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Abstract

Image based rendering is an attractive alternative to model based rendering for generat-

ing novel views due to its lower complexity and potential for photo-realistic results. In

order to reduce the number of images necessary for alias-free rendering, some geometric

information for the 3D scene is normally necessary.

Because the assumptions underlying Plenoptic theory are not fully met in practice,

some aliasing is always present in real world examples. We will describe how we can

mitigate these errors and achieve the performance predicted in plenoptic theory on real

world data.

We will present a fast unsupervised layer-based method for synthesising arbitrary

new view of a scene from a set of existing views. Our algorithm takes advantage of

the knowledge of the typical structure of multiview data in order to perform occlusion-

aware layer extraction. Moreover, the number of depth layers used to approximate the

geometry of the scene is chosen using Plenoptic sampling theory. We further generalise

this theory to allow the use of angled layers and multiple camera planes. The rendering

is achieved by using a probabilistic interpolation approach and by extracting the depth

layer information on a small number of key images.

Simulation results show that our method is only 0.25 dB away from the ideal per-

formance achieved when having access to the ground truth pixel based geometric in-

formation of the scene and comparisons are also made to alternative methods. These

results demonstrates the effectiveness of our method and the validity of the layer-based

model.
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ḡn . . . . . . . . . . Disparity gradient assignment of segment n from occlusion aware

error minimisation
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Chapter 1

Introduction

1.1 Motivation

From Magic Lanterns in the 17th century, the Thaumatrope (Fig. 1.1(a)) of the early

19th century, the silent black and white films of the Cinematographe (Fig. 1.1(b)) of

the late 19th Century, to the ‘talkies’ of the early 20th and the glorious full colour

extravaganza of todays cinema, visual media is in constant flux, surging forwards on a

wave of technology and pulling consumer expectations along with it. We are currently

(a) A Thaumatrope (b) A Cinematographe

Figure 1.1: The Thaumatrope (a) was a Victorian toy that showed a simple ani-
mation by spinning a disk whereas the Cinematographe (b) was a complete system
capable of recording and playing film back.

undergoing yet another transition, from two dimensional (2D) to three dimensional

(3D) content and displays. Users are demanding greater immersion and there has been
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an explosion of 3D technology used in films, TV and even consumer devices. However

for many people this is not enough. Although properly used 3D display technology

can draw people into a scene it still has its limitations: there is no interaction and a

viewer is tied to the whims of a director. The next evolution will be Free Viewpoint TV

(FV-TV) allowing viewers to immerse themselves fully in the experience, giving them

the freedom to choose where they look, finally invoking the feeling of ‘being there’.

As cameras and processors grow cheaper and more powerful, it becomes feasible to

deploy large numbers of cameras and treat the entire array as a single sensor. To do

this, we require fast and robust algorithms that can combine the camera outputs to

create high quality images from arbitrary viewpoints.

1.2 Problem statement

View synthesis is the process of generating an arbitrary new view of a scene from a set

of existing views. One approach to view synthesis is to create a textured 3D model,

for example [1, 2], of the entire scene and to use this for synthesising new views. This

approach allows freedom in the final rendering but creating the complex 3D model

in the first place can often be computationally intensive. Moreover, the synthesised

output images, in particular for cluttered scenes, are often noticeably artificial. An

alternative approach is Image Based Rendering (IBR) [3, 4], in which new views are

generated by combining individual pixels from a densely sampled set of input images.

This approach requires little geometric information and can give potentially photo-

realistic results but requires many more input images [5,6]. These two approaches can

be thought of as opposite extremes of a spectrum where a reduction of one resource,

geometric completeness, requires a corresponding increase in another, the number of

images, to maintain a consistent quality.

Plenoptic sampling theory [7,8] gives us a theoretical framework to understand this

trade-off. In particular, Plenoptic sampling shows that, in the absence of occlusions, the

number of views necessary for alias free rendering does not depend on the geometrical

complexity of the scene but only on the depth variation within the scene [9]. Conse-



1.3 Original contributions 37

quently, a layer-based representation [10–12], in which the scene is split into separate

depth layers each with a reduced depth range, is an effective way of introducing a vari-

able amount of geometric complexity to allow accurate view synthesis from a moderate

number of input images. In particular, the trade-off between geometric information and

rendering quality reduces, in this way, to a trade-off between the number of images,

the depth variation within the scene and the number of layers. A layer based model

also has other advantages including implicit occlusion ordering and scalability.

The direct application of Plenoptic sampling theory to IBR relies on several as-

sumptions which include the absence of occlusions, an infinite field of view and a perfect

reconstruction filter. These assumptions are often not met in real world examples but

Plenoptic theory is still useful as a guide. This has been shown for example for cases

where many of the assumptions hold true with small, [13], and large, [14], numbers of

input images. However this connection has yet to be shown for complex scenes with

occlusions and multiple objects. The further a scene diverges from these assumptions

the more aliasing occurs, understanding the cause of these errors allows us to miti-

gate their effect and use our resources as effectively as possible to achieve high quality

rendering within the guidelines set down by Plenoptic theory.

1.3 Original contributions

1.3.1 Connecting Plenoptic theory to the real world

We have shown that Plenoptic theory is a real and valid guide to determining the

trade-off between the quality of the output versus the complexity of the geometry for

complex real-world scenes. Although some of the key assumptions are no longer valid

most of its prediction remain true, provided the IBR method deals with the inevitable

consequences of the divergence from the assumptions.

1.3.2 Scene adaptive layer extraction algorithm

In this thesis we present a fast automatic algorithm for IBR from a set of input images

where Plenoptic sampling theory is used as a guide to the required number of layers for
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alias free rendering. The layer positions are then selected non-uniformly to take advan-

tage of the distribution of objects within the scene. The algorithm handles occlusions

effectively by performing the layer assignment in two non-iterative stages. Finally, the

performance is improved by a post-processing step merging adjacent small regions with

neighbouring layer assignments when appropriate.

1.3.3 Probabilistic view synthesis algorithm

The rendering is performed using a probabilistic interpolation method. Moreover we

propose a method of using multiple depth maps in a master-slave approach that is

effective and scalable. The overall algorithm scales naturally with the number of input

images, can be adaptive in the choice of the number of layers and can be used on

different camera arrays such as the EPI volume [15] or the Lightfield [16,17].

1.3.4 Arbitrary virtual camera positions

Our algorithm is robust and flexible and can be expanded beyond the normal cases of a

line or plane of input cameras. We have shown how the relaxation of the fronto-parallel

layer constraint improves performance without a large impact on complexity and how

this leads to a parametrisation of the scene via a series of connected camera planes

allowing us to relax the position constraints for the output synthesis position.

1.3.5 Publications

The work in this thesis has led to the following publications :

J1 J. Pearson, M. Brookes, and P. L. Dragotti, “Plenoptic layer-based modelling for

image based rendering,” in IEEE Trans. on Image Processing, vol. Special Issue

on 3D video, 2013. [18]

C2 C. Gilliam, J. Pearson, M. Brookes, and P. L. Dragotti, “Image based rendering

with depth cameras: How many are needed?” in Acoustics, Speech and Signal

Processing (ICASSP), 2012 IEEE International Conference on, 2012. [19]
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C1 J. Pearson, P.-L. Dragotti, and M. Brookes, “Accurate non-iterative depth layer

extraction algorithm for image based rendering,” in Proc. IEEE Intl. Conf.

Acoustics, Speech and Signal Processing, May 2011, pp. 901–904. [20]

1.4 Thesis outline

The thesis is structured as follows:

In Chapter 2 we discuss the core Plenoptic theory that underlies the work described

in this thesis and review the literature in the area of IBR. Plenoptic theory is useful

because it shows that alias-free rendering can be achieved with limited geometric infor-

mation and input images, importantly it allows us to characterise the tradeoff between

the density of cameras and the amount of geometry required.

We will describe the concept of the seven dimensional Plenoptic function and how it

parametrises the rays emanating from a scene and how by making certain assumptions

it can be reduced to a five dimensional form. We will describe the camera model and the

geometric relationship between the five components of the reduced Plenoptic function,

leading to the Epipolar Planar Image (EPI) line setup. We will investigate how spectral

analysis of the EPI structure leads to the conclusion that alias-free synthesis is possible

even with reduced geometry given certain conditions and these conditions are only

related to the camera spacing and the depth range of the scene. We show how the layer

model is a robust and effective option for representing the geometry within the scene

and meshes well with Plenoptic theory.

Chapter 3 details our algorithm for layer extraction, extracting the right amount

of geometry from the scene to allow us to perform the view synthesis, we cover the

problems that arise and how we have solved them. The first step is to choose the

number of depth layers required for our geometric model. We will then describe how

we assign each pixel to one of these layers, introducing our methods for efficiently

dealing with the effects of object occlusions and discuss our post-processing methods

to improve the final Disparity Gradient (DG) map. Finally we evaluate all the proposed

methods and improvements against the Ground Truth (GT) geometry.
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In Chapter 4 we describe our view synthesis algorithm. To perform synthesis we

need layer based geometry for all of the input images and the view to be synthesised.

This geometry allows us to use the EPI line structure to interpolate a new image from

existing images. As described previously, we calculate the layer models for a few key

images and then use these to predict the geometry for all the other views. This chapter

will show that the predictions made by Plenoptic theory hold true for real world scenes.

In Chapter 5 we describe how our algorithm can be expanded to allow greater

freedom in our input and output camera positions by relaxing certain constraints. We

will explain how multiple connected camera-planes can be modelled and detail the

changes to the algorithm necessary to allow output camera rotation and movement

outside of the camera plane. An essential part of this expansion is the relaxation of

our assumptions about the fronto-parallel nature of modelling the scene which also

significantly improves the synthesis quality. Importantly all of this can be achieved

while still adhering to the conditions that allow us to use Plenoptic theory as a valuable

guide. We will show how by relaxing our constraints not only do we allow more freedom

in our output synthesis position and pose but we also improve synthesis quality.

Finally in Chapter 6 we summarise the achievements of the work, discuss our con-

clusions and present some possible future extensions of the approach.
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Chapter 2

Image based rendering and the

Plenoptic function

2.1 Introduction

We will start this chapter, in Sec. 2.2, with an overview of Plenoptic theory, explaining

why it is important to our Image Based Rendering (IBR) approach. We will then move

on to review, in Sec. 2.3, some of the current approaches to IBR that have inspired us.

Plenoptic theory is a way of parametrising the visual world around us by considering

the light rays emanating from the scene rather than the objects themselves. By using

Plenoptic theory we can frame the IBR question in terms of a more traditional sampling

and interpolation problem where new images are generated by interpolating between

existing images which can be considered as samples of the Plenoptic function.

Plenoptic sampling theory is important for IBR because it gives us a theoretical

framework to understand the tradeoff between geometric completeness and the number

of images necessary to maintain a consistent quality. In particular, Plenoptic sampling

shows that, in the absence of occlusions, the number of views necessary for alias free

rendering does not depend on the geometrical complexity of the scene but only on the

depth variation within it, as will be shown in Sec 2.2.1.

Consequently, a layer-based representation, detailed in Sec 2.2.2, where the scene
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is split into separate depth layers each with a reduced depth range is a good model of

many scenes and lends itself to Plenoptic theory. In particular, the trade-off between

geometric information and rendering quality reduces, in this way, to a trade-off between

the number of images, the depth variation within the scene and the number of layers.

A layer based model also has other advantages including implicit occlusion ordering

and scalability.

2.2 The Plenoptic function

A convenient way of regarding a multiview image set is to consider the collection of

light rays emanating from the scene. The complete seven dimensional parametrization

of the rays at any position and time is known as the Plenoptic function, introduced by

Adelson and Bergen [21]. It expresses the intensity, P, of a light ray as

P = P7(i, j, λ, t, VX , VY , VZ), (2.1)

in which λ is the wavelength, t is the time, (VX , VY , VZ) is the position of the camera

centre and (i, j) a point in the image. The dimensionality of the Plenoptic function

can be reduced by imposing restrictions on the acquisition setup. Thus we can omit

t for a static scene and we can eliminate λ by considering separate red, green and

blue images. A convenient parametrization, the Light Field or Lumigraph, introduced

in [16,17], assumes the light ray intensity is constant along its length and the cameras

are restricted to the plane VZ = 0. It defines a light ray by the coordinates of its

intersections with two parallel planes, the image plane (i, j) and the camera plane

(VX , VY ). This leaves us with the four dimensional parametrisation,

P = P4(i, j, VX , VY ). (2.2)

In this thesis, we will assume that a static scene is sampled by an array of identical

pinhole cameras whose optical centres lie on a camera plane perpendicular to their

optical axes as illustrated in Fig. 2.1(a). We define a right-handed world coordinate
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system with its origin at the optical centre of the upper left camera position and the

Z-axis pointing towards the scene.

(a) Camera Array (b) Pinhole model

Figure 2.1: (a) Our array of cameras allows us to sample the Plenoptic function
in the image, (i, j), and camera, (VX , VY ), planes. (b) The pinhole camera model of
how the rays within a scene are captured by a camera, with the lens modelled as
a single point, and the ray vector described as the intersection with two planes.

The geometry of the pinhole camera Lightfield is illustrated in Fig. 2.1(b). The

camera centre location is (VX , VY ) on the camera plane which is separated from the

image plane by the focal length f . The image plane for each camera has a separate

coordinate system (i, j), centred on the optical axis. For a light ray that originates at

point (X,Y , Z) in real world space and passes through the camera position (VX , VY ),

the intersection with the image plane (i, j) is given by,

(i, j) =
f

Z
(X − VX , Y − VY ) . (2.3)

The Plenoptic function can be further simplified by fixing VY , thereby restricting

the camera positions to a horizontal line. This set-up results in,

P = P3(i, j, VX), (2.4)
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(a) Layered view (b) EPI lines

Figure 2.2: Four points at two different depths, ZA and ZB observed by a camera
in positions VX = 1 and VX = 2, (a) shows the top down real world scene and (b)
shows the EPI plot.

the three dimensional (3D) Epipolar Planar Image (EPI) line [15]. Figure 2.2(a) shows

the view from above of four points in a scene, P,Q,R and S at two different depths, ZA

and ZB, from the camera line. The figure shows the light rays from the four points that

are received at two different camera positions VX = {1, 2}. For the light rays from each

of the four points to the camera, Fig. 2.2(b) plots i, the intersection with the image

plane as a function of the camera position, VX . The locus corresponding to each scene

point is known as its EPI line [15]. Each EPI line has a constant gradient, the Disparity

Gradient (DG) that is inversely proportional to the depth, Z, of its scene point; thus

the lines corresponding to P and Q have a steeper gradient than those corresponding

to R and S. From Fig. 2.2(a) we can see that when the camera is at VX = 2, point Q

occludes point R; this occlusion is predicted by the intersection of the EPI lines shown

in Fig. 2.2(b) since lines with a steeper gradient occlude lines with a shallower gradient

when they intersect. When we consider a full scene with many points and hence many

EPI lines we call the whole an EPI Line Volume (ELV) [22,23].

2.2.1 Plenoptic spectrum

In [7], Chai et al. use spectral analysis to investigate the EPI structure described above.

The two dimensional Fourier transform of a line in the EPI domain is a line perpen-

dicular to the original and with a gradient f/Z. This is shown in Fig. 2.3(a) for a
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point at depth Z. In the more general case of a scene with varying depth, each point

leads to a line in the EPI spectrum and all the line gradients are bounded by the min-

imum and maximum depths of points within the scene. For a scene comprising points

with Zmin ≤ Z ≤ Zmax, we end up with a band-limited spectrum with a characteristic

bow-tie shape support as shown in Fig. 2.3(b).

f

Z

ωi

ωX

(a) Fourier transform

f

Zmin

ωi

ωX

−
π

u

πfh

u

f

Zmax

(b) Bow-tie bounding

Figure 2.3: (a) Shows the Fourier transform of an EPI line. (b) Taking the min-
imum, Zmin, and maximum, Zmax, depths bounds the bundle of EPI lines into a
characteristic bow-tie shape.

If the EPI is uniformly sampled with cameras spaced ∆VX apart, the spectrum

repeats at intervals of 2π/∆VX in ωX , as shown in Fig. 2.4(a), where u, the pixel

spacing, determines the maximum unaliased frequency in the ωi direction. An optimal

reconstruction filter (dotted line) can be constructed around the fundamental section

of the spectrum defined by Zmax and Zmin. This allows us to pick a sufficiently low
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camera spacing ∆VX such that aliasing does not occur. If ∆VX is made too large,

aliasing will occur as the repeated spectra overlap; this is shown in Fig. 2.4(b).

