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Abstract

Consider the problem of sampling signals that are nonbandlimited but have finite
number of degrees of freedom per unit of time and call this number the rate of
innovation. Streams of Diracs and piecewise polynomials are the examples of such
signals, and thus are known as signals with finite rate of innovation (FRI) [87]. We
know that the classical (‘bandlimited-sinc’) sampling theory does not allow perfect
reconstruction of such signals from their samples since they are not bandlimited.
However, the recent results on FRI sampling [28, 87] suggest that it is possible to
sample and perfectly reconstruct such nonbandlimited signals using a rich class of
sampling kernels.

In this thesis, we extend the sampling results of [28] into higher dimensions
(i.e. in 2-D and above) using compactly supported kernels that reproduce
polynomials (i.e. satisfy Strang-Fix conditions). The polynomial reproduction
property of the kernel makes it possible to obtain the continuous-moments of the
signal from its samples. By using these moments in the annihilating filter method
(Prony’s method), the innovative part of the signal, and therefore, the signal itself
is perfectly reconstructed. In particular, we present local (directional derivatives
based) and global (complex-moments, Radon transform based) sampling schemes
for classes of FRI signals such as sets of 2-D Diracs, bilevel and planar polygons,
quadrature domains (e.g. circles, ellipses, cardioids), 2-D polynomials with convex
polygonal boundaries, and n-dimensional Diracs and bilevel-convex polytopes.

The sampling results of this thesis have been promisingly explored in super-
resolution imaging [2] and distributed compression [31], and might find their
applications in photogrammetry, computer graphics, and machine vision.
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T : Sampling interval.

∗: Convolution operator.

< ·, · >: Inner-product operator.

C/D: Continuous-to-discrete transformation (i.e. readout of sample values
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∫

g(t)tndt.

σn: Computed values from samples sk of form σn =
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ĝ(ωx, ωy): Fourier transform of input signal g(x, y).

ρxy: Local rate of innovation in case of 2-D FRI signals (i.e. number of de-
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Chapter 1

Introduction

1.1 Motivation, Background, and Scope

Sampling is one of the fundamental elements of modern signal processing and

communication systems. In fact, the problem of sampling is at the heart of the

‘application gamut’ in science, engineering, and technology. Starting from the early

commercial and military applications (e.g. speech and radar communication), the

process of sampling continues to affect our lives even more personally through per-

sonal communication (e.g. mobile phones), entertainment (e.g. MP3 music), new

media (digital TV, multimedia, internet), and medical diagnostics (e.g. MRI).

Although, the virtue of sampling allows us to monitor, process, store/transmit,

or reconstruct the unprecedented amount of data (of real world activities) with

increased convenience, the efficient sampling is vital in many applications such as

sensor networks [3] and 3-D computed tomography [5]. In the era of data intensive

applications (e.g. video streaming) and digitally immersive world (i.e. ubiquitous

and pervasive communication), the research in sampling is even more relevant,

rewarding, and challenging than before. In particular, the advances in sampling

have demonstrated the important role played by sophisticated mathematics such
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as harmonic analysis, approximation and optimization theory, wavelets and splines,

spectral estimation, and sparse representations. An extensive tutorial on classical

sampling theory and its various aspects is given in [41]. For a comprehensive account

on modern sampling developments, we refer to [78,84].

Formally, sampling is the process of representing a continuous-time signal

g(t) by a discrete set of values gk, k ∈ Z. If the time instances at which these values

(samples) are taken are equidistant, that is, gk = g(kT ) for every T seconds, then

the signal is uniformly sampled [63, 93]. Often, in practice, rather than having an

access to the original signal g(t), one has only access to its filtered (lowpass) version

g(t) ∗ ha(t), where ha(t) = ϕ(−t/T ) is an antialiasing filter or a sampling kernel.

The filtered signal g(t) ∗ ϕ(−t/T ) is then uniformly sampled to obtain the samples

sk = gs(kT ) as given by:

sk = gs(kT ) = 〈g(t), ϕ(t/T − k)〉 =

∫ ∞

−∞
g(t)ϕ(t/T − k)dt.

The key questions that arise with the sampling are:

• Is it possible to perfectly reconstruct the original signal g(t) from the set of

samples sk = gs(kT )?

• What should be the reconstruction algorithm?

