Wang, and X. Tang, “Detecting doctored JPEG images via dct coeffi-

cient analysis,” in European Conference on Computer Vision, 2006.

[32] F. Huang, J. Huang, and Y. Q. Shi, “Detecting double JPEG compression with the same

quantization matrix,” in IEEE Transactions on Information Forensics and Security,

vol. 5, no. 4, 2010, pp. 848–856.

[33] Y.-L. Chen and C.-T. Hsu, “Detecting recompression of JPEG images via periodicity

analysis of compression artifacts for tampering detection,” in IEEE Transactions on

Information Forensics and Security, vol. 6, no. 2, 2011, pp. 396–406.

[34] T. Bianchi and A. Piva, “Reverse engineering of double JPEG compression in the pres-

ence of image resizing,” in Workshop on Information Forensics and Security, 2012.

[35] ——, “Image forgery localization via block-grained analysis of JPEG artifacts,” in IEEE

Transactions on Information Forensics and Security, vol. 7, no. 3, 2012, pp. 1003–1017.

[36] S. Milani, M. Tagliasacchi, and S. Tubaro, “Discriminating multiple JPEG compression

using first digit features,” in IEEE International Conference on Acoustics, Speech and

Signal Processing, 2012, pp. 2253–2256.

[37] S. Ye, Q. Sun, and E.-C. Chang, “Detecting digital image forgeries by measuring incon-

sistencies of blocking artifact,” in Proceedings of the 2007 IEEE International Conference

on Multimedia and Expo (ICME). IEEE, 2007, pp. 12–15.

[38] W. Li, Y. Yuan, and N. Yu, “Passive detection of doctored JPEG image via block artifact

grid extraction,” in ACM Signal Process Journal, vol. 89, no. 9, 2009, pp. 1821–1829.

[39] M. Johnson and H. Farid, “Exposing digital forgeries by detecting inconsistencies in

lighting,” in ACM Multimedia and Security Workshop, New York, NY, 2005.

[40] M. K. Johnson and H. Farid, “Exposing digital forgeries in complex lighting environ-

ments,” in IEEE Transactions on Information Forensics and Security, vol. 3, no. 2,

2007, pp. 450–461.



BIBLIOGRAPHY 113

[41] E. Kee and H. Farid, “Exposing digital forgeries from 3-d lighting environments,” in

IEEE International Workshop on Information Forensics and Security, Seattle, WA,

2010.

[42] M. K. Johnson and H. Farid, “Exposing digital forgeries through specular highlights on

the eye,” in International Workshop on Information Hiding, 2007, pp. 311–325.

[43] C. Riess and E. Angelopoulou, “Scene illumination as an indicator of image manipula-

tion,” in International Workshop on Information Hiding, 2010.

[44] W. Fan, K. Wang, F. Cayre, and Z. Xiong, “3D lighting-based image forgery detection

using shape-from-shading,” in 20th European Signal Processing Conference, 2012, pp.

1777–1781.

[45] Q. Liu, X. Cao, C. Deng, and X. Guo, “Identifying image composites through shadow

matte consistency,” in IEEE Transactions on Information Forensics and Security, vol. 6,

no. 3, 2011, pp. 1111–1122.

[46] E. Kee, J. O’Brien, and H. Farid, “Exposing photo manipulation with inconsistent

shadows,” in ACM Transactions on Graphics, vol. 32, no. 4, 2013, pp. 28:1–28:12.

[47] V. Conotter, G. Boato, and H. Farid, “Detecting photo manipulation on signs and

billboards,” in International Conference on Image Processing, 2010.

[48] P. Kakar, N. Sudha, and W. Ser, “Exposing digital image forgeries by detecting discrep-

ancies in motion blur,” in IEEE Transactions on Multimedia, vol. 13, no. 3, 2011, pp.

443–452.

[49] J. Fridrich, D. Soukal, and J. Lukas, “Detection of copy move forgery in digital images,”

in Digital Forensic Research Workshop, Aug. 2003.

[50] A. Popescu and H. Farid, “Exposing digital forgeries by detecting duplicated image

regions,” Department of Computer Science, Dartmouth College, Tech. Rep. TR2004-

515, 2004.

[51] G. Li, Q. Wu, D. Tu, and S. Sun, “A sorted neighborhood approach for detecting

duplicated regions in image forgeries based on DWT and SVD,” in Proceedings of the

2007 IEEE International Conference on Multimedia and Expo (ICME), 2007, pp. 1750–

1753.



114 BIBLIOGRAPHY

[52] X. Pan and S. Lyu, “Region duplication detection using image feature matching,” in

IEEE Transactions on Information Forensics and Security, vol. 5, no. 4, 2010, pp. 857–

867.

[53] W. Li and N. Yu, “Rotation robust detection of copy-move forgery,” in IEEE Interna-

tional Conference on Image Processing (ICIP), p. 2113.

[54] S. Bayram, H. T. Sencar, and N. Memon, “An efficient and robust method for detecting

copy-move forgery,” in IEEE International Conference on Acoustics, Speech, and Signal

Processing, 2009.

[55] R. Davarzani, K. Yaghmaie, S. Mozaffari, and M. Tapak, “Copy-move forgery detection

using multiresolution local binary patterns,” in Forensic Science International, vol. 231,

no. 1, 2013, pp. 61–72.

[56] A. C. Popescu and H. Farid, in IEEE Transactions on Signal Processing, vol. 53, no.

2-2, 2005, pp. 758–767.

[57] M. Kirchner, “Fast and reliable resampling detection by spectral analysis of fixed linear

predictor residue,” in ACM Multimedia and Security Workshop, 2008, pp. 11–20.

[58] A. C. Gallagher, “Detection of linear and cubic interpolation in JPEG compressed im-

ages,” in Proceedings of the 2Nd Canadian Conference on Computer and Robot Vision,

ser. CRV ’05, 2005, pp. 65–72.

[59] B. Mahdian and S. Saic, “Blind authentication using periodic properties of interpola-

tion,” in IEEE Transactions on Information Forensics and Security, vol. 3, no. 3, 2008,

pp. 529–538.

[60] M. C. Stamm and K. J. R. Liu, “Blind forensics of contrast enhancement in digital

images,” in IEEE International Conference on Image Processing (ICIP), 2008, pp. 3112–

3115.

[61] ——, “Forensic detection of image manipulation using statistical intrinsic fingerprints,”

in IEEE Transactions on Information Forensics and Security, vol. 5, no. 3, 2010, pp.

492–506.

[62] A. Bovik, “Streaking in median filtered images,” in IEEE Transactions on Acoustics,

Speech and Signal Processing, 1987, pp. 493 – 503.



BIBLIOGRAPHY 115

[63] M. Kirchner and J. Fridrich, “On detection of median filtering in digital images,” in

SPIE Conference on Media Forensics and Security, 2010.

[64] G. Cao, Y. Zhao, R. Ni, L. Yu, and H. Tian, “Forensic detection of median filtering in

digital images,” in IEEE International Conference on Multimedia and Expo, 2010.
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