ωi

ωX

2π

∆VX

π

u

(a) No aliasing

ωi

ωX

(b) Aliasing occurs

Figure 2.4: (a) Using an optimal reconstruction filter (dotted line) and a finite
depth of field we can calculate a sufficiently small sampling spacing to avoid aliasing
effects. (b) A higher ∆VX leads to aliasing as parts of the repeated spectrum lie
within the optimal reconstruction filter (shaded regions).

By combining the relationships shown in Fig. 2.3 and Fig. 2.4 we determine the maxi-

mum non-aliasing camera spacing [7] as follows:

∆VX =
1

Bfh
(2.5)

where h = [1/Zmin − 1/Zmin] and B ≤ 0.5/u is the highest image bandwidth given a

pixel spacing u.
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2.2.2 Layer model

The Plenoptic model describes a scene in terms of light rays emanating from points

within a scene. A geometric model helps us describe and store the position of these

points. One method of achieving this is a full 3D model in which every point has its

own individually recorded position in (X,Y ,Z). An alternative is a layer based model

where the volume in which the points reside is partitioned into a set of constant-depth

layers parallel to the camera plane and each point is assigned to the closest layer.

In this work we use a layer based geometric model because it is robust, offers a

good description of many real scenes and is computationally efficient. Fig. 2.5 shows

the layer model of a simple scene, where each surface point is projected along the Z

axis onto the nearest layer to form a series of fronto-parallel planes. Associated with

each layer l, at depth Zl, is a unique DG,

gl =
d

∆VX

(2.6)

=
f

Zl

, (2.7)

for a disparity shift d between the same scene point in two cameras with a spacing of

∆VX .

Figure 2.5: Layer model, each point in the continuous real world (dotted) is pro-
jected onto the nearest layer to give a series of planes (solid).
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By partitioning the scene into layers, we can reduce the depth range within any given

layer; this reduces h in (4) and therefore allows sparser sampling in VX . Conversely if

we have a fixed camera spacing, ∆VX , we can determine the value of h that will result

in alias free rendering. Assuming the layers are uniformly spaced in Z−1 with a pixel

spacing of u, this allows us to determine the minimum number of layers,

Lmin = f∆VXBh (2.8)

=
f∆VX

2u
(

1

Zmin
−

1

Zmax
) (2.9)

=
∆VX

2
(gmax − gmin), (2.10)

necessary for successful rendering without aliasing, known as the Minimum Sampling

Criterion (MSC). This equation allows us to extract the best result for a given situation.

Generally the range of Z for a scene will be constrained by the real world geometry, so

if we are given a fixed camera spacing we can determine the optimal number of layers,

or conversely if we have a fixed number of layers we can determine the corresponding

maximum camera spacing.

We use this Plenoptic sampling framework to inform our layer extraction algorithm.

In the initial stage of our algorithm we calculate Zmin, Zmax and ∆VX in order to

determine the necessary Lmin. Since this computation can be performed on any number

of input images, our algorithm allows us to adaptively modify the number of layers

extracted as the visible scene depth range or camera spacing change.

2.3 IBR literature review

Two major areas of research within IBR that are of particular interest are the initial

geometric model construction and the synthesis method. The major problems faced in

the geometric assignment are the robustness and accuracy of the pixel assignment and

dealing with any errors that appear, there are many different approaches to dealing

with these problems. Many of these techniques can be split into two groups, working
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at a pixel by pixel level or working with particular groups of pixels. Many different

synthesis processes have been put forwards, the main problems they face are dealing

with occlusions and rendering artifacts due to incomplete or erroneous geometric data.

We have also covered several useful multiview compression papers that have a dif-

ferent slant on the problem. In particular the benefits to designing the geometric model

assignment and the synthesis as a mutually supporting pair that work in harmony with

each other.

2.3.1 Geometric assignment

In a layer based system, each pixel in each input image needs to be assigned to a specific

depth layer. This is normally achieved by matching points in two or more images and

combining the pixel position shift and the camera position shift to obtain the depth of

the pixel. Several methods have operated at a local pixel level, often with high speed

(e.g., [24] and their accuracy can be improved by expanding the matching scope, for

example by utilising a semi-global approach to improve the edge accuracy (e.g., [25]).

A popular alternative to a pixel based method is to assign depths to entire blocks

of pixels [26]. Although more robust to noise and requiring a less iterative approach it

introduces the problems of blockiness and poor reproduction of object edges. Various

post-processing methods have been proposed to refine coarse depth geometry with

reference to the original images [27, 28]. An alternative to dealing with the issue of

matching object edges is through the use of a collection of sub-blocks processed together,

as suggested in [29, 30], or the use of segments based on the image content rather

than on a regular grid [31]. Although an initial segmentation step is required and

some assumptions are made about the selected regions, there are several advantages

to this approach as discussed by Zhang et al. [32, 33]. One is that it results in a

higher robustness to noise, another is that it allows good edges to be formed without

requiring a highly iterative approach. Segments have also been used to good effect

to smooth out assignment noise from pixel based methods while preserving object

edges, [34–36] or by comparing the results of adjacent segments [37]. An extension to

the general segmentation method is over-segmentation [31, 38] or the use of high level
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object segmentation [39–41] often based on human intervention [11]. Another approach

to improving robustness is using structures within images [42] to help validate depth

assignments by other methods.

2.3.2 Synthesis

There are many ways to use the layer model to synthesise new image views, various

image surface warping techniques applied to the entire image have been proposed in

[43–45]; although the resultant output is a complete image, it may be significantly

distorted and often fails to fully take into account the occlusions and disocclusions

inherent in the set-up. An alternative approach is a rigid layer shift accounting for the

occlusion ordering on the layers, this models a scene more accurately but dissoclusion

may lead to gaps in the final output which need to be filled as discussed in [46].

Depending on the type of rendering and the quality of the depth geometry a number

of rendering artifacts can arise in layer based IBR. Various ways to mitigate these have

been proposed such as enhancing depth geometry by using the images to refine the

edges of layers, for example using weighted mode filtering [47], or merging multiple sets

of geometry together [48]. One way to mitigate the effects of these artifacts is the use

of alpha matting [11] to blend between layer boundaries, as most geometric artifacts

will be most evident on the edges of layers.

One major, though inevitable, difficulty with the use of rigid layer shifts is the

introduction of holes in the output image due to regions in the output image that are

not visible in any input image. Several innovative approaches have been suggested to

solve this for specific situations with varying degrees of complexity, for example [49–52].

Work has also been done to measure and predict the extent of errors in a system [53]

to pick the particular approach to be used.

2.3.3 Multiview compression

Another popular and related field of study is compression schemes for three dimensional

TV (3D-TV), [54,55]. The emphasis on absolute accuracy over speed or perceived qual-

ity may be different but many multi-view techniques are used to increase compression
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performance by utilising the predictable geometric redundancy in multi-view video.

Some of these approaches have utilised Plenoptic theory [56–58]. One area of par-

ticular interest is the accurate prediction of depth geometry using techniques such as

boundary filters, [59], and Wavelets [60–62].

2.3.4 Similar work

Tong et al. [63] have investigated the trade-off between geometry and the number of

input images. Their approach is similar in several respects to that taken in this thesis;

these include the use of a layered geometric model and the combination of discrete

input images to directly synthesise the output rather than using a pre-generated unified

reference image model. However, [63] uses a stereo-matching algorithm to extract layers

whereas we use a two-stage approach which allows us to handle occlusions effectively.

Moreover, they have investigated situations in which the trade-off between geometry

and number of images can have several optimal points and experimentally determine

their validity. In contrast, we have used only a single operating point, as given by

Plenoptic sampling theory, based on a fixed input image spacing, and have investigated

the behaviour either side of this operating point.

2.4 Conclusions

In this chapter we have discussed the core Plenoptic theory that underlies our thesis and

reviewed some of the key papers in the area of IBR. Plenoptic theory is useful because

it shows that alias-free rendering can be achieved with limited geometry and input

images, importantly it allows us to parametrize the tradeoff between the input image

spacing and the amount of geometry required. Plenoptic theory is a good framework to

understand IBR, but in practice it needs to be adapted to work with real world scenes.

We have introduced the concept of the seven dimensional Plenoptic function and

how it parametrises the rays emanating from a scene and how, through certain as-

sumptions, it can be reduced to a three dimensional form. We have described the

camera model and the geometric relationship between the five components of the re-
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duced Plenoptic function, leading to the EPI line setup. Spectral analysis of the EPI

structure leads to the conclusion that alias-free synthesis is possible even with reduced

geometry given certain conditions and these conditions are only related to the camera

spacing and the depth range of the scene.

We have also shown how the layer model is a robust and effective option for repre-

senting the geometry within the scene and meshes well with Plenoptic theory.
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Chapter 3

Layer extraction and assignment

3.1 Introduction

From Plenoptic sampling theory, Chapter 2, we know that it is possible to obtain an

alias-free representation of a scene by representing its geometry as a set of fronto-

parallel layers. There are also geometric based arguments, as mentioned in Chapter 2,

that support this approach. This chapter is concerned with the choice of layer depths

and the assignment of each input image pixel to a specific layer. We explained in

Sec. 2.2.2 why we aim to use a geometric model comprising a finite number of layers

and how Plenoptic sampling theory indicates the number of layers that are needed.

The theory shows that, provided certain assumptions are met, alias-free rendering

can be achieved by spacing the layers uniformly in inverse depth and by using a number

of layers that exceeds the minimum, Lmin, given in (2.10). In practice however, these

assumptions, which include the absence of occlusions, an infinite field of view and a per-

fect reconstruction filter, are not fully met and some aliasing is inevitable. In Sec. 3.5.1,

we will demonstrate that this residual aliasing distortion can be reduced by placing the

layers closer together than the minimum spacing predicted by Plenoptic sampling the-

ory. Conversely, if we fix the number of layers, the impact of the residual aliasing on

rendering quality can be reduced by choosing the layer positions appropriately. Accord-

ingly, our algorithm selects non-uniformly spaced layer positions according to the depth

distribution of objects within the scene by increasing the density of layers at depths



54 Chapter 3. Layer extraction and assignment

that occur frequently while reducing the density at depths that occur infrequently.

Our view synthesis is dependent on the depth layer model generated from a collec-

tion of camera views. We assume that the only available inputs to the system are the

input images and the required camera positions for the synthesised output images. For

the sake of convenience and to simplify explanation we have assumed that the input

images have already been rectified, [64]. We will initially describe the layer extraction

and assignment for the algorithm for the case where the input camera positions are uni-

formly spaced along a line and extend this to the case of non-uniformly spaced cameras

and planar camera arrays in Secs 3.2.2 and 3.3 respectively.

As discussed in Sec. 2.2, the required number of layers can be determined from

the depth range, (Zmin, Zmax) of the scene. This can be calculated from a sparse

estimate of the scene geometry, which is used to initialise the next step. At this point

we diverge from the Pleoptic theory which suggests evenly spaced layers. For the case

of a precisely bandlimited Plenoptic spectrum with an ideal reconstruction filter, this

results in alias-free rendering with the minimum number of layers.

Because the assumptions underlying Plenoptic theory are not fully met in practice,

some aliasing is always present. Because objects within a real scene are not uniformly

distributed in depth there are advantages to assigning the output layers with uneven

spacings. To do so a more detailed knowledge of the scene geometry is needed to assign

layers to the best positions, this is discussed further in Sec. 3.2.4. Once the layer

positions have been chosen we can assign each pixel within an image to a particular

layer, this flat representation of the geometry is known as a Disparity Gradient (DG)

map. This gives us a final version of the EPI Line Volume (ELV) assigned to the chosen

layers that we then use to synthesise new views.

This chapter will show that the predictions made by Plenoptic theory hold true for

real world scenes and explain what enhancements can be made to take advantage of

properties of a particular scene. We will describe our novel method of picking layer

positions and assigning pixels to these layers.

This chapter is organised as follows : The first part of the chapter, Sec. 3.2, covers

our algorithm for layer extraction, problems that arise and how we have solved them.
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An overview of the geometry estimation algorithm is presented in Sec. 3.2.1 and the

estimation of the Z range of the scene is discussed in Sec. 3.2.2 along with estimating

∆VX for the input cameras. We present the layer assignment method in Sec. 3.2.3, dis-

cuss the reasons behind our non-uniformly spaced layer scheme in Sec. 3.2.4, introduce

our methods for efficiently dealing with the effects of object occlusions in Sec. 3.2.5

and elaborate on how we deal with planar camera setups in Sec. 3.3. In the second

part of the chapter, Sec. 3.4, we discuss what methods we have used to enhance the

effectiveness of our layer assignment. In Sec. 3.4.1 we discuss how we deal with problem

segments that span multiple layers, in Sec. 3.4.2 we discuss our post-processing meth-

ods to improve the final DG map. Finally we evaluation of all the proposed methods

and improvements against the Ground Truth (GT) geometry in Sec. 3.5 and present

our conclusions in Sec. 3.6.

3.2 Layer extraction

3.2.1 Layer extraction algorithm overview

The goal of our algorithm is to take in a series of images as inputs and use these to

construct sufficient geometry to allow us to synthesis high quality output images. The

layer extraction and assignment is illustrated in Fig. 3.1 and described in detail below,

comprises the following main stages:

A Depth range estimation: the depth range within a scene (Zmin, Zmax) and the

camera spacing ∆VX are found by examining the depth estimation of features

within the scene, using all input images.

B Disparity gradient histogram: a more detailed estimate of the distribution of

depths within the scene, bounded by the previously calculated Zmin and Zmax, is

obtained using all available input images.

C Layer depth selection: the distribution of depths estimated in step B is used to

determine the detailed depth distribution estimate from the previous step is used

to determine the optimum layer positions that will minimise the total error.
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Figure 3.1: Flow diagram of the layer extraction and assignement algorithm. The
main stages of the algorithm are (A) estimating the depth range of the scene
(Sec. 3.2.2), (B) calculate an accurate disparity gradient histogram (Sec. 3.2.3),
(C) assign the best layers using the Lloyd-Max algorithm (Sec. 3.2.4) and (D)
assign segments to layers (Sec. 3.2.5).

D Prioritised layer assignment : pixels are assigned to layers in a single pass taking

into account occlusions within the scene.

Although the algorithm can potentially compute a separate DG map for each avail-

able input image, we found that for all the sequences tested, the DG map only needs to

be calculated for a small number of “key” images, typically two images. Using a larger

number of key images increases the computational complexity but normally results in

only a small improvement in the rendered images. We discuss the use and choice of the

key images in more detail in Sec. 4.4.2.

Finally, the algorithm to the outlined above and discussed in detail in detail below

is for the EPI case in which the camera positions lie along a line which, for rectified

images, we take as the X axis. The extension for the more general case of camera motion

in two dimensions is straightforward. When our input is a 2-dimensional camera array

we can parallelise the calculation along the VX and VY axes, as shown in Fig. 3.2, and

then combine the results. An advantage of this approach is that we can also use the
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Figure 3.2: With a 2-dimensional camera array the EPI sets for a key image can
be separately calculated along both VX and VY axis in parallel with a shared key
image. Calculations along both separate axis can then be combined for a more
robust and accurate result. Shown here are two key images at (VX , VY ) = (0, 0) and
(VX , VY ) = (4, 4).

same algorithm for many types of camera array. Choosing two EPI subsets from the

camera array that intersect makes it possible for them to share a common key image

to ensure consistent segmentation. Additionally by choosing two perpendicular EPI

sub-sets we maximise the Field of View (FOV) diversity and hence the coverage of the

scene.

For example, Fig. 3.2 shows the camera positions in a 5x5 planar array. If we select

(VX , VY ) = (0, 0) as a key image, we would apply our linear algorithm separately to

the horizontal line, VY = 0, and to the vertical line,VX = 0. Selecting (VX , VY ) = (4,

4) we would apply our linear algorithm separately to the horizontal line, VY = 4, and

to the vertical line, VX = 4 . This extension to two dimensions and the way in which

we utilise the information from the extra dimension to improve matching robustness is

covered in detail in Sec. 3.3.
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3.2.2 Step A : Depth range estimation

The first stage of the algorithm is to determine the Zmin and Zmax for the visible scene.

To achieve this aim as efficiently as possible we match a limited number of distinc-

tive features between image pairs, we try all the available image pairs and combine

the results. Features from Accelerated Segment Test (FAST) [65] are extracted from

the key image and matched to an adjacent image using the pyramidal Lucas-Kanade

feature tracker [66, 67]. The implementation for both these algorithms is taken from

the OpenCV 2.4 library [68]. An example scene is shown in the left image of Fig. 3.3

(Image 0 from the Teddy sequence, see Table 3.1) and the positions of the extracted

feature points is shown in the right image. Associated with each matched pair of fea-

tures is a disparity, d, and we can form a histogram showing the distribution of these

disparities.