• What type of sampling kernel ϕ(t) should be used?

The classical answer to these questions are given by the well known Shannon’s

sampling theorem [67, 68] which considers sampling and perfect reconstruction of

bandlimited signals using ‘sinc’ kernel. In practice, the signals being sampled come

from various sources and are often nonbandlimited. It is therefore customary to

prefilter such signals using lowpass filter and make them bandlimited before being

sampled. Shannon’s sampling theory [67, 68] and its extensions [41] are very pow-
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erful and have been extensively utilized in reconstructing bandlimited signals (or

approximating nonbandlimited signals) from their samples. Moreover, Shannon’s

sampling theory is also extended to the classes of nonbandlimited signals that re-

side in a shift-invariant subspace- a space spanned by a generating function and its

uniform shifts [78,80] (see Section 2.3.3 for formal definition).

Recently, novel sampling schemes have been presented for larger classes of

signals that are neither bandlimited nor reside in a fixed subspace. In particular,

these signals are parametric nonbandlimited signals and are characterized by a finite

number of parameters per unit of time. Such finite complexity signals enjoy a finite

number of degrees of freedom per unit of time (or a finite rate of innovation) and

thus are classified as signals with Finite Rate of Innovation (FRI)1 [87]. Streams of

Diracs, nonuniform splines, and piecewise polynomials are examples of such signals.

The new schemes [87] consider sampling and perfect reconstruction of FRI signals

from a finite number of samples using annihilating filter method (Prony’s method).

Subsequently, the schemes of [87] are extended to the classes of 2-D FRI signals such

as sets of 2-D Diracs, and polygons in [56] and [54]. The schemes of [56] rely on global

algorithms in Fourier domain, and can be unstable at times. Most importantly, all

these schemes [54, 56, 87] use infinite support sinc and Gaussian kernels, and there-

fore, are not convenient in practice. However, the results of [27,28] show that many

1-D FRI signals with local finite rate of innovation can be sampled and perfectly

reconstructed using compactly supported kernels that can reproduce polynomials.

In particular, any kernel ϕ(t) that satisfies Strang-Fix conditions (Equation (3.6))

can reproduce polynomials tn. In other words, it follows that

∑
k∈Z

cn
k ϕ(t− k) = tn, n = 0, 1, . . . , N,

1Formal definition of FRI signals is given in Section 3.2.2. The terms ‘degrees of freedom’ or
‘innovations’ refer to the free parameters that characterize a given FRI signal.
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for a proper choice of coefficients cn
k . The sampling kernel ϕ(t) includes B-splines

and wavelet type scaling functions (refer to Section 3.2.3 for further details).

In this thesis, we extend the 1-D FRI sampling results of [27, 28] to the

multidimensional FRI signals using local (or compactly supported) kernels that

reproduce polynomials. It is important to remember that the polynomial reproduc-

tion property of the sampling kernels plays a pivotal role in our sampling schemes. In

particular, it allows us to obtain the ‘continuous moments’ of the signals from their

samples. Using these moments in the annihilating filter method, the degrees of free-

dom and therefore, the FRI signals themselves are reconstructed. However, the exact

reconstruction algorithms are quite sophisticated and make use of various tools such

as directional derivatives, complex-moments, and Radon transform together with the

annihilating filter method. In particular, we propose local (Directional derivatives

based) and global (Complex-moments, and Radon transform based) reconstruction

approaches with varying complexities for sampling classes of multidimensional FRI

signals.2 Note that we concentrate on sampling and perfect reconstruction theory,

and therefore, throughout the thesis we consider noiseless signals and measurements.

1.2 Summary of the problem

Summarizing the ‘motivation, background, and scope’, we reiterate that the problem

of efficient sampling is relevant and important in modern data intensive applications.

Many applications deal with real life signals that are nonbandlimited, and in some

situations, it might be desirable to achieve perfect reconstruction of these signals

from their samples. In order to progress towards the ultimate objective- ‘perfect

reconstruction of real life signals’, it is reasonable to investigate whether it is possible

2The signals we consider include sets of 2-D Diracs, planar and bilevel-convex polygons, quadra-
ture domains (e.g. circles, ellipses, cardioids), 2-D polynomial with convex polygonal boundaries,
and higher dimensional Diracs and bilevel-convex polytopes.
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achieve perfect reconstruction of certain nonbandlimited signals, at least some syn-

thetic ones (e.g. Diracs and piecewise polynomials) to begin with.