The histogram of feature-point d between images 0 and 1 of the Teddy sequence is

shown as the solid line in Fig. 3.4 (scaled by a factor of 8 for visibility). For comparison,

the dotted line shows the corresponding histogram obtained for all pixels using the

GT disparity. It can be seen that, although the two histograms are similar in shape,

there are several noticeable differences. The most obvious of these is the large peak,

Fig. 3.4(i), between the d values 3.8 - 4.2 which is only partially represented by a small

spike in the FAST points at d = 4, in addition the spike at d = 9.4 is also missing,

Fig. 3.4(ii). The reason for this difference is that, as can be seen in Fig. 3.3, the

FAST points are not uniformly distributed in the image but cluster around distinctive

features, e.g. region (H) in Fig. 3.3(H) and are sparse in low texture regions in the

background (DG values 3.8 - 4.0) and the roof area, region (L) in Fig. 3.3, at DG =

9.4.

If, instead, we compare the disparity histogram for the FAST feature points with

the GT disparity histogram of the same pixels, we obtain the graph shown in Fig. 3.5

where we see that the two histograms are very similar. Although there are not enough

FAST points to determine the final layer positions robustly, we can reliably estimate

Zmin and Zmax from this a.nd move onto the next stage of the algorithm.
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Figure 3.3: Teddy image 0 and the corresponding FAST features. The features
are not uniformly distributed, there are (H)igh concentrations of points within
highly textured areas and (L)ow concentrations within regions having little texture
variation.
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Figure 3.4: Comparison of the DG histograms for image 0 from the Teddy sequence;
the ground truth (dotted line) and the FAST features (solid line scaled by a factor
of 8). Peaks in the ground truth histogram that correspond to regions with few
FAST points (e.g. at (i) d = 3.9 and (ii) d = 9.4) are missing from the FAST point
histogram.
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Figure 3.5: The solid line show the disparity gradient histogram for the FAST
points, the dotted line shows the disparity histogram distribution for the ground
truth at the same points.

This method can be extended to deal with input images with unknown and possibly

non-uniform camera spacing in VX . The point disparities are calculated for an image

pair as normal, as shown in Fig. 3.6(a) for the case of VX = 0 ⇒ VX = 1, then using

the same points and the same initial image we calculate the point disparities to the

next image, as shown in Fig. 3.6(b) for the case of VX = 0 ⇒ VX = 2. Because we

are using the same points in each estimate we can work out the relative ∆VX between

the different images by comparing the change in disparities. If we look at three FAST

points (i) - (iii) in VX = 0, in Fig. 3.6(a) (i) d = 4.063, (ii) d = 5.313, (iii) d = 8.625 and

in Fig. 3.6(b) (i) d = 8.219, (ii) d = 10.56, (iii) d = 17.22. The relative scale difference

is 2.02, 1.98 and 1.997. If we calculate this for all the points (excluding outliers) we

can get an accurate estimate for the relative ∆VX between the images.

3.2.3 Step B : Disparity gradient histogram

Matching the features between images gives a good estimate for the DG range but a

more detailed estimate of the scene disparities is needed to assign layers. Although we

want an estimate of the DG, g, for each pixel we do not determine this on a pixel by

pixel basis. Rather than assigning each pixel to a layer individually, we segment the
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(a) VX = 0 ⇒ VX = 1. (i) d = 4.063, (ii) d = 5.313, (iii) d = 8.625
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(b) VX = 0 ⇒ VX = 2. (i) d = 8.219, (ii) d = 10.56, (iii) d = 17.22

Figure 3.6: Disparity histograms for two pairs of images with different ∆VX . In
each case the first member of the pair is the same. The vertical dashed lines (i) -
(iii) indicate the disparity of a particular pixel position in VX .
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images, using a 2D spatial and colour based procedure (eg. [69]), then assign entire

segments to a particular layer. This has two advantages: it makes the algorithm more

robust to noise and since object edges are normally aligned to segment boundaries,

results in sharp and consistent edges.

For each segment in the image we need an estimate of the g with sufficient granu-

larity, ∆d, that we can project between the two furthest images in the sequence with

an accuracy of one pixel so

∆d =
1

M − 1
(3.1)

where M is the total number of images in the sequence and Lmin is the estimated

minimum number of layers (2.10).

Since we assume that the images have been rectified, using for example [70], we

know that correct feature point matches must lie on the same horizontal line so we

can discount any features whose match shifts are not along the VX axis. Matches can

be consistent with this requirement yet still be incorrect. To account for this we can

compare the estimate from several features within the same segment and if they agree

we can conclude that there is sufficient evidence to estimate a particular g value for

that segment.

As Fig. 3.7 shows the more features that are tracked within a segment the more

reliable this method is. However as shown in Fig. 3.8 the more features we require,

the fewer segments are valid. We found experimentally that a threshold of 10 feature

points in a segment was a good compromise between the number of valid segments and

the assignment reliability . The remaining segments are assigned using the following

method.

We have an estimate for the Zmin and Zmax of the scene and hence their inverse

relation gmax and gmin. We need to calculate the best match for each remaining, un-

assigned segment within this DG range. For any given camera pair, with separation

∆VX , we can calculate the expected disparity shift d of a segment with gradient g.

We can evaluate the result of assigning a segment to a particular g and see how well
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Figure 3.7: A graph showing for each number of FAST matches the percentage of
segments with an assignment error of more than 0.5 pixel from the GT disparity.

5 10 15 20
0

20

40

60

80

100

FAST matches per segment

%
 s

e
g

m
e

n
ts

 v
a

lid

Figure 3.8: A graph showing the remaining percentage of segments as the required
number of FAST matches is increased.
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the predicted shift of a segment from the key image applies as a prediction for the

other images. We sample the DG histogram uniformly between gmin and gmax, with

sufficient resolution to represent pixel-accurate disparities between the images of the

most widely spaced cameras. Following [71] our matching metric is based on Sum of

Absolute Differences (SAD) where we are trying to maximise the confidence function

ǫ for each of the N segments. Each segment,Sn, contains Kn pixels each of which has

a position index (i
(n)
k , j

(n)
k ) for 0 ≤ k < Kn within an image I0. We select the layer

assignments that will maximise the global ǫ for a scene so gn = argmax
g

(ǫ(Sn,g)) where

the matching confidence ǫ is

ǫ (Sn, g) =
M

Kn−1∑

k=0

M−1∑

m=1

∣∣∣I0
(
i
(n)
k , j

(n)
k

)
− Im

(
i
(n)
k + gVm, j

(n)
k

)∣∣∣
, (3.2)

where Kn is the total number of pixels within the segment Sn which is being evaluated

over M images. I0 is the current key image and Im is the target image. g(n) is the

proposed DG and Vm is the VX position of image m so the ǫ value is a sum over all

available images.

3.2.4 Step C : Non uniformly spaced layers

Previous authors [71] have selected layers that are uniformly spaced in disparity as sug-

gested by Plenoptic theory. For the case of a precisely bandlimited Plenoptic spectrum

with an ideal reconstruction filter, this results in alias-free rendering with the minimum

number of layers. Because the assumptions underlying Plenoptic theory are not fully

met in practice, some aliasing is always present and its impact on rendered output

images can be reduced by increasing the layer density beyond that indicated by the

theory. As will be shown in Sec. 3.5.1, the geometric modelling of the scene for a given

number of layers can be improved by increasing the layer density at depths that occur

frequently in the observed scene while decreasing it at depths that occur less often. If

layers can be placed non-uniformly, the potential improvement in performance for a

given number of layers is several dB, as will be shown for ground truth DG map data
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in Sec. 3.5.1 and for image synthesis in Sec. 4.6.1.

This assignment requires some geometric knowledge of the scene, so we use the DG

histogram from step B, shown in Fig. 3.9, and use it to assign the layers. We want to

minimise the error from quantising disparities to the layer positions so the Lloyd-Max

algorithm [72] with a quadratic cost function is used to find the values of gl, the DG

for layer l, where 1≥ l ≥Lmin.

The DG histogram for the Teddy sequence is shown in Fig. 3.9 with vertical lines

showing the selected layer DGs when L = 8 layers are used. It can be seen that these

cluster around the regions with a higher density of pixels, minimising the assignment

error when using the layer model.

Figure 3.9: Disparity gradient distribution (black curve) for Teddy sequence with
its associated DG layers (vertical red lines), where L is 8.

The use of non-uniform layer spacing represents a trade-off in which the aliasing

error at frequently occurring scene depths is reduced at the expense of increased aliasing

error at rarely occurring scene depths. This trade-off is controlled by the cost function

used in the Lloyd-Max algorithm; we have found that the use of a quadratic cost

function consistently gives the greatest improvement in Peak Signal to Noise Ratio

(PSNR) on our evaluation sequences.
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3.2.5 Step D : Prioritised layer assignment

We know from the Plenoptic theory that occlusions are hierarchical and predictable

in that segments with higher g always occlude those with a lower g. We refine the

DG assignment in a separate step, [73], initially analysing each segment in isolation

(as discussed in Sec. 3.2.3) and then taking into account the predicted occlusions from

surrounding segments to refine the initial estimate. The improvements can be seen in

Fig. 3.10.

(a) Original DG map. (b) Refined DG map.

Figure 3.10: Using the prioritised segment assignment improves the accuracy of
assignment for the whole DG map, especially for segments (marked) that are oc-
cluded by foreground objects.

Plenoptic sampling theory suggests that only a limited number of layers are re-

quired for alias free synthesis, so we can conduct the final occlusion-aware segment

assignment using the layers calculated with the Lloyd-Max algorithm from Sec. 3.2.4

(eg. 8 layers shown in Fig. 3.9) with little loss of quality. We select the occlusion-aware

layer assignments that will maximise the global ǫ for a scene so

ḡn = argmax
g

(ǭ (Sn, g)) (3.3)



3.2 Layer extraction 67

where the new matching confidence ǭ is

ǭ (Sn, g) =

M

(
Kn−1∑

k=0

O
(n)
k

)
log

(
Kn−1∑

k=0

O
(n)
k

)

Kn−1∑

k=0

M−1∑

m=1

O
(n)
k

∣∣∣I0
(
i
(n)
k , j

(n)
k

)
− Im

(
i
(n)
k + gVm, j

(n)
k

)∣∣∣
, (3.4)

where O
(n)
k is a visibility mask and

O
(n)
k =





1 if Im(i
(n)
k + gVm, j

(n)
k ) is visible;

0 if Im(i
(n)
k + gVm, j

(n)
k ) is occluded.

(3.5)

This matching metric is similar to (5.24), the main difference is that the effects of

occlusions are modelled and occluded pixels are masked out, via the O
(n)
k , and are not

included in the match. The numerator has been modified to account for the number of

pixels considered to preserve the mean matching confidence measure. As the segments

were previously matched independently without considering occlusions the disparity

estimates were independent of the assignment order. However we can use the previous

results to aid us in re-calculating the segment disparity in a more efficient manner.

The DG of each segment has already been provisionally assigned in step B of the

algorithm (Sec. 3.2.3). In this second pass we process segments in order of decreasing

DG, since a segment cannot be occluded by another segment with a lower DG. For

each segment in turn, we determine ḡn from (3.3) and also its matching confidence

ǭ(Sn,g). If ǭ is less than a threshold, Ö, the segment is added to a cumulative occlusion

map so that, for subsequent segments, the pixels it occupies will be excluded from the

matching confidence calculation in (5.21). If, on the other had, ǭ ≤ Ö the segment’s

layer assignment is regarded as unreliable and it is omitted from the occlusion map.

This process is repeated for each layer until gmin is reached. Segments with a poor

matching confidence are ignored until the very end at which point they are then assigned

using the most recent and complete occlusion map. The benefits of this prioritised

procedure is that occlusions are estimated for all new assignments, rather than the



68 Chapter 3. Layer extraction and assignment

less accurate assignments of (5.24), and that unreliably assigned segments are ignored

when estimating occlusions. We note that this prioritised approach does not increase

the complexity of the method in that it only changes the order in which segments are

tested but it does improve the quality of the occlusion map and hence the final reliability

of the algorithm. The weighting in the SAD (5.21) is biased towards preferring larger

segments whenever possible, so the increased reliability of large segments is reflected

in the confidence metric.

As discussed previously in Sec. 3.2.2, a significant minority of the segments have

sufficient feature tracking g estimates. To save computation they are not re-scanned,

but merely assigned to the nearest layer.

The matching confidence ǫ (Sn, gn) determined from (5.24) in step B (Sec. 3.2.3)

will normally be lower than ǭ (Sn, g) from 5.21.

The Sn error results are compared with a negative bias weight of 0.8 applied to ǫ

results to give the final DG value of ĝn where

ĝn = argmax
g

(ǫ (Sn, gn) · 0.8, ǭ (Sn, ḡn)) . (3.6)

This is because although the occlusion aware assignment is generally more accurate

and reliable in some cases, as shown in Fig. 3.11, it can give a mistaken estimate. If the

DG response has a very defined peak that is between layers then the estimate might

not be accurate. In this case even with the weighting the ǭ would have a significantly

higher error and gn would thus be used in preference.

3.3 Layer assignment for 2D camera arrays

For the two dimensional (2D) camera array case the two intersecting camera lines are

calculated separately and then combined afterwards. This combination is simple as

the camera lines intersect at the shared key image camera, as seen in Fig. 3.2. This

means that only one image needs to be segmented and that the matching error for each

segment can be minimised in both directions. By choosing to use an additional camera
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Figure 3.11: Due to the sparse nature of the refinement step when there are only
a few layers local minima can cause miss assignment. In this example sampling
at the closest layer (circular end) gives a worse result than a further away layer
(square end).

line perpendicular to the first we maximise the diversity of the segment matching as

some objects may be largely occluded or contain poor texture in a certain direction

but these problems might not be apparent in the orthogonal direction. For example in

Figure 3.12: For this segment there is a small (incorrect) peak when matching
along VX (dashed line) but along VY (solid line) there is a distinct peak in the
segment assignment confidence close to the marked GT.

Fig. 3.12 we look at the matching confidence (inverse error) of a segment for different

potential gn and we note that the confidence along VX (dashed line) shows a small

peak while that along VY (solid line) shows a large distinct peak which is closer to

the GT. We have found that that the most robust and reliable improvement comes

from choosing either one direction or the other based on the strength and sharpness of

the peak, rather than combining and possibly exacerbating any errors. As both EPI

sub-sets have the same key image, combining the results is very simple.
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3.4 Layer enhancements

3.4.1 Section splitting

In scenes with lots of shadows and dark objects there is a risk that the shadows and

the objects are segmented into a single segment. This sometimes leads to spidery ‘legs’

extending out from the main object. An illustration of this is shown in Fig. 3.13 where

the black tripod in the foreground has wrongly been placed in the same segment as the

dark shadows in the bookcase behind it. If we look at the underlying GT DG map,

Fig. 3.14(b) we can see that there are two distinct layers that the segment covers. This

is due to two issues, firstly the camera tripod is dark and very similar is colour to

the surrounding bookcase shadows. In addition due to a restriction on the minimum

segment size some small brighter regions surrounded by shadow have been absorbed.

Figure 3.13: Spidered segment shown here highlighted with white border.

(a) Spidered segment spread between two layers (b) True DG map

Figure 3.14: Segment with many narrow splayed “spidered” outcrops.
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We can identify potential examples where this has happened as segments with a

high number of boundary pixels. We would like to subdivide these segments that are

more compact. Our proposed solution is to split up the original segment if the spidered

regions are on different layers.

3.4.1.1 Segment Identification

The ratio of the segment perimeter P(Sn) and the area A(Sn) is a good measure of any

spidery segments as the ‘legs’ will increase the perimeter with little effect on the area.

We use the dimensionless metric ̟n,

̟n =
(P(Sn))

2

A(Sn)
(3.7)

for each segment Sn leading to a ̟ map for the object, as shown in Fig. 3.15. A

Figure 3.15: ̟ map for the Tsukuba sequence, spidery segments are clearly visible.

dynamic threshold is used to filter out which segments are potentially spidered as the

metric scales with segment size. Spidered sections can be excluded from the hierarchical

patch assignment till the end as they are potentially unreliable.

3.4.1.2 Disparity Identification

Spidered segments are more likely to be spread over two or more layers so we analyse

the disparity histogram to try and identify multiple potential disparities. If there is

only one clear peak, such as in Fig. 3.11, then no further steps are taken. However
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after we apply increasingly spread smoothing low pass filters to the result if two clear

peaks are still visible as, shown in Fig. 3.16 we need to take further steps.

Figure 3.16: Analysing the ǫ distribution to detect multiple peaks using a combined
VX and VY , peaks are highlighted in red.

Scanning in both VX and VY lets us find the two peaks clearly as shown in Fig. 3.17.

If this is the case we need to split the segment into small segments that each lie on a

single layer. This is covered in Seg. 3.4.1.3.

Figure 3.17: Analysing the ǫ distribution to detect multiple peaks using a separated
VX and VY .

3.4.1.3 Splitting method

In step B (Sec. 3.2.3) the key image I0 was segmented using a Colour and Spatial

Segmentation (CSS) algorithm,

CSS(Sn, i, j, Y, Cr, Cb) (3.8)
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using the spatial position (i, j) and colour information (Y , Cr, Cb) of each pixel for a

segment Sn. If a segment is split over two layers the confidence map, ǫm(Sn,g) (5.24)

individually for each pixel, is not evenly distributed as shown in Fig. 3.18. As discussed

(a) ǫm(Sn,g) along VX (b) ǫm(Sn,g) along VY

Figure 3.18: Confidence map when Sn = 84 and g = 3.75 with no occlusions. Lighter
indicated a higher confidence.

previously, Sec. 3.2.5 by taking into account occlusion in our model we can get a more

reliable confidence measurement, ǭm(Sn,g) (5.21) individually for each pixel, as shown

in Fig. 3.19. We have previously determined the two layers that the segments lie on,

(a) ǭm(g) (b) ǭm(g) after applying low pass filter

Figure 3.19: Confidence map when Sn = 84 and g = 3.75 with occlusions. Lighter
indicated a higher confidence.

in this case g1 = 3.75 and g2 = 6 so we can calculate the confidence for each pixel at

these two layers and then use this instead of the two chroma components Cr and Cb

for our CSS,

CSS(Sn, i, j, Ȳ , ǭm(g1), ǭm(g2)) (3.9)
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or the normalised form

CSS

(
Sn, i, j, Ȳ ,

(
ǭm(g1)

ǭm(g1) + ǭm(g2)

))
(3.10)

where ǭm(Sn, g1) and ǭm(Sn, g2) are the confidence match maps for disparity gradients

g1 = 3.75 and g2 = 6 for segment Sn. Ȳ is the scaled luminance value, which allows

us to adjust the dependency of the metric to the error difference vs image information.

The original segment is replaced by the new collection of segments.

3.4.2 Minimising depth discontinuities

The prioritised segment matching step described in Sec. 3.2.5 is effective in avoiding

the types of errors shown in Fig. 3.10 where a segment is grossly mis-assigned due to an

occlusion. Fig. 3.20 illustrates an example of a few types of error that are not resolved.

Segments that are small and affected by frame occlusions or a segment wrongly assigned

to a slightly different DG will cause a minor but unsightly artefact in the final synthesis.

An additional step is required to deal with this issue.

(a) Original DG map (b) Enhanced DG map

Figure 3.20: Using the prioritised segment assignment and applying the flattening
algorithm with an α of 0.4 and β of 0.01 per iteration allows us to deal with un-
assigned and slightly miss-assigned segments.

Previously we have discussed maximising the matching confidence to calculate ĝn

(3.6) for each segment, taking into account occlusions from other segments. To reduce
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the artefacts in the final output we can include the g of the surrounding layers as a

weight in the segment assignment maximising our new flattened assignment confidence

η giving us a new estimate for the segment DG, g̃n, where

g̃n = argmax
g

(η(Sn, g)) , (3.11)

and the assignment confidence η(Sn, g) (3.13) is dependent on both the highest

confidence combined matching assignment ĝn and the g of the surrounding segments.

(i) Sn

g = 4

g = 2

g = 9

B(Sn,4) = 0.75

B(Sn,9) = 0.20

B(Sn,2) = 0.05

(iv) (ii)

(iii)

(v)

(vii)

(iv)

Figure 3.21: For segment (i) there are three different adjacent disparity gradients,
g = 2 , g = 4 and g = 9. Segments (ii) - (iv) and (vi) all have g = 4 and their
combined contiguous border ratio with (i) is 0.75 so B(Sn, 4) = 0.75 , similarly from
segment (vii) B(Sn, 9) = 0.20 and segment (v) B(Sn, 2) = 0.05.

The diagram in Fig. 3.21 shows an example in which a segment Sn (labelled (i)) is

surrounded by six other segments (labelled (ii) to (vii)). Each of these segments has

been assigned to a layer l, with a DG value gl. So the perimeter of (i) will be bounded

by by other segments whose DGs equal one or more values of gl.

The first step is to find the proportion of the segment border bounded by each of

the gl, giving us the border ratio B(Sn, gl) and disparity gradient gl. This border ratio

allows us to determine the best layer to assign Sn to in order to minimise discontinuities

in the depth map.

The second step is to determine the cost of such a disparity re-assignment. We do

this by looking at the DG confidence response Ê(Sn, g) where

Ê(Sn, g) = argmax
ǫ

(ǫ (Sn, g) , ǭ (Sn, g)), (3.12)
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for each segment Sn. If we assign a segment to a gl other than ĝn there will be an

increase in the ǭ(Sn,g) matching error (3.6), resulting in a drop in confidence, ∆Ê, this

drop is the cost of re-assignment.

For a low texture background segment with a wide peak (which is the main type

of segment to have slight variations of assignment), as shown in Fig. 3.22, a small shift

in g leads to a small shift of Ê so there is little cost in the re-assignment. Conversely a

Figure 3.22: When the peak is shallow and smooth, slight changes in g do not lead
to a large change in confidence.

highly textured foreground object with a sharply defined peak which we do not want

to flatten with surrounding segments, such as Fig. 3.23, has a high cost for the same

degree of re-assignment. Combining these gain and cost functions together gives us the

Figure 3.23: When the peak is steep and sharp, slight changes in g lead to a large
change in confidence.

flattened assignment confidence metric η(Sn, g),

η(Sn, g) = B(Sn, g)− α

(
Ê(Sn, ĝn)− Ê(Sn, g)

Ê(Sn, ĝn)

)
, (3.13)
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Table 3.1: This table lists the sequences [74,75] that were used in our evaluation.

Sequence Image resolution Number of images D̃G

Teddy 450× 375 9 16

Cones 450× 375 9 16

Barn1 432× 381 7 8

Sawtooth 432× 380 7 16

which balances the gain of flattening a segment to the surrounding segment DG, based

on the border length, versus the cost of a less confidence assignment with a weighting

term α to allow fine tuning. The segment, Sn, will be assigned to the layer associated

with the highest η(Sn, g), as long as it is above a empirically determined re-assignment

threshold of 0.6. The process is iterative with all calculations occurring with the current

segment assignments and a simultaneous re-assignment of all the segments after the

round of calculations has finished. However in certain cases the segments can end up

in periodic pattern, flip-flopping between a series of states. To force the system to

stabilise a damping term ζ (k) is added to the equation, giving us a damped matching

metric η̄(Sn, g, k + 1) where

η̄(Sn, g, k + 1) = B(Sn, g)− ζ(k)− α

(
Ê(Sn, ĝn)− Ê(Sn, g)

Ê(Snĝn)

)
, (3.14)

k is the iteration number and ζ = β · k so a high ζ will stabilise the system in fewer

iterations. We have found empirically that values of α = 0.4 and β = 0.01 gives us

good results.

3.5 Evaluation

For our evaluation we used the sequences [74, 75] shown in Table 3.1. The key images

were segmented using the mean shift algorithm [69, 76]. These sources are provided

with GT DG maps with a granular resolution of 1
16 pixel/∆VX for all cases except for

Barn1 which has a granular resolution of 1
32 pixel/∆VX . This results in the calculated

maximum possible image disparity measure D̃G for the GT DG maps.



78 Chapter 3. Layer extraction and assignment

3.5.1 Evaluation of the layer model

The performance of the layer model can be assessed by studying the error when the

layer model is used to estimate the DG map against the 255 layer GT results provided

with the sequences.
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(a) Teddy sequence geometric model comparison.

(b) Image. (c) GT DG map.

Figure 3.24: In this figure we have (a) the comparison graph between different
geometric models and (b)(c) examples from the dataset.

Figures 3.24-3.27 show the error in estimating the DG map using our layer-based

method against the GT map for each of the sequences. The assignment error from

applying the different layer models to the GT DG map, single pixels assigned to non-

uniformly spaced layers (solid line), segments assigned to non-uniformly spaced layers

(dotted lines) and segments assigned to uniformly spaced layers (dashed lines). The

calculated Lmin for each sequence is shown by the vertical dotted line. We also show an

example image and disparity map for each dataset. We have measured the similarity

of the two DG maps using a Peak Disparity Signal to Noise Ratio (PDSNR) measure
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(a) Cones sequence geometric model comparison.

(b) Image. (c) GT DG map.

Figure 3.25: In this figure we have (a) the comparison graph between different
geometric models and (b)(c) examples from the dataset.

PDSNR = 10 · log10

(
D̃G

2

MSE

)
, (3.15)

where the Mean Squared Error (MSE),

MSE = 1
I·J

I−1∑

i=0

J−1∑

j=0

|DGMGT (i, j)−DGMM (i, j)|2 , (3.16)

is the squared pixel difference between the GT DG map, DGMGT , and the layer model

DG map, DGMM , we are investigating. D̃G is the maximum disparity value possible

for the scene and I and J are the image width and height, as detailed in Table 3.1.

We compare three different models: single pixels assigned to non-uniformly spaced

layers (solid line), segments assigned to non-uniformly spaced layers (dotted line) and

segments assigned to uniformly spaced layers (dashed line). In 3.24(a) we can see

that for the single pixel assignment (solid) the quality of the output increases with the
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(a) Barn1 sequence geometric model comparison.

(b) Image. (c) GT DG map.

Figure 3.26: In this figure we have (a) the comparison graph between different
geometric models and (b)(c) examples from the dataset.

number of layers used until the improvement plateaus with no further improvement

with additional layers, this has a higher final PSNR compared to the segment based

methods. However as we have described earlier, the segmentation step is essential

for our quick robust layer assignment method. Comparing the two segment based

models, the non-uniformly spaced layer model and the uniform layer spacing model

do eventually converge but the non-uniformly spaced model (dotted) plateaus much

faster, supporting our argument in Sec. 3.2.4. It is also important to note that the non-

uniformly spaced layer model is also much smoother. In all cases the non-uniformly

spaced model (dotted) plateau point is at or before the calculated minimum requried

layers, Lmin (2.10).

All four cases Figs 3.24-3.27 show similar characteristic curves with some scene

specific differences. For example in Figs 3.25-3.27 there is less difference between the

segment and pixel based methods because the assumption that we can model the scene
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(a) Sawtooth sequence geometric model comparison.

(b) Image. (c) GT DG map.

Figure 3.27: In this figure we have (a) the comparison graph between different
geometric models and (b)(c) examples from the dataset.

using fronto-parallel planes is closer to the true scene geometry. Also in Fig. 3.25 the

curves plateau faster because the scene depths are more highly clustered.

The behaviour of the segmented models support our arguments that Plenoptic the-

ory is valid as a guideline for selecting the right number of layers to allow sufficiently

accurate geometry of the scene, that there are diminishing returns from increasing the

geometry beyond this point and most importantly that our non-uniformly spaced layers

allows us to efficiently allocate resources to improve the modelling of the scene.

3.5.2 Evaluation of the segmentation method

Our method is independent of the segmentation method used, as long as it successfully

gives us continuous regions that lie within the same layer of sufficient size to be matched

robustly. Most segmentation methods of this type are based on spatial and colour

similarities between pixels, two examples are the Mean Shift (MS) [69, 76] and Graph
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Cut (GC) [77–79] algorithms.

The performance when using these two segmentation algorithms with non-uniformly

spaced layers is shown in Fig. 3.28 and we see that, for these two data sets, the mean

shift algorithm is consistently better by approximately 2 dB. The performance when

using uniformly spaced layers is shown in Fig. 3.29 and we see that difference between

the segmentation algorithms remains the same even though the overall performance is

worse.

3.6 Conclusions

In this chapter we have presented a novel layer assignment algorithm. Our approach

uses Plenoptic sampling theory to infer the amount of geometric information required

for artefact-free rendering. Guided by this prediction it takes advantage of the typical

structure of multiview data in order to perform a fast occlusion-aware non-uniformly

spaced layer extraction. We have shown that our novel non-uniformly spaced layer

placement model gives a major improvement in quality and robustness over the uni-

form spacing layer model. Moreover, our layer extraction algorithm is independent of

the segmentation method used. We have also shown that many mis-assignments or

inconsistencies can be solved by smoothing and splitting the segments.
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Figure 3.28: The assignment error from applying the different segmentation meth-
ods to a non-uniform spacing layer scheme.
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Figure 3.29: The assignment error from applying the different segmentation meth-
ods to a uniform spacing layer scheme.
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Chapter 4

View synthesis

4.1 Introduction

View synthesis is the creation of novel views of a scene based on existing images. Our

synthesis algorithm consists of the following steps: First we need layer based geometry

for all of the input images and the view to be synthesised. As described previously,

we calculate the layer models for a few key images and then use these to predict the

geometry for all the other views. This geometry allows us to use the Epipolar Planar

Image (EPI) line structure to interpolate a new image from existing images. Generally

to minimise errors the closest two images either side of the new view are used for the

synthesis, as described in Sec. 4.4.1. We explained in Sec. 2.2.2 why we aim to use

a geometric model comprising a finite number of layers and how Plenoptic sampling

theory indicates the number of layers that are needed. As discussed in Chapter 3 we

have calculated the required amount of geometry and assigned every pixel in the key

images to a fixed fronto-parallel layer, this flat representation of the geometry is known

as a Disparity Gradient (DG) map. This geometry and the input images is used to

perform the synthesis of new views. This chapter will show that the predictions made

by Plenoptic theory hold true for real world scenes.

This chapter is organised as follows : In Sec. 4.2, we describe how using the EPI

line structure we can predict the intersection in adjacent images of the EPI line that

passes through each new output image pixel, accounting in this way for occlusions.
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An overview of the issues with synthesising real world scenes is presented in Sec. 4.3.

We then discuss how we have solved these issues. In particular, improvements to the

synthesis algorithm are presented in Sec. 4.4, covering both pixel level rendering based

on their spatial positions and pixel value similarity a probabilistic estimate is made to

interpolate the new pixel position, Sec. 4.4.1 and how multiple key images are utilised

to fill in any gaps in the output image, Sec. 4.4.2. Post processing improvements are

covered in Sec. 4.5 dealing with missing information, Sec. 4.5.2 and edge based errors in

Sec. 4.5.1 are applied to the image on a pixel by pixel basis to remove minor rendering

artefacts.

Finally we evaluate all the proposed methods and improvements against the Ground

Truth (GT) and alternative competing algorithms in Sec. 4.6 and present our conclu-

sions in Sec. 4.7.

4.2 Plenoptic synthesis

From Plenoptic theory (see Sec. 2.2), the function P3(i, j, VX) gives the intensity of

pixel (i, j) in the image from camera position VX . Each point in the scene corresponds

to an EPI line in the three dimensional (3D) space (i, j, VX). If the scene is Lamber-

tian, all light rays from a scene point have the same intensity and, in the absence of

occlusions, the intensity P3, will be constant along each EPI line. Novel views are

generated by interpolating the sample points provided by the other input images along

the corresponding EPI line. In Fig. 4.1 we illustrate a simplified two dimensional (2D)

case with four EPI lines on two layers (i.e. j is constant). The two points P and

Q, lie on the layer closest to the cameras while points R and S lie on a more distant

layer and are occluded by point Q at VX = 1.4 and VX = 0.2 respectively. The new

sample on an EPI line, at position VX = 1.7, is interpolated from the samples provided

by input images, VX = 1 and VX = 2, either side. For points P , Q and S the EPI

line is un-occluded on both sides so the new sample will be interpolated as a blended

distance-dependant mixture of the two input images. In the case of R only one side of

the EPI line is un-occluded so only the sample from VX = 2 will be used.
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We synthesise the image on a layer by layer basis, starting with the lowest disparity

and hence the most distant layer, and move through the layers progressively closer to

the camera to preserve the occlusion ordering.

Figure 4.1: To synthesise a new view at V1.7 we take pixels along the EPI line from
bracketing views V1 and V2 and combine them to form a new interpolated value. If
a potential source pixel is occluded it is not included in the interpolation.