As discussed in Section 1.1, neither Shannon’s sampling theory [67, 68] nor

modern extensions (e.g. sampling in shift-invariant subspaces [78,80]) allow perfect

reconstruction of nonbandlimited signals. Moreover, most of the classical solutions

employ frequency domain approach and consider infinite support sinc kernel- often

inconvenient in practice while working with finite length signals. The initial results

in sampling signals with finite rate of innovations (FRI) [54,56,87] demonstrate that

one can perfectly reconstruct many nonbandlimited signals from a finite number of

samples, continuing with infinite support sinc and Gaussian kernels and frequency

domain processing. However, the recent work on FRI sampling [27, 28] considers

a spatial domain approach and shows that one can perfectly reconstruct 1-D FRI

signals (e.g. Diracs and piecewise polynomials) from a finite number of samples by

employing local (or compactly supported) kernels that reproduce polynomials (e.g.

B-splines).

The aim of this work is to extend the 1-D FRI sampling schemes of [27,28] into

higher dimensions (e.g. 2-D and above) in providing precise answer to the problem of

perfect reconstruction for classes of multidimensional nonbandlimited signals. The

other implicit objective is to understand the link between continuous and discrete

domains- central to modern data acquisition and rendering architectures that affect

applications such as vectored graphics, computer animation, and machine vision. In

terms of realization, the proposed sampling schemes have been promisingly explored

for image super-resolution algorithms [2] and distributed compression [31] within the

group.3

Finally, the structure of the thesis is given in the following section and the

original contribution is highlighted in Section 1.4.

3The group research profile is available at: http://www.commsp.ee.ic.ac.uk/~pld/group/
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1.3 Thesis outline

In the following chapter, we provide a background on sampling and perfect

reconstruction. In particular, we refer to the classical results in sampling theory.

First, we review the famous Shannon’s sampling theorem (with its historical con-

nections) for sampling and perfect reconstruction of bandlimited signals. We then

recall important extensions and generalizations of the Shannon’s theorem. Finally,

we close the chapter on classical sampling by reviewing a modern and more general

interpretation to sampling, namely, sampling in shift-invariant subspaces.

In Chapter 3, we concentrate on sampling signals with finite rate of innova-

tion (FRI) [28, 87]. We begin with the fundamentals of FRI sampling. We discuss

in detail the 1-D sampling framework (i.e. sampling setup, sampling kernel, and

reconstruction algorithm), and summarize the key sampling results considering the

kernels that reproduce polynomials [28]. We then establish a multidimensional FRI

framework, which we recall frequently in the subsequent chapters.

In Chapters 4, 5, and 6, we utilize the multidimensional framework of

Chapter 3 and propose local (Directional derivatives based) and global (Complex-

moments, and Radon transform based) approaches for reconstructing higher dimen-

sional FRI signals from their samples. To be more precise:

In Chapter 4, we present local reconstruction algorithms for 2-D Diracs and

planar polygons. First, we show that a set of 2-D Diracs can be reconstructed locally

(i.e. one Dirac per time) from its samples. We then extend this result for a planar

polygon by retrieving its corner points using correct pairs of directional derivatives.

The directional derivatives based approach relies on a novel link between ‘continuous

domain directional derivatives’ and ‘discrete domain directional differences’, which

exploits the fundamentals of lattice theory [20,44,85].

In Chapter 5, we employ complex-moments for global reconstruction of



1.4 Original contribution 23

bilevel-convex polygons, 2-D Diracs, and quadrature domains (e.g. circles, ellipses,

and cardioids). First, we compute the moments of these signals form their samples.

We then use these moments in the annihilating filter method for retrieving the free

parameters (or degrees of freedom) which uniquely determine the given signals. Im-

plicitly, we also derive a sampling perspective to the ‘shape from moments method’

of [30, 60].

In Chapter 6, we propose a Radon transform based approach for sampling

more general signals such as 2-D polynomials with polygonal boundaries, and higher

dimensional Diracs and bilevel-convex polytopes. The key feature of this approach is

‘Annihilating Filter based Back-Projection’ (AFBP) algorithm, which integrates the

moment property of Radon transform [61] in the framework of FRI sampling [28,54].