In Fig. 4.2 we show an example of real world Plenoptic synthesis along EPI lines.

The two solid lines in Fig. 4.2(a) are from the foreground teddy object and the dashed

lines the background periodic table. The real world example demonstrates the occlusion

occurring at VX = 4 as predicted by the intersection in the EPI line graph in Fig. 4.2(b).

So at VX > 4 three of the points can be interpolated from two directions and one can

only be interpolated from one direction.

4.3 Layer geometry approximations

In the previous chapter we discussed how we estimated the required amount of geomet-

ric information necessary for high quality synthesis. We use this geometric information

combined with the input images to perform Plenoptic synthesis, as described in Sec. 4.2,

which should result in alias-free reconstruction of any view. In a real world situation

this is not the case because many of the assumptions do not hold true in reality. These

lead to errors in the synthesised output; however by understanding the cause of these

issues their effect can be reduced.
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Figure 4.2: An example of EPI lines in a real world (a) and 1D (b) case. All points
are along a slice through the image at j = 45.
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4.3.1 Model inconsistencies

Errors in the synthesis are due to inconsistencies between the geometric model and

reality. These errors arise because some of our assumptions such as for example fronto-

parallel planes or infinite field of view are not valid in a real world case. Although with

sufficient layers a flat model of the scene is a good representation for many cases there

will always be differences from reality. In addition the finite sampling resolution of the

camera means that the scene textures are not band limited within an object and the

discontinuities at object edges violate band limiting. We introduce a novel enhancement

to Plenoptic sampling in Sec. 4.4.1 that deals with many of these problems.

4.3.2 Geometric misassignment

It is inevitable that mistakes in the layer assignment process will sometimes result

in pixels being assigned to an incorrect layer. Such mistakes may arise either from

errors in segmentation or from the assignment of a segment to the wrong layer. It is

important that a view synthesis algorithm is robust to such mistakes and we discuss

ways of dealing with them in Sec. 4.5.1.

4.3.3 Missing information

One of the key assumptions made in Plenoptic theory is that there are no occlusions.

Once we are dealing with a scene with occlusions and cameras with a limited field of

view there will be regions of the scene that are only visible in only some or even in

none of the available input images. Due to the differing amounts each layer is shifted,

regions of one layer may move to occlude a layer with a lower DG. Consequently when

the layers are shifted, regions of the scene also become disoccluded leaving gaps. This

is illustrated in Fig. 4.3 where the left column shows the effect of projecting segments

from a key image, (i) at VX = 0 to other camera positions, (ii) - (iv) with VX = {2, 6, 8}.

As the DG map is projected further from the key image the effects of the occlusions

and dissocclusions becomes more and more obvious as more holes appear in the image.

If a key image is taken from the opposite end of the sequence, as shown in the right
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column of Fig. 4.3, the same can be seen to happen in reverse, as the key image (iv)

is projected onto (iii)-(i). These holes occur because of the cluttered nature of the

scene, as these regions are not visible from a key image so there is no DG information

available. However as we discuss in Sec. 4.4.2, it is possible to eliminate the gaps by

combining the two key images and filling the gaps in one view with information from

the other.

It is important to understand the causes of different types of occlusion/disocclusion

as different approaches are required to deal with them. Three types of possible disoc-

clusion are illustrated in Fig. 4.4; (A) shows tearing, where a missing region appears in

a oblique surface which spans multiple depth layers; (B) shows a region of inter object

disocclusion. Type (C) errors demonstrate disocclusions due to the lack of available

image information outside the field of view. Type (A) and (B) errors can be in-filled

directly, either from surrounding pixels or different image sources if available; this is dis-

cussed in Sec. 4.4.2. Type (C) holes can cause problems if in-filled directly, as described

in the latter part of Sec. 4.4.2.

Sometimes a region of the scene is not visible from any of the input sources; in this

case we need to extrapolate from the surrounding image and our knowledge of a typical

scene in order to fill the missing region, this is described in more detail in Sec. 4.5.2.

4.4 Rendering enhancements

4.4.1 Probabilistic pixel interpolation

To synthesise a new view we scan through all the empty output pixels synthesising each

individually by interpolating along the EPI lines using sample pixels, Pp, from the two

closest bracketing views, as shown in the top down view in Fig. 4.5.

Because the g ·VX for a point has a sub-pixel precision the projection to the bracket-

ing images will not normally lie exactly on a pixel. The most straightforward approach

would be to linearly interpolate the intensity of the intersection point from the pixels

either side of the intersection based on their spatial separation. For example using
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(a) Key VX = 0 (b) Key VX = 8

Figure 4.3: Disparity map projection for two key images (a) VX = 0 and (b) VX = 8.
Position (i) is at VX = 0, (ii) VX = 2, (iii) VX = 6 and (iv) VX = 8.
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Figure 4.4: The view from the Teddy sequence at VX = 0 is projected layer by layer
to VX = 8, with resulting disocclusions left as black pixels. Three different types of
disoclusion are highlighted.

linear interpolation for the synthesised point in Fig. 4.5 we obtain

P1,2,3,4 = (1− γ)P1,2 + γP3,4, (4.1)

where at VX = V −

s ,

P1,2 = (1− α)P1 + αP2, (4.2)

similarly for VX = V +
s P3,4 is calculated using β. Here

γ =
Vs − V −

s

V +
s − V −

s

, (4.3)

is the distance between the synthesised image Vs and the lower bracket camera position,

V −

s , normalised relative by the total distance, (V +
s − V −

s ). Moreover α and β are the

distances in pixels from the EPI line to P1 and P3 respectively.

In some cases, however, the pixels are not all equally valid as sample points. For

example, we need to make sure our interpolation only uses pixels from the current layer

and that we account for any potential error in our layer assignment. So rather than

the fixed interpolation scheme of (4.1), we use a probabilistic method, weighting each

input pixel based on its estimated reliability. First we set a very low weight to any
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Figure 4.5: When synthesising a new view (dotted line) at Vs we interpolate along
the EPI line using sample pixels, Pp, from bracketing views (dashed lines) V −

s and
V +
s . Because the sample point in i for the existing views will not normally lie

exactly on a pixel we have to use the two closest pixels from each bracketing view.
The pixel P1,2,3,4 is interpolated from pixels P1, P2 from V −

s and pixels P3, P4 from
V +
s .

of the four input pixels which are not on the same layer as the output pixel. Second

we compare the diagonally opposite pixel pairs (i.e. P1 with P4 and P2 with P3); if a

diagonally opposite pair of pixels has similar intensities, then they are likely to match

the target pixel and so are given a high weight.

So the probabilistic prediction for the interpolated pixel now becomes,

P̂1,2,3,4 =
(1− γ)(G1τ(1− α)P1 +G2χαP2) + γ(G4τβP4 +G3χ(1− β)P3)

4∑
p=1

Gp

, (4.4)

where

χ =
|P1 − P4|

|P1 − P4|+ |P2 − P3|
, (4.5)
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and

τ =
|P2 − P3|

|P1 − P4|+ |P2 − P3|
. (4.6)

Gp is the weighting for a synthesised pixel, P̂1,2,3,4, for points p = {1, 2, 3, 4} where

Gp =





1− |gs − gp| if |gdiff | ≤
∆VX

2
;

0 otherwise.

(4.7)

gp is the g for a bracketing pixel and gs is the g for the EPI line; α and β are ratios

of the intersection distance of the EPI line in relation to the pixel pair either side, as

shown in Fig. 4.5. In the special case where |P1−P4| = |P2−P3| = 0 we set χ = τ = 0.5.

The benefits of this approach are an improvement in PSNR and visual quality due to

unreliable pixels having less effect on the interpolation.

4.4.2 Multiple key images

For complex scenes all regions of the scene may not be visible from a single key image.

Using more key images increases the coverage of the scene and allows reliable assignment

of these regions. For the EPI sequences tested, with between 5 and 9 images, we

use two key images as we found that increasing the number of key images beyond

this point provides little additional benefit to the output quality. By selecting images

at opposite ends of the sequence we can increase the parallax and hence maximise

coverage. A similar reasoning leads to choosing key images at opposite corners when

using a Lightfield source.

When using multiple key images it is important that all the calculated key image

DG maps have the same layer positions. The DG histograms, Fig. 3.9, are estimated for

each key image independently. These results are then combined before the Lloyd-Max

algorithm is applied jointly to both in order to estimate a common set of layer disparity

gradients. This allows easy and smooth combination of the key image DG maps as well

as making sure that the layer positions are placed efficiently even for objects that are

only visible in some of the key images.

When synthesising a novel view, because of the consistent layer model used in all
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key images we use them in a master-slave relationship. For each output view the closest

key image is set as the master and any other available key images as slaves. Priority

is given to the information from the master image in the case of any conflicts, so that

information from the slave images is only used to fill holes in the resulting projection.

The three types of occlusion shown in Fig. 4.4 may be divided into two groups.

Occlusion types (A) and (B) are caused by objects occluding other objects within the

scene, known as internal occlusions. As these occlusions are consistent within the scene

they can be filled in from other slave images. Type (C) errors are more problematic,

because these framing occlusions are not consistent within the scene as they will be

unique for each image position, so they will therefore cause problems when they are

projected beyond the camera position. For example Fig. 4.6 shows a few examples of

continuous objects that are occluded by the image framing but would be visible as a

continuous surface in other views.

Figure 4.6: A few examples of contiguous regions within the scene that extend
beyond the image framing and would therefore be occluded by the field of view.

Fig. 4.7(a) shows the DG map directly calculated for the camera position (VX , VY ) =

(4, 4) from the Tsukuba sequence. Figure 4.7(b) shows the prediction for the same

camera position, based on the calculation for camera position (VX , VY ) = (0, 0). If we

compare the two there are a number of errors.

In this case all the disocclusions are type B or C, as shown in Fig. 4.4. For type B

disocclusions such as Fig. 4.7(b)(B) the error is a hole in the DG map so it can be filled
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in by using the DG map of another key image if available, if not it can be in-filled, as

explained in Sec. 4.5.2. Some type C disocclusions can be dealt with in a similar way,

for example in the case of Fig. 4.7(b)(C-i), although the error is caused by framing

rather than internal occlusion none of the layers project into the disoccluded region so

it can be in-filled as previously described for a type B error. Figure 4.7(b)(C-ii)) on the

other hand poses a problem, although the region is missing part of the table lamp, due

to the framing occlusion, there is already a lower layer present so no in-filling will occur

even though the lower layer should actually be occluded by the table lamp. Because of

their higher g layer, the foreground objects near the edge of the field of view are very

vulnerable to this effect.

(a) (VX , VY ) = (4, 4)

(b) Projected from (VX , VY ) = (0, 0)

Figure 4.7: Comparing the original DG map for (a) and the DG map for (VX , VY ) =
(0, 0) projected to the same position shows that some regions (C-ii) cannot accu-
rately be predicted without accounting for framing occlusion effects, whereas some
can: (B), (C-i).

Our method to prevent this is to project the slave DG maps onto the master and
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record which regions fall outside the frame and hence correspond to regions unseen

from the master map. An example of this is shown in Fig. 4.8, showing the regions

of image (VX , VY ) = (4, 4) which are occluded by the framing of (VX , VY ) = (0, 0).

These selected regions of the slave DG map can therefore legitimately occlude regions

of the master map, if they have a higher g, which solves the problem caused by framing

occlusions.

Figure 4.8: Inter image projection allows us to calculate which parts of the slave
key image are occluded by the master image frame.

4.5 Post processing

In real world synthesis there will always be errors and missing information that needs

to be contend with, by understanding what causes these errors and with our knowledge

of a typical scheme there are several methods we can apply to improve the final output

quality of the synthesis.

4.5.1 Removing orphan edges and alpha blending

If the layer segmentation does not exactly match the underlying image then, as illus-

trated in Fig. 4.9, shifting a layer results in the edges of an object being left behind.

These orphan edges are normally only a pixel or two wide but can cause very

obvious rendering artefacts and can be distributed throughout the image (depending

on the difference in disparity gradient on the object edge). The orphan edges can be
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Figure 4.9: If the layer segmentation (top layer) does not match the underlying
image (bottom layer) then prediction projection results in the edges of an object
being left behind.

included in the correct layer if we pre-process the disparity map, enlarging each layer

by extending the boundary into more distant layers by two pixels, as seen in Fig. 4.10.

An additional benefit of this procedure is that any small holes or thin intrusion into

layers are also absorbed, which generally improves the modelling of a typical scene.

Layer extension solves the problems caused by orphan edges but introduces a different

(a) Original (b) Extended by 2 pixels

Figure 4.10: Each layer of the d map has been extended occluding pixels on lower
layers only.

error, if the extension goes beyond the true layer boundary it leads to a halo of pixels

round a foreground object that should be assigned to a lower layer causing an unsightly

visual artefact.

As these errors will be on the edges of layers rather than distributed through the

image they are easier to predict, additionally they are much easier to deal with via

a technique called alpha blending or coherence matting [11]. We allow a degree of
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transparency for each pixel in the layer between 0 (completely transparent) and 1

(completely opaque). We model the layers separately so for each pixel we can sum up

all the pixels in proportion to their alpha transparency. If all pixels had a transparency

of 0.8, a pixel would consist of 80% the top layer then 16% of the next layer (0.8 times

the remaining 0.2) and the remaining 4% from the final background layer. If there are

no layers underneath the alpha transparency of a layer pixel will always be 1. Alpha

blending mitigates the haloing effect and has the added benefit of smoothing any jagged

layer edges.

It is important that the blending is done with true in-line blending rather than just

blurring the edges to avoid adding unwanted inaccuracies and artefacts. The first stage

is to generate a alpha blending map for each layer. We use a linear blending profile,

A(p,gl) =





pl
pmax + 1

if pl ≤ pmax;

1 otherwise.

(4.8)

where p is the current pixel position, pmax is the number of extended pixels for the

layer and pl is minimum distance (in pixels) of a pixel to the edge of its layer, gl, so

pl = min
o∈E(gl)

(||p− o||2) , (4.9)

where o is part of the set E(gl) of pixel positions around the edge of gl and ||·||2 is

the ℓ2 norm. If the underlying layer is not explicitly known it is interpolated from

the surrounding geometry. This blending layer is used to calculate an alternative for

the pixel in question which is then blended with the top level pixel value. Figure 4.11

shows the improvements using this combined extend/blend method. Orphan edges are

removed and the edges of the foreground object are smoother and more natural looking

without any loss of clarity or sharpness for the rest of the image.

The edge blending is projected along with the image to maintain a sub-pixel edge

profile along with necessary scaling. As can be seen in Fig. 4.12 the blending scales

as the objects grow maintaining a smooth curve which alleviates some of the stepping

issues that become apparent with un-blended scaled regions.
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(a) Original (b) Enhanced (c) Diff

Figure 4.11: By extending the d map by 2 pixels and then alpha blending by the
same amount the orphan edge effects seen in (a) can be removed (b). The orphan
edges can clearly be seen in the exaggerated diff map (c).

Figure 4.12: An example of scaled blending when moving the camera forwards in
VZ where the alpha transparancy of a layer is between 0 (black) and 1 (white).
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4.5.2 Hole filling

As Fig. 4.4 shows, when the DG map is projected onto a synthesised view there are

regions that are not covered. For these regions using a similar technique to that used

in [80,81], pixels are in-filled based on the most prevalent surrounding DG value, g, so

for all available layers, gl,

gp = argmax
g

(B(p, gl)) , (4.10)

where B(p, gl) is the number of pixel assigned to layer gl bordering pixel p. If there are

multiple possible values for gp (same border value) the lowest (most distant) is chosen

so

gp = min

(
argmax

g
(B(p, gl))

)
. (4.11)

For the example hole shown in Fig. 4.13 pixels (i) - (iii) will all be assigned to layer

g = 4, (v) to g = 7 and the contested (iv) will be assigned to g = 4 as the lower g value.

Figure 4.13: A region of the image where pixels are either assigned to g = 4, g = 7
or are an unassigned hole (i) - (v).

In most cases there will be at least one image that we can use for Plenoptic sam-

pling, Sec. 4.4.1, directly synthesising the output from adjacent images based on the

underlying DG value. However in crowded scenes dis-occlusions can reveal unique parts

of the scene, in this instance we in-fill using a blended mixture of surrounding pixels,

but only from the same layer. For example in Fig. 4.14 the pixel (i) will only be esti-
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mated using other pixels from the layer g = 4 (solid arrows) and the pixel (ii) will be

constructed from the layer g = 7 (dashed arrows).

(a) DG map

(b) Image

Figure 4.14: The DG map (a) corresponds to the image (b). Any holes in the
image are infilled using pixels from the same layer eg. pixel (i) from layer g = 4.

4.6 Evaluation

For our evaluation we used the datasets [74, 75] shown in Table 4.1. The key images

were segmented using the Mean Shift (MS) algorithm [69, 76, 82]. These sources are

provided with GT DG maps with a granular resolution of 1
16

th
of a pixel/∆VX for all

cases except for Barn1 which has a granular resolution of 1
32

th
of a pixel/∆VX . The 8-

bit RGB images used lead to a calculated maximum possible image disparity measure

Ĩ for the images in the dataset. We used the ‘leave q out’ method of evaluation in

which only every (q + 1)th image is included in the input image set. These are used to

synthesize one of the omitted images for which the ground truth is known. In all cases
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Table 4.1: This table lists the datasets [74,75] that were used in our evaluation.

Dataset Image resolution Image № Ĩ

Teddy 450× 375 9 255

Cones 450× 375 9 255

Barn1 432× 381 7 255

Sawtooth 432× 380 7 255

Animal1 432× 380 12 255

we use the first and last of the input images images as the key images of the EPI source

and an infilling algorithm was used to fill any holes with the lowest adjacent disparity

as described in Sec. 4.5.2.

We have measured the similarity of the synthesised images against the originals

using a Peak Signal to Noise Ratio (PSNR) measure

PSNR(Im) = 10 · log10

(
Ĩ
2

MSE(Im))

)
(4.12)

MSE(Im) = 1
I × J

I−1∑

i=0

J−1∑

j=0

∣∣Im (i, j)− Īm (i, j)
∣∣2 , (4.13)

where Mean Squared Error (MSE) is the squared pixel difference between the original

image, Im, and the synthesised image, Īm, for image position m. Ĩ is the maximum

pixel value possible for the scene and I and J are the image width and height, as

detailed in Table 4.1. The final value we use is the mean of all non key images,

PSNR =

M−1∑

m=1

PSNR(Im) · Ξm

M−1∑

m=1

Ξm

, (4.14)

where Ξ is the key mask such that

Ξm =





1 if Im is not a key image;

0 if Im is a key image.

(4.15)
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4.6.1 Validation of the layer model

Plenoptic theory suggests that by choosing the appropriate number of layers we can

have alias free rendering, and that no further improvement will be gained by adding

extra geometric information. We validate this analysis and the effectiveness of our

algorithm in Figure 4.15 which shows the variation of PSNR with the number of layers

averaged over all the evaluation datasets. This demonstrates that the gap between our

algorithm and rendering based on the knowledge of the GT geometry is only 0.25 dB.

It also shows that the layer-based representation incurs no loss in performance when

compared to the rendering based on complete geometry.
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Figure 4.15: The horizontal line shows the best average possible performance using
the raw ground truth DG map. The dashed line shows the average effect of applying
the layer model to the raw ground truth (with no segmentation). The dotted line is
our average algorithm result when the layer model is applied to our own calculated
DG map (with segmentation). All three results are obtained by averaging over all
the datasets.

Specifically, the solid horizontal line represents the best possible rendering result

using the provided rawGT DG map, which provides full and accurate pixel based

geometric information. The dashed line shows the effect of applying the layer model to

this data by calculating the best layer positions and assigning all the pixels to the closest

layer. As the number of layers used increases so does the quality of the output until

the improvement plateaus with no further improvement from using additional layers.
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Importantly this plateau point is indistinguishable from the raw GT result showing that

there is no inherent loss in quality if a sufficient number of layers is used. Finally the

dotted line shows the result of our layer based DG extraction and rendering algorithm,

which has only a 0.25 dB drop from the best possible performance. Part of this drop is

due to the use of segments, as discussed in Sec. 3.5.1, and the remainder due to minor

assignment errors. It is interesting to note that whereas the performance of single-pixel

segments did not plateau when estimating the depth map in Figs. 3.24-3.27, this is not

the case for the corresponding image rendering performance shown in the dashed line

in Fig. 4.15.

4.6.2 Validation of the minimum layer constraint

In Sec. 2.2.1 we discuss the prediction that Plenoptic theory makes in regard to the

Minimum Sampling Criterion (MSC) of a scene based on Zmin and Zmax within a scene.

This leads to the formula for Lmin (2.10) the minimum number of layers required for

high quality rendering. Although many of the assumptions of Plenoptic theory are

not valid for a real world case, this requirement for a minimum number of layers is

still a good guideline. If we look at the PSNR vs layer curve for our test datasets,

Figs 4.16(a)-(e), in each case we can see that the curve has plateaued by the number of

layers predicted by Lmin, shown as a vertical dashed line. In some cases, eg. Fig. 4.16(a)

and Fig. 4.16(b), there is an initial sharp increase in synthesis quality as more layers

are used, followed by a diminishing increase in quality, followed by the curve plateauing

just before the calculated Lmin. In the case of Fig. 4.16(d) and Fig. 4.16(e), datasets

that are highly clustered in Z, our non-uniformly spaced layer allocation, as described

in Sec. 3.2.4, is effective at taking advantage of the empty regions in Z so the curve

plateaus significantly before the Lmin point. However the Lmin point is still valid as

a required number of layers. In the case of Fig. 4.16(c) because the scene has a very

small ∆Z the curve increases sharply and plateaus exactly at the calculated Lmin.
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(a) Teddy sequence, Lmin = 14.
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(b) Cones sequence, Lmin = 13.
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(c) Barn1 sequence, Lmin = 5.
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(d) Sawtooth sequence, Lmin = 9.
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(e) Animal1 sequence, Lmin = 16.

Figure 4.16: The solid line is our average algorithm result when the layer model

is applied to our own calculated DG map (with segmentation). This curve is

calculated by averaging over all synthesised frames for the dataset Teddy. The

average Lmin based on the MSC is shown by the vertical dashed line.
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Table 4.2: This table contains the comparison results between our 1st stage algo-
rithm Sec. 3.2.3 and an alternative stereo-matching method [77] and the result of
applying our 2nd Stage algorithm with and without variably spaced layers using
Lloyd-Max. All results are from the Teddy dataset [74] with the same parameters
and final rendering algorithm.

Method PSNR (dB)

1st stage only (no Lloyd-Max) 32.43

Alternative method [77] (no Lloyd-Max) 32.65

Alternative method [77] + 2nd stage (14 layers) 33.04

1st + 2nd Stage (no Lloyd-Max) 33.20

1st + 2nd Stage (14 layers) 33.25

4.6.3 Comparison with alternative algorithms

Table 4.2 includes the results obtained when using an alternative pixel-based algo-

rithm [77], [78] for which code was available. The stereo-matching performance of this

algorithm on standard test sets is very high (94.5% of pixels within ±0.5 pixel disparity

error [74]) although slightly worse that the current state-of-the-art, [83], (98% within

±0.5 pixel disparity error). Using only the 1st stage of our algorithm from Sec. 3.2.2

(row 1 of the table) results in a lower performance than this alternative algorithm (row

2), primarily because of a small number of wrongly assigned segments. Applying the

2nd stage of our algorithm from Sec. 3.2.5 improves the performance of both the alter-

native method (row 3) and our method (row 5). The disparity gradient histogram is

here generated using either [77] or our 1st stage method, the layers are assigned using

the Lloyd-Max algorithm from Sec. 3.2.4 and the number of layers is 14 as indicated

by the minimum sampling criterion, Lmin, from (2.10).

Even though the raw performance of our 1st stage method is worse than that of [77],

its disparity gradient estimates have a lower median error; this results in more accurate

layer depth values and a slight increase in overall performance when the 2nd stage of

our algorithm is applied (row 5 versus row 3). Row 4 of the table shows the results

of using the full depth resolution (48 layers) in both stages of our algorithm. We note

that not only does this require much more computation, but the performance is actually

slightly degraded by 0.05 dB. Figure 4.17 shows that the performance of the layered
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method is equal to or better than the non layered method for most layers, especially

in the sweet spot around the MSC.
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Figure 4.17: A graph showing the rendering quality for different number of layers
with layer selection before or after the 2nd stage.

In Sec. 3.5.1 we saw that different segmentation methods, MS and Graph Cut (GC),

gave very similar results but there was a small advantage to using the MS segmenta-

tion. However the small increase in predicted quality for MS segmentation shown in

Figure 3.28 is not evident when the two segmentation schemes are used for rendering,

as shown in Fig. 4.18 both give similar results.

4.6.4 Distance from key image

Figure 4.19 shows the synthesised outputs from VX = 1 to VX = 7 for the Teddy

sequence, for 9 and 18 layers. The two key images are at VX = 0 and VX = 8. As the

graph shows in both cases as the synthesis moves further away from the key images

the quality drops, this is due to inconsistencies in the model having more of an effect

the further the model is projected. Comparing the two curves we can see that middle

section, furthest from the key images, improves the most indicating that additional

geometric information is needed when synthesising views that are far away from the

key images. Adding another key image at VX = 4 would improve performance in this
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Figure 4.18: The rendering results from applying the different segmentation meth-
ods to a variably spacing layer scheme.

region but the increase in quality over the whole dataset is low and it adds a significant

calculation penalty.

4.6.5 Algorithm breakdown

There are several major separable elements to the algorithm, the breakdown of the

geometric calculation is shown in Fig. 4.20(a) for the Teddy sequence. With uniformly

spaced layers (dotted line) the performance improves slowly with the number of layers

and a very large number is required to reach the performance limit. The PSNR can

be increased (dashed line) by incorporating layer extension (Sec. 4.5.1), and disparity

gradient flattening (Sec. 3.4.2). With these improvements, the use of uniform layer

spacing (dashed line) comes close to its limiting performance when using the number

of layers, Lmin, predicted by Plenoptic theory and shown in Fig. 4.20(a) as the vertical

dashed line at Lmin = 14. As noted in Sec. 3.2.4, the assumptions of Plenoptic theory

are not fully met in practice and increasing the number of layers beyond Lmin gives

an additional performance improvement when using uniformly spaced layers. By using

non-uniform layer spacing in our algorithm (solid line), we fully reach limiting perfor-

mance with Lmin layers and obtain significant performance improvement when using
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Figure 4.19: This graph shows the individual rendered “miss one out” results from
VX = 1 to VX = 7 from the Teddy sequence, with 9 layers (solid line) and 18 layers
(dashed line). In this example the key images are at VX = 0 and VX = 8, with
the key image at VX = 0 used as the master to the left of the vertical dotted line
inclusive.

fewer layers than this.

The corresponding graph for the Cones sequence is shown in Fig. 4.20(b) where

we see that the relationship between the three curves is very similar. The use of non-

uniform layer spacing again provides a clear benefit although the improvement is less

than with the Teddy sequence because the objects in the Cones sequence are more

uniformly spread in depth. We note that Lmin again indicates the number of layers

required to reach limiting performance.

We can also breakdown the improvements in the results due to various elements

within the synthesis, as shown in Fig. 4.21(a) for the Teddy sequence. The basic

rendering method (dotted), with fixed pixel interpolation and no post-processing, can

be improved by using probabilistic interpolation (dashed line), as described in Sec. 4.4.1.

As well as smoothing the results it gives a substantial improvement in overall quality

especially when few layers are used. Further improvements can be made across the

board by using alpha blending (solid line) to minimise the errors on the edges of layers

(see Sec. 4.5.1). Very similar effects may be seen in Fig. 4.21(b) for the Cones sequence

although the differences are slightly greater.
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Finally we note that on a desktop PC the total time to read in the input frames,

extract the layers and synthesise an output image is 2.8 seconds, 0.6 seconds of which is

the third party segmentation algorithm and 0.2 seconds is the time to synthesise each

output image.

4.6.6 Output examples

In Fig. 4.22(a) we can see an example output of the algorithm from the Teddy sequence.

With a PSNR of 33.9 dB and no major visual artefacts the rendering quality is very high

with a definite photo-realistic feel. Looking at the luminance error map, Fig. 4.22(b),

for the image we can see that 86% of the image has an error of one or less, the overall

mean error is 1.004 (for a full scale of 255) and that the larger errors are only to be

found on the edges of segments in thin bands. These edge errors are reduced due to

the layer extension and alpha blending.

4.7 Conclusions

In this chapter we have presented a novel layer based rendering algorithm for Image

Based Rendering (IBR). The rendering is improved by using a probabilistic interpola-

tion approach and by an effective use of key images in a scalable master-slave config-

uration. Numerical results demonstrate that the algorithm is fast and yet is only 0.25

dB away from the ideal performance achieved with the ground-truth knowledge of the

3D geometry of the scene of interest. We have shown that our algorithm performs well

in comparison with an alternative method.

We have also shown that the Plenoptic theoretical framework is applicable to real

world cases since a layer based model does not lead to any loss in output quality and

the number of layers required is correctly predicted by the theory. This indicates that

despite several assumptions of Plenoptic theory not being satisfied in real world cases

it is still an effective guide for producing high quality synthesised outputs.
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(a) Teddy Lmin = 14

(b) Cones Lmin = 13

Figure 4.20: Showing the improvements in the algorithm results by using uniformly
spaced layers (dotted), uniformly spaced layers with extension and layer flattening
(dashed) and finally the best layer model with all enhancements and non-uniformly
spaced layers. Results are for the Teddy sequence. The vertical line shows the
calculated Lmin.
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(a) Teddy Lmin = 14

(b) Cones Lmin = 13

Figure 4.21: Rendering improvements broken down into the basic rendering (dot-
ted), improved interpolation (dashed) and the final alpha blended rendering (solid).
Results are for the Teddy sequence. The vertical line shows the calculated Lmin.
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(a) Output (b) Error

Figure 4.22: In (a) is an example rendered “miss one out” output for VX = 1
from the Teddy sequence with a PSNR of 33.9 dB, with 18 layers. In (b) is an
exaggerated difference error map (error × 10) for the image, with an average error
of 1.004.
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Chapter 5

Arbitrary virtual camera

positions and rotation

5.1 Introduction

Previously we have described our Image Based Rendering (IBR) algorithm for the

camera Epipolar Planar Image (EPI) line case and shown how it can be extended

to encompass a plane of cameras, using the extra information that this provides to

calculate more accurate geometry. This extra information can also allow us to relax

restrictions on the output camera position allowing us greater freedom for synthesis. In

this chapter we present three extensions to model multiple camera planes and allow even

greater freedom in our synthesised camera position. The first extension removes the

restriction that all input cameras must lie in a single plane and shows how the outputs

from multiple camera planes can be combined. We also allow additional degrees of

freedom for virtual camera rotation allowing camera planes at different angles.

A second extension describes how we remove the restriction that the viewpoint of

a synthesised image must lie on the camera plane of the input images and allow the

virtual camera to move away from. This gives greater freedom in our synthesis and

permits the generation of smooth.

In the third extension, we relax our requirement that the layers be fronto-parallel
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and show that the use of angled layers can result in improved synthesis quality. This is

important for modelling multiple input camera arrays, using angled planes allows us the

bridge the gap between the two separate geometry models with fewer discontinuities.

This results in fewer artifacts when both models are combined to perform the view

synthesis.

5.2 Multi-planar camera arrays

In previous chapters, we have constrained the input camera positions to lie on a single

line or plane. Here we show that our approach can be extended to deal with the more

general form of multiple planes as illustrated in Fig. 5.1.

Figure 5.1: More of a scene can be viewed by allowing multiple planes of input
cameras.

Relaxing our assumptions and restrictions to allow this means that we need our

system to model camera rotation (see Sec. 5.2.1); projections between the planes (see

Sec. 5.2.2); the new inter-plane occlusion ordering, (see Sec. 5.2.3); and merging the

two models into a high quality output, (see Sec. 5.2.4).

A two dimensional (2D) example is shown in Fig. 5.2 showing a camera setup with

two planes. Each model can be treated separately as a single-plane system, so the

geometry model can be calculated as previously discussed, with its own (VX , VY , VZ)

coordinate system and parallel layers. To differentiate the plane models we will be using

the superscript symbols (1) and (2). The two models will intersect at (V
(1)
X , V

(1)
Z ) = (0, 0)

with an angle between the planes of φ.
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Figure 5.2: Top down view of a multi plane system with the two planes, along V
(1)
X

and V
(2)
X , intersecting at V

(1)
X = 0 at an angle of φ.