We also highlight a real image experiment to demonstrate the potential of AFBP

algorithm for corner reconstruction.

Finally, we present the concluding remarks and an outline for the future work

in Chapter 7.

1.4 Original contribution

The main contribution of the thesis is multidimensional extensions to the 1-D

sampling schemes for signals with finite rate of innovation (FRI) [28, 87], partic-

ularly focusing on sampling kernels that reproduce polynomials [28]. First, we es-

tablish a multidimensional FRI framework in Section 3.3. Second, by utilizing the

multidimensional framework, we propose local (Directional derivatives based) and

global (Complex-moments, and Radon transform based) approaches for reconstruct-

ing higher dimensional FRI signals from their samples in Chapters 4, 5, and 6 respec-

tively. In particular, in Chapter 4, we present local reconstruction algorithm for 2-D

Diracs and then extend it for planar polygons by employing directional derivatives
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based approach. In Chapter 5, we use complex-moments for global reconstruction of

bilevel-convex polygons, 2-D Diracs, and quadrature domains (e.g. circles, ellipses,

and cardioids). Finally, in Chapter 6, we propose a Radon transform based ap-

proach for sampling more general signals such as 2-D polynomials with polygonal

boundaries, and n-dimensional Diracs and bilevel-convex polytopes. To the best of

our knowledge, Chapters 4, 5, and 6 of the thesis contain the original research work

which has culminated into the following publications:

• P. Shukla and P. L. Dragotti. Sampling schemes for multidimensional sig-

nals with finite rate of innovation. IEEE Transactions on Signal Processing,

accepted in November 2006, will appear in July 2007.4

• P. Shukla and P. L. Dragotti. Tomographic approach for sampling multidimen-

sional signals with finite rate of innovation. In Proc. of IEEE International

Conference on Image Processing (ICIP), Atlanta, USA, October 2006.5

• P. Shukla and P. L. Dragotti. Sampling schemes for 2-D signals with finite

rate of innovation using kernels that reproduce polynomials. In Proc. of

IEEE International Conference on Image Processing (ICIP), Genova, Italy,

September 2005.6

• P. Shukla and P. L. Dragotti. Shapes from samples using moments and Radon

projections. In Proc. of WavE 2006: International Conference on Wavelets

and Applications at EPFL, Lausanne, Switzerland, July 2006.7

• P. L. Dragotti, M. Vetterli, P. Shukla, and T. Blu. Sampling moments and

reconstructing signals with finite rate of innovation: Shannon meets Strang-

4The journal paper consolidates almost entire work of the thesis from Section 3.3.
5The ICIP06 paper includes the initial results on the ‘Radon transform based approach’ of

Chapter 6.
6The ICIP05 paper covers the ‘Directional derivatives based approach’ of Chapter 4 and some

results on the ‘Complex-moments based approach’ of Chapter 5.
7The WavE 2006 poster showcased the results on the ‘Radon transform based approach’.
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Fix. In Proc. of SIAM Conference on Imaging Science, Minneapolis, USA,

May 2006.8

8The SIAM talk projected the key results of [28] and that of ‘Complex-moments based approach’.
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Chapter 2

Classical Sampling

2.1 Introduction

The term ‘sampling’ belongs to the fundamental vocabulary of electrical and com-

puter engineers. Sampling is the process of representing a continuous-time signal

g(t), t ∈ R by a discrete set of values gk, k ∈ Z [63]. If the time instances at which

these samples are taken are equidistant, that is, gk = g(kT ) for every T seconds,

then the signal is uniformly (or regularly) sampled. If the time instances are not

equidistant, that is, if the samples gk = g(tk) are taken at arbitrary points tk ∈ R,

then we have nonuniform or irregular sampling [52]. Throughout the thesis, we focus

on uniform sampling- the situation most commonly encountered in practice.

Given that one only observes the uniform samples gk = g(kT ) of the

continuous-time signal g(t), the natural questions are:

1) What is the optimal way of sampling g(t)?

2) Is it possible to retrieve the original signal g(t) from its samples gk = g(kT )?

The classical answer to these questions is given by the well known Shannon’s

sampling theorem, which is discussed in detail in Section 2.2.