5.2.1 Camera rotation

The first enhancement to our system is modelling and performing camera rotations,

allowing us a further degree of freedom for the output synthesis position. It is important

to note that no geometry information is required for a camera rotation, as long as the

camera position remains fixed in (VX , VY , VZ) in that the same light rays will pass

through the camera position, so the light ray intersection with the camera plane in

(i, j) will vary only with the Field of View (FOV), the focal lengthf and the camera

pose. We can construct a camera rotation transform matrix [84] and apply it to every

pixel allowing us to model camera rotations. So pixel mapping for a point (i, j) to its

rotated position (i′, j′) can be described by




i′

j′

1




= K2RK−1
1




i

j

1




(5.1)
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where the camera matrix, K, is defined as

K =




fi 0 ı̄

0 fj ̄

0 0 1




(5.2)

where fi and fj are the focal lengths in the i and j dimensions and (̄ı, ̄) is the optical

centre of the image. The matrix entry k12 is always zero because we assume there is

no pixel skew. We also assume for our rectified images that fi = fj = f and K1 = K2.

The rotation matrix, R, is in the Rodrigues form [85] so

R(ϑ̂ϑϑ, φ) =




1 0 0

0 1 0

0 0 1




+ ϑ̃ sinφ+ ϑ̃2(1− cosφ), (5.3)

Where φ is the rotation angle about the axis specified by unit vector ϑ̂ϑϑ where

ϑ̂ϑϑ = (ϑX , ϑY , ϑZ) (5.4)

and ϑ̃ denotes the antisymmetric matrix where

ϑ̃ =




0 −ϑZ ϑY

ϑZ 0 −ϑX

−ϑY ϑX 0




. (5.5)

In our case we will only ever have rotation about the Y axis so our fixed unit vector

ϑ̇̇ϑ̇ϑ = (0, 1, 0) leads to a simplified rotation matrix

R(ϑ̇̇ϑ̇ϑ, φ) =




cosφ 0 sinφ

0 1 0

− sinφ 0 cosφ




. (5.6)
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5.2.2 Connecting the planes

As Fig. 5.2 shows the two camera planes intersect at V
(1)
X = 0 and both have a camera

used as a key image at this position. As we previously discussed the camera rotation

is independent of geometry. Therefore if we apply the camera rotation to the different

key images we can achieve a direct mapping between the two plane models. This allows

us to project from any camera in one plane to another one in the other plane using the

pixel mapping




wi′

wj′

w




=




1 0 g(2)V
(2)
m

0 1 0

0 0 1




K2RK−1
1




1 0 g(1)V
(1)
m

0 1 0

0 0 1




−1


i

j

1




. (5.7)

Any further motion to the final synthesis position can be applied on top of this inter-

camera mapping projection.

5.2.3 Occlusion ordering between planes

In Sec. 2.2.2 we discussed one of the benefits of our model being a fixed and predictable

layer occlusion order. When using multiple camera planes the occlusion ordering is

no longer fixed but it is still predictable. Previously with our fronto-parallel layers

(Sec. 2.2.2) and even with our angled planes (Sec. 5.4) the layers never crossed so

the occlusion ordering was consistent. As the layers for the two plane models will be

angled relative to each other the layers will intersect and the occlusion ordering will

alter, so the occlusion ordering is depended on the layer Disparity Gradient (DG) and

the position in the image plane. Fig. 5.3 shows a 2D example with two planes, X(1)

and X(1), and two layers, Z
(1)
l and Z

(2)
l . For cameras along X(1) in region (a) Z

(1)
l will

occlude Z
(2)
l and in region (b) Z

(2)
l will occlude Z

(1)
l . We can calculate the angle, σ, of

this intersection relative to the optical axis as

σ = tan−1

(
∆VX

Z
(1)
l

+
Z

(2)
l

sinφ tanφ
− cotφ

)
(5.8)
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Figure 5.3: Top down view of a multi-plane layer occlusion. In region (a) Z
(1)
l

will occlude and in region (b) Z
(2)
l will occlude. The triangle denotes the image

plane and FOV for the camera, and the circle shows the position of this occlusion
switchover.

where ∆VX is the distance of the camera from VX = 0 and φ is the plane intersection

angle. The position of this switchover in the image plane, Υ, is defined as

Υ = f tanσ (5.9)

where f is the focal length of the camera. This expands out to,

Υ(∆VX , φ, l(1), l(2)) = f

(
∆VX

Z
(1)
l

+
Z

(2)
l

sinφ tanφ
− cotφ

)
(5.10)

where l(1) is a layer in the first camera plane and l(2) is a layer in second camera plane.

Using the equation for DG (2.7) we can convert this into the form,

Υ(∆VX , φ, l(1), l(2)) = ∆VXg
(1)
l +

f2

g
(2)
l sinφ tanφ

− f cotφ. (5.11)

This equation allows us to pre-calculate the occlusion ordering for all the layers in
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both planes quickly before we start the pixel level interpolation.

5.2.4 Merging results

Now that we can connect both models and have a consistent occlusion ordering we can

use both sides simultaneously. We use an extension of the master-slave approach: we in-

fill any holes and regions in the synthesis that are not visible from one model using the

other model. In addition, if available, we can replace low confidence segment geometry

in one model with a high confidence segment geometry from the other. This is possible

because of the shared key image allowing easy comparison between the segments of

each model. As before the master is set based on the proximity to the synthesised

result.

5.2.5 Simulation results

V
(2)
X

φ

V
(1)
X

(i)(ii)(iii)
(iv)

(v)

(vi)

Figure 5.4: The six virtual camera positions for the synthesis results shown in
Fig. 5.5, φ = 30°. The camera positions are detailed in Table 5.1.

To demonstrate our ability to transition smoothly between two different plane mod-

els we have synthesised several points along a curve between the two camera planes using

a synthetic sequence. The camera positions along the curve are illustrated in Fig. 5.4,

the details in Table 5.1 and the resultant synthesis is shown in Fig. 5.5.

Starting on the camera plane at (i) near one end of the input sequence we follow

the curve, moving towards V
(1)
X = 0, moving into the scene and starting to rotate from

one camera plane to the other. At (ii) the first camera plane is still being used as the

master and the movement into the scene and the rotation is slight but by (iii) it is
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Table 5.1: This table lists the camera positions used for synthesising the results
shown in Fig. 5.5.

Camera Plane VX VZ Rotation

(i) 1 7 0 0°

(ii) 1 3 1 6°

(iii) 1 1 3 15°

(iv) 2 1 3 -15°

(v) 2 3 1 -6°

(vi) 2 7 0 0°

more pronounced, the rotation is half way between the two planes so there is an easy

transition to (iv) transitioning to using the second camera plane as the master. The

process is revered through (v) until we arrive at the far extent of the second camera

plane, (vi). Views (i) and (iv) in Fig. 5.5 are synthesised on each of the two camera

planes and the spatial and angular distance between them is very noticable, especially

in the background segments. Because the relative angles are similar there is no jarring

discontinuity between (iii)(iv) as the system smoothly transitions from one to the next.

The synthesis quality is high throughout the transition, despite moving between the

two planes and moving out of the camera plane.
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Figure 5.5: The synthesis results for the camera positions detailed in Fig. 5.4

moving between two camera planes. (i) (vi) lie on their respective camera planes

with no rotation, (ii) (v) are moved slightly into the scene with a small rotation

and (iii) (iv) have moved significantly into the scene with a large rotation.
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5.3 Out-of-plane camera positioning

We have shown in Chapter 3 that our algorithm scales from camera lines to camera

planes and that the extra information available in for example a Lightfield sequence

such as Tsukuba, as illustrated in Fig. 3.2, enables us to improve the layer allocation

(see Sec. 3.3). This extra information can also allow us to generalise the output position

of the synthesis, allowing the synthesis of images from viewpoints out of the input image

plane [86].

5.3.1 Alternative camera paths

Previously we have considered the case of camera movement only within the camera

plane as shown in Fig. 5.6(a) which shows a top-down view of the camera motion and

four scene points. This results in the linear EPI lines, shown in Fig. 5.6(b), whose

gradient depends only on the layer position Zl.

p1 p2

p3 p4

p1

p2
p3

p4

∆VX

(a) (b)

Figure 5.6: In (a) we show a top down view of a simple scene with points, p1 and
p2 on one layer l1 and points p3 and p4 on another layer l2. In (b) we show the locus
of these points in the camera plane as EPI lines against movement of the camera
(the arrow in (a) ) in VX .

In this case the EPI mapping between two images for the pixel position (i, j) 7→
g

(i′, j′)

with a DG g is described by
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i′

j′

1




=




1 0 gVm

0 1 0

0 0 1







i

j

1




, (5.12)

where Vm is the camera motion between the synthesised and key images. The shift in

i is only dependent on Vm and g and there is no shift in j.
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p3 p4

p1

p2
p3

p4

∆VZ

(a) (b)

Figure 5.7: In (a) we show a top down view of a simple scene with points, p1 and
p2 on one layer l1 and points p3 and p4 on another layer l2. In (b) we show the locus
of these points in the camera plane as EPI lines against movement of the camera
(the arrow in (a) ) in VZ .

Movement outside the camera plane has different and more complex effects, Fig. 5.7

illustrates the effects of movement in VZ . In this instance the EPI line gradient is

dependent on two factors, the depth of the layer relative to the current camera position

(which will change over time) and the value of i. As shown in Fig. 5.8 the position of

a point that lies along the optical axis p1 is unaffected by movement in VZ , whereas

another point p1 will shift depending on its initial distance from the optical axis. This

results in a difference from previous cases is that the gradient is not constant.

This results in the EPI lines moving away with increasing gradient from the optical

axis, in this case the EPI mapping is described by
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VZ

VX

i

i′

f

p1p2
Vl

∆VZ

Figure 5.8: Top down view of the camera plane with movement in VZ , indicating
the shift in the intersection of a point from i to i′. If the point is along the optical
axis, p1, there will be no change as the camera moves in VZ . If the point lies off
the optical axis, p2, the pixel position will shift.
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using the identity (2.7) this can be converted into a DG form




i′

j′

1




=




f

f − gl∆VZ

0 0

0
f

f − gl∆VZ

0

0 0 1







i

j

1




, (5.14)

where ∆VZ is the distance moved into the scene, f is the focal length, Zl is the depth

layer and gl is the disparity gradient layer of the point.

The important difference is that the layers are no longer rigid as movement of the

camera in VZ translates into movement in (i, j) for a point based both on its DG value

and on its position within the image.

These EPI line predictions can be combined to produce complex behavior such as
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that shown in Fig. 5.9 where the camera moves in both VX and VZ . Despite the shift

in VZ , when VZ returns to 0 the EPI lines return to the linear loci that were shown in

Fig. 5.6, demonstrating the separable nature of this shift.

p1 p2

p3 p4

p1

p2

p3

p4

∆VX

(a) (b)

Figure 5.9: In (a) we show a top down view of a simple scene with points, p1 and
p2 on one layer l1 and points p3 and p4 on another layer l2. In (b) we show the locus
of these points in the camera plane as EPI lines against movement of the camera
(the arrow in (a) ) in VX and VZ .

This EPI mapping can be described by a combination of the previous two mappings

(5.12, 5.14) to give




i′

j′

1




=




f

f − gl∆VZ

0 0

0
f

f − gl∆VZ

0

0 0 1







1 0 gVm

0 1 0

0 0 1







i

j

1




. (5.15)

5.3.2 Pixel scaling

As discussed in Sec. 5.3.1 the main problem when moving out of the image camera

plane and along the Z axis is that pixel shifts within a layer are not consistent. This

is demonstrated in the 1D example shown in Fig. 5.10 where we show the canonical

approach in which the centres of the pixels in the original image are projected on the

synthesised image. Because the shifts have a sub-pixel precision the projection point

will not lie exactly on a pixel centre so the pixel assignment is made to the nearest
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pixel, leaving us with a one-one pixel mapping, apart from pixels that are occluded

by other pixel or the FOV framing, between the original and synthesised image. As a

camera moves into the scene, objects become closer and therefore bigger in view and so

more pixels are required, so if we maintain a one to one mapping we will only sparsely

cover the output image, leaving gaps. As well as gaps between pixels we do not retain

the sub-pixel positions so their relative shape has been lost.

Figure 5.10: Pixel projection assignment showing the sub-pixel precision projection
points (arrows) and the rounded pixel assignment points. After the projection
there is now a gap between the four pixel cluster and their relative shape has been
lost.

A real world example of this can be seen in Fig. 5.11 where we have projected a DG

map forward along VZ and performed no infilling. The periodic cracks within the layer,

the black lines, can clearly be seen. The frequency of the cracks is noticeably higher in

the foreground regions as the higher disparity means that the pixels will move past the

pixel rounding boundaries more frequently. As Fig. 5.12 shows, the resultant synthesis

is filled with cracks. When the cracks are in a background layer, Fig. 5.13(i), there is

empty space like any other dis-occlusion so there is the possibility for post synthesis

infilling as described in Sec. 4.5.2. However when the cracks are in foreground layers

they will no longer occlude over layers effectively as regions of the underlying layer will

peep through, as shown in Fig. 5.13(ii). Because of these underlying layers filling the

cracks (when they should be occluded) our previous scheme of hole filling un-assigned

pixels is no longer sufficient, these holes in the foreground layer cannot be detected in

such a manner so the infilling techniques will be ineffective.

Our novel solution to this problem is to treat the pixels as squares rather than
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Figure 5.11: Projecting the DG map for a shift in VZ , with no hole filling.

Figure 5.12: Synthesising a new view after a shift in VZ , with no hole filling.



130 Chapter 5. Arbitrary virtual camera positions and rotation

(i)

(ii)

Figure 5.13: Zoomed in region from a new view after a shift in VZ , with no hole
filling.

points, allowing us to project the corners separately which allows pixel scaling. This is

demonstrated in Fig. 5.14.

By projecting the pixel corners, as shown in Fig. 5.14, and assigning pixels to

anything that lies under the projected pixel area we keep the pixel shape, maintain

the sub-pixel information and will never have cracks. This is because adjacent pixels

share pixel corner points so the projected pixel areas will always be connected in the

output and every pixel within the layer will be covered. When moving into the scene

this assignment will lead to a one-to-many pixel mapping as an input pixel may be

assigned to more than one output pixel. When moving away from the scene the opposite

happens, there is a many to one mapping problem. Our pixel corner projection and

inter pixel interpolation deals with both of these issues.

5.3.3 Real world example

Fig. 5.15 shows the results of changing VZ for the output image, with increasing VZ

from left to right. Note that this is not a zoom but rather a true movement into the

scene with resulting occlusions by foreground objects. The layer and position dependent

scaling and warping can clearly be seen in the different relative sizes of objects within

the scene as you move from left to right, foreground objects drastically change size

while the background is largely unaffected. It should be noted that even with a large

amount of movement into the scene the output quality is still maintained.
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Figure 5.14: Pixel projection assignment showing the pixel centre projections (solid
arrows) and corner projections (dotted lines). The shaded region show the pixel
assignment areas, squares are used to denote the original pixels and circles the
extra pixels cause by the pixel scaling. By using these sub-pixel precise areas as a
guide to pixel assignment we maintain the pixel position shape and leave no gaps.

Figure 5.15: These images show the results of moving the position of the output
viewpoint in VZ as well as VX or VY . VZ increases left to right.
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5.4 Angled layers

One of the key assumptions of Plenoptic theory is that the scene can be modelled as a

set of fronto-parallel planes. We have shown in Sec. 3.5 that although there are some

errors due to inconsistencies between this assumption and reality, it nevertheless is able

to achieve good results over the sequences tested. However as sequences diverge from

the fronto-parallel assumption these errors will increase. By relaxing the flat layer

constraint for a restricted number of carefully chosen angled planes we can improve

performance and model a greater variety of scenes without violating any of our other

assumptions.

5.4.1 Angled layer model

The important constraint we need to adhere to is that any adjustment to a segment

layer angle is independent of its surrounding segments and that the layout occlusion

ordering is preserved. In Fig. 5.16 two layers (solid lines) are shown, gl and gl−1.

g

gl

gl−1

g−l

g+l

gl+1

(i) (ii)

Figure 5.16: A diagram showing the layer (solid lines) gl, the preceeding layer gl−1

and the following layer gl+1. The assignment limits (dashed lines) g+l , g
−

l , and the
two alternative angled layers (dotted lines) (i) and (ii).

Disparities will be assigned to the closest layer, so the assignment boundary for

each layer, gl, can been defined as an upper bound g+l where
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g+l =

(
gl+1 − gl

2

)
(5.16)

and a lower bound g−l where

g−l =

(
gl − gl−1

2

)
(5.17)

These are indicated in Fig. 5.16 by the dashed lines. For each layer we now also allow

two angled layers, Fig 5.16(i) and (ii), each layer incurs a fixed calculation cost and

as we will explain in Sec. 5.5 there are rapidly diminishing returns from using more

angle possibilities. Even with only two angle possibilities significant improvements are

obtained. Each layer is defined as going from one assignment boundary to the next

over the entire width of the segment.

The first angled layer, Fig 5.16(i), has the DG value ̺ given by

̺(Sn, i, gl) = g+l −




(
g+l − g−l

)(
i−min

i
(Sn)

)

max
i

(Sn)−min
i
(Sn)


 (5.18)

where max
i

(Sn) is the largest and max
i

(Sn) is the lowest i value in segment Sn.

The angled plane for the alternative angle, Fig 5.16(ii), has the DG value ¯̺ where

¯̺(Sn, i
(n)
k , gl) = g−l +




(
g+l − g−l

)(
i−min

i
(Sn)

)

max
i

(Sn)−min
i
(Sn)


 . (5.19)

5.4.2 Assigning angled layers

We can use the methods described in Sec. 3.2.5 to test the original fronto-parallel layer

assignment against the two angled potential layer assignments and choose the best

match :

ˆ̺n = argmax
g

( ǭ(Sn, ĝn), ǫ̆(Sn, ̺), ǫ̆(Sn, ¯̺) ) , (5.20)

where the confidence measure now becomes
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here Kn is the total number of pixels within the segment Sn which is being evaluated

over M images. I0 is the current key image and Im is the target image. ̺(Sn, i
(n)
k , gl) is

the proposed pixel dependent DG and Vm is the Vx position of image m so the ǫ̆ (Sn,̺)

value is a sum over all available images. As before to account for occlusions we use the

visibility mask O
(n)
k where

O
(n)
k =





1 if Im(i
(n)
k + ̺(Sn, i

(n)
k , gl)Vm, j

(n)
k ) is visible;

0 if Im(i
(n)
k + ̺(Sn, i

(n)
k , gl)Vm, j

(n)
k ) is occluded.

(5.22)

By constructing the angled layers this way, we can still easily calculate layer assignments

without violating any of our other constraints or assumptions. The effectiveness of using

angled planes will be evaluated in Sec. 5.5.

5.5 Numerical simulations

For our evaluation we used the sequences [74, 75] shown in Table 5.2. The key images

were segmented using the Mean Shift (MS) algorithm [69, 76, 82]. These sources are

provided with Ground Truth (GT) DG maps with a granular resolution of 1
16 pixel/∆VX

for all cases except for Barn1 which has a granular resolution of 1
32 pixel/∆VX . This

results in the calculated maximum possible image disparity measure D̃G for the GT

DG maps.

The performance of the angled planes can be assessed by studying the error when

the layer model is used to estimate the DG map against the 255 layer GT results

provided with the sequences.

Fig. 5.17 shows the error in estimating the DG map using our angled planes method
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Table 5.2: This table lists the sequences [74, 75] that were used in our evaluation
of the use of angled layers.

Sequence Image resolution Number of images D̃G

Teddy 450× 375 9 16

Cones 450× 375 9 16

Barn1 432× 381 7 8

Sawtooth 432× 380 7 16

against the GT map for each of the sequences. We have measured the similarity of the

two DG maps using a Peak Disparity Signal to Noise Ratio (PDSNR) measure

PDSNR = 10 · log10

(
D̃G

2

MSE

)
(5.23)

where Mean Squared Error (MSE) is the squared pixel difference between the GT DG

map, DGMGT , and the layer model DG map, DGMM , we are investigating giving us

MSE = 1
I·J

I−1∑

i=0

J−1∑

j=0

|DGMGT (i, j)−DGMM (i, j)|2 , (5.24)

where D̃G is the maximum disparity value possible for the scene and I and J are the

image width and height, as detailed in Table 5.2.
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(a) Teddy sequence.
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(b) Cones sequence.
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(c) Barn1 sequence.
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(d) Sawtooth sequence.

Figure 5.17: The assignment error from applying the angled (solid) or flat (dotted)

layer models to the DG GT map. The calculated Lmin for each sequence is shown

by the vertical dotted line.

In all cases using angled layers causes a significant increase in performance, initially

there is only a small increase but this grows bigger as more layers are used, until the

improvement peaks during the plateau stage. This increase is particularly evident in

the highly angled Barn sequence, Fig. 5.17(iii) and less so in the relatively flat Cones

sequence, Fig. 5.17(ii).

Fig. 5.18 shows the percentage of segments that have been assigned to an angled

layer against the total number of available layers. Initially only a few, 16%, of layers

are assigned this way due to the large angle only matching a few segments. However
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with a few more layers the percentage of assigned layers rapidly climbs to over 85 %,

the remaining segments are of fronto-parallel regions that will never be assigned to

angled layers. This shows that the majority of segment assignments can be improved

with angled layers.
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Figure 5.18: A graph showing what percentage of the DG map is constructed using
angled planes against the number of layers in the model for the Teddy sequence.

We have also evaluated our angled layers method against real world data. As before

we used the ‘leave q out’ method of evaluation in which only every (q + 1)th image is

included in the input image set. These are used to synthesize one of the omitted images

for which the ground truth is known. In all cases we use two key images at either end

of the EPI source and an infilling algorithm was used to fill any holes with the lowest

adjacent disparity as described in Sec. 4.5.2.

We have used the Teddy sequence, as shown in Table 5.2 and evaluated the results

using the Peak Signal to Noise Ratio (PSNR) measure (4.12). The image synthesis

results in Fig. 5.19 show similar characteristics to the previous DG map results in

Fig. 5.17, with a small increase in quality for very low and very high numbers of layers

and a significant increase in quality before and around the Lmin point. This is the most

important region to improve performance.
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Figure 5.19: Comparing the rendering quality of the angled (solid) against the flat
(dotted) layer models on real world data, Teddy sequence. The vertical dashed
line represents the Lmin = 14 for the dataset.

5.6 Conclusions

We have shown how our algorithm is flexible enough to allow modelling multiple planes

and that as well as giving us greater freedom relaxing our assumptions can lead to higher

quality output synthesis. To allow this we have extended our algorithm to accurately

model more complex scenes by allowing camera rotation, angled planes and virtual

camera synthesis positions out of the input camera plane. The numerical simulations

show that even for our existing single plane scenes the benefits are still apparent, in

particular the angled planes lead to a perceived smoother more realistic motion when

synthesising multiple consecutive views. We have detailed exactly what changes needed

to be made to our algorithm and why this does not violate any of the conditions that

allow us the benefits of using Plenoptic theory as a guide.
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Chapter 6

Conclusions

6.1 Summary of thesis achievements

This thesis has been concerned with an Image Based Rendering (IBR) approach to

view synthesis: the generation of arbitrary new views of a scene from a set of existing

views. IBR is an attractive method for view synthesis as it can give near photo-realistic

results with low complexity and limited resources. By considering the scene in terms of

light rays emanating from the scene rather than the objects themselves, we can frame

the situation in terms of a traditional sampling and interpolation problem where new

images are generated by interpolating between existing images by sampling the light

rays. This is important because it gives us a theoretical framework to understand

the tradeoff between geometric completeness and the number of images necessary to

maintain a consistent quality.

Plenoptic theory shows that, provided certain assumptions are met, alias-free ren-

dering can be achieved by a layer-based model of the scene geometry in which the layers

are spaced uniformly and by using a number of layers that exceeds the minimum, Lmin,

given in (2.10). In practice however, these assumptions, which include the absence of

occlusions, an infinite field of view and a perfect low-pass filter may not hold true. The

further you diverge from these assumptions the more aliasing is inevitable.

We have presented a novel layer based algorithm for IBR. Our method uses Plenop-

tic sampling theory to infer the right amount of geometric information required for
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artefact-free rendering. Moreover it takes advantage of the knowledge of the typical

structure of multiview data in order to perform a fast occlusion-aware non uniformly

spaced layer extraction. The rendering is improved by using a probabilistic interpola-

tion approach and by an effective use of key images in a scalable master-slave config-

uration. Numerical results demonstrate that the algorithm is fast and yet is only 0.24

dB away from the ideal performance achieved with the ground-truth knowledge of the

3D geometry of the scene of interest. We have shown that the Plenoptic framework is

applicable for real world cases and that a layer based model does not lead to any loss

in output quality.

We have also shown that the Plenoptic theoretical framework is applicable to real

world cases since a layer based model does not lead to any loss in output quality and

the number of layers required is correctly predicted by the theory. This indicates that

despite several assumptions of Plenoptic theory not being valid in real world cases it is

still an effective guide for producing high quality synthesised outputs.

Specifically we have shown that our novel non-uniformly spaced layer placement

model gives a major improvement in quality and robustness over the uniform spacing

layer model. Moreover, our layer extraction algorithm is independent of the segmenta-

tion method used. We have also shown that many mis-assignments or inconsistencies

can be solved by smoothing and splitting the segments. The rendering is improved by

using a probabilistic interpolation approach and by an effective use of key images in a

scalable master-slave configuration. We have shown that our algorithm performs well

in comparison with an alternative method.

Finally we have demonstrated the flexibility of our system by showing how it can be

extended to model more general cases of synthesis and how relaxing our assumptions

can lead to higher quality output synthesis. Modelling angled planes and allowing

multi-planar geometry allows us to model scenes more accurately, improving rendering

quality, while maintaining all the advantages that using Plenoptic theory as a guide

bestows.
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6.2 Future research

In conclusion we will present some possible directions for future research.

6.2.1 Depth and image camera fusion

We have discussed the importance of depth based geometry for reducing the number

of images required for IBR, there are many different methods that have been proposed

for multi-view stereo vision algorithms, for example [71, 87, 88], and in Chapter 3 we

described our approach to calculating this information from the input images. An

alternative approach is using a dedicated depth sensing camera, traditionally these

have often been expensive and of low resolution, however with advances in the area of

Structured Light (SL) [75,89–91], Single Depth Single Colour (SD-SC) [92,93], Multiple

Depth Multiple Colour (MD-MC) systems [94–96], and increasing commoditization

they have broken out of their niche and mass-market alternatives, such as the Microsoft

Xbox Kinect, are available. These provide cheap, accurate depth sensing with a higher

resolution and the additional benefit of providing both the depth image and a matching

image source, this pairing is often referred to as a Red, Green, Blue and Depth (RGB-

D) image. This has encouraged the investigation into hybrid depth and image based

schemes, often referred to as Depth Image Based Rendering (DIBR). This approach

can easily be modified to use (possibly low resolution) depth information from a depth-

camera as an additional input. In this way we can combine the real time, accurate

but potentially incomplete and low resolution depth-map information with our existing

slower but complete and high resolution image based methods to produce a faster, more

accurate and higher resolution result.

6.2.1.1 Depth image based rendering

In previous work it has been shown for synthetic, [97], and real world data, [14], that

the Minimum Sampling Criterion (MSC) holds true for these large sample cases (50+

images and depth maps), when dealing with scenes with a smooth, continuous non-

occluding surfaces and a known geometry. Simple easily measurable geometry was
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used to aid in the measurement and calibration. Using depth cameras more complex

curve geometries could be constructed and sampled, Fig. 6.1(a), and the resultant

depth map can be converted into a surface curve, as shown in Fig. 6.1(b). By using a

depth camera rather than stereo matching methods we can quickly measure hundreds

of separate depth maps for a scene that is not conducive for traditional stereo matching,

the acquisition rig for capturing simultaneous RGB-D images is shown in 6.2.

(a) Depth image.

(b) Surface depth

Figure 6.1: The inverse depth map (brighter is closer) of a curved plane captured
from a depth camera is shown in (a) and the corresponding surface curve extracted
in (b).

This method can be extended to expand our own work on cluttered occluding scenes,

by using commodity depth sensing device we can take a series of RGB-D images in an
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Figure 6.2: Acquisition rig for capturing high resolution simultaneous RGB-D
images along an EPI line.

image plane. In the example shown in Fig. 6.3 we use a RGB-D camera and a fixed

movement rig to take a 10× 10 grid of images.

Figure 6.3: Camera plane RGB-D acquisition rig.

An example image output from this setup is shown in Fig. 6.4(a) and the matching

depth map is shown in Fig. 6.4(b), any holes in this depth map are infilled using the
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techniques described in Sec. 4.5.2.

(a) Colour image

(b) Depth image

Figure 6.4: The DG map (a) corresponds to the image (b). Any holes in the image
are infilled using pixels from the same layer.

Using a depth camera allows us to generate a Lightfield with 100 accurate RGB-D

images which gives us greater flexibility in our investigations.
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6.2.1.2 Provisional results

In [19] we start to investigate these new possibilities, using a similar frame-work to

the plenoptic function, called the Pantelicfunction , [14], where the multi-view depth

images represent samples of the Pantelic function. Using this function an initial anal-

ysis of multi-view depth images can be made. The preliminary results in Fig. 6.5(a)

for the single surface case, as shown in Fig. 6.1, shows a required minimum number

of depth maps in a similar fashion to Plenoptic sampling. This finding is also true

of the more complex case with multiple occluding surfaces, Fig. 6.5(a), for the case

described in Fig.6.4. These results are intriguing but several open questions remain :

How many depth cameras are required to describe the scene geometry and can this be

adapted to account for the distribution of objects similarly to Sec. 3.2.4? What is the

relationship between the required number of depth cameras and colour cameras? Can

extra information in one compensate for insufficient information in another? What

effect the complexity of the scene at a micro level (within the scene objects) have on

this relationship?

6.2.1.3 Improving depth map accuracy

One method for active depth sensing is to project a known pattern onto a scene, often

in the Infra Red (IR) spectrum to avoid interference from visible light, and example is

shown in Fig. 6.6(a). As the pattern is known and the separation between the pattern

projector and the receiving camera is fixed, this pattern can be used to calculate the

depth map for the scene, Fig. 6.6(b). Although this is a fast and on the whole accurate

method for measuring the scene depths it does have some issues.

If a region is saturated by IR light, due to outside sources or its proximity to the

projector, or there is no visible pattern in a region this method fails. Moreover if there

are occluding objects then there will consistently be ‘shadowed’ regions, (as shown by

the pure white regions of Fig. 6.6(b)). An additional issue is that the depth is only

measured at these points which are sparsely scattered around the scene, the resulting

depth map needs to be interpolated. Unfortunately these problems tend to occur at and
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(a) Colour image

(b) Depth image

Figure 6.5: The DG map (a) corresponds to the image (b). Any holes in the image
are infilled using pixels from the same laye.

around the edges of scene objects which is also where IBR is most vulnerable to geom-

etry based errors. Some work has been done into investigating running multiple depth

camera working together to cover these blind spots, using existing depth map fusion

techniques, [98], or moving the camera and combining the results, such as Simultane-

ous Location And Mapping (SLAM), [99,100], or super-resolution techniques [101–103].

However there are several interesting possible avenues of exploration: Could the raw

data be fused with our existing algorithm to produce a hybrid system with increased

speed and robustness? There are various methods for reconstructing shape and shade

from sparse data, could these be applied to improve the edge performance of the depth

map extraction? Could the raw IR data and the image data be combined to improve
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(a) IR image

(b) Depth image

Figure 6.6: The raw IR view of the projected points is shown in (a) the recon-
structed depth estimate (brighter is closer) is shown in (b) with the holes shown
in white.

the output depth map robustness?
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6.2.2 Unconstrained camera positions

6.2.2.1 Mobile applications

With our focus on a fast, robust algorithm with high quality outputs while minimising

the amount of calculated geometry it seems a natural step to implement our algorithm

on a mobile platform. Especially with the aid of some dedicated depth sensing hardware

and the increasing sophistication and power of modern mobile devices there are great

possibilities in this area. One area of particular interest is single sensor compressed

sensing, for example the Compressive Depth Acquisition Camera (CODAC) [104,105],

which would allow us to use smaller cheaper sensors more suitable for a mobile phone.

6.2.2.2 Extending to the complete Lightfield case

We have already shown how our algorithm can be extended to a multi-plane version, it

is possible to extend this to the complete Lightfield case where the entire scene would

be enclosed. This would greatly extend the flexibility of the output position giving a

truly unconstrained synthesis position. This omni-directional capture and synthesis is

very applicable to the world of sports, where there are already cameras all the way

round a pitch and allowing a viewer to adjust their viewing position and direction is a

popular area of research [106–109]. There would be some adjustment necessary to take

advantage of some of the features of such a set-up, such as the flat pitch perpendicular

to the players and crowd, but our algorithm is flexible enough for these changes to be

made to the internal geometric model. Alternatively this approach is just as applicable

to smaller scenes, potentially utilising user-generated content from smart-phones or

Closed Circuit TV (CCTV), allowing people to create a much more comprehensive and

immersible record.
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