Since decades, Shannon’s sampling theory has been extensively utilized in
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many areas of science and technology, including scientific measurements, medical

and biological signal processing, and analog-to-digital convertors. For instance,

telephone systems and audio CD players are typical examples. Over the years,

Shannon’s sampling theory has been extended in many directions. This includes

nonuniform and derivative sampling of bandlimited signals [41], and more general

multichannel (generalized) sampling [64]. In recent years many of these results have

been extended to the case of nonbandlimited signals. These recent extensions have

been found to be useful in applications such as image interpolation, equalization of

communication channels, and in multiresolution computation [84]. For instance, re-

cent applications of generalized sampling include motion-compensated deinterlacing

of television images [76], and super-resolution [83].

A detailed tutorial review on Shannon’s sampling theory and its extensions

up to mid-1970’s is given by Jerry in [41]. In depth treatment on basic theory as

well as recent advancements in sampling can be found in various books such as by

Marks [57], Zayed [93], and Benedetto [5]. For a comprehensive account on modern

sampling developments, we refer to Unser [78] and Vaidyanathan [84].

In this chapter, we focus on the classical sampling and its extensions.

In the following section, we review Shannon’s theorem for sampling and perfect

reconstruction of bandlimited signals [67, 68]. We then discuss extensions and gen-

eralizations of Shannon’s sampling theory in Section 2.3. In particular, we highlight

the case of sampling in shift-invariant subspaces [78, 80] which allows sampling of

more general signals that are not necessarily bandlimited.

2.2 Shannon’s sampling theory

The fundamental result in sampling theory is the well-known Shannon’s sampling

theorem [67,68], which states that a continuous time signal g(t) is uniquely defined
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Figure 2.1: Shannon’s scheme for sampling and perfect reconstruction of ban-
dlimited signals: The continuous signal g(t) is multiplied by a stream of Diracs
∆T (t) =

∑
k∈Z δ(t − kT ) leading to a sampled signal gs(t) =

∑
k∈Z g(kT )δ(t − kT ).

The block C/D stands for continuous-to-discrete transformation and corre-
sponds to the readout of sample values gk = g(kT ) from gs(t). The reconstructed
signal g̃(t) = g(t) is obtained by interpolating the samples gk with reconstruction
filter hr(t) = T

Tc
sinc(t/Tc) which is an ideal lowpass filter with cutoff frequency

ωc = π/Tc and gain T .

by its samples gk = g(kT ), if the sampling frequency ωs = 2π/T radians/seconds is

greater than two times the maximum frequency1 component ωm of signal g(t), that

is,

ωs ≥ 2ωm or ωm ≤ π/T. (2.1)

The reconstructed signal g̃(t) is obtained by interpolating the samples gk =

g(kT ) using appropriate shifting and scaling of the sinc interpolator:

g̃(t) =
T

Tc

∑
k∈Z

g(kT ) sinc(t/Tc − k), (2.2)

where sinc(t) = sin(πt)/(πt).

The interpolating function or the reconstruction filter hr(t) = T
Tc

sinc(t/Tc) is an

ideal lowpass filter with gain T and cutoff frequency ωc = π/Tc, that is, its Fourier

transform ĥr(ω) = T Π
(

ω
2ωc

)
is equal to zero outside the frequency band [−ωc, ωc].

In order to perfectly recover the original signal g(t), the cutoff frequency ωc of the

1The maximum frequency component ωm is the bandlimit of the signal g(t), that is, the Fourier
transform ĝ(ω) = 0 for |ω| ≥ ωm.
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lowpass filter ĥr(ω) must satisfy

ωm ≤ ωc ≤ ωs − ωm. (2.3)

where ωm is the maximum frequency of g(t) and ωs is the sampling frequency.

Shannon’s scheme for sampling and perfect reconstruction of bandlimited

signals is illustrated in Figure 2.1, where the continuous signal g(t) is assumed to

be bandlimited. The signal g(t) is sampled by multiplying it with the periodic

train of Diracs ∆T (t) =
∑

k∈Z δ(t − kT ) which leads to the sampled signal gs(t) =

g(t)∆T (t) =
∑

k∈Z g(kT )δ(t−kT ). The block C/D stands for continuous-to-discrete

transformation and corresponds to the readout of sample values gk = g(kT ) from

gs(t). The reconstructed signal g̃(t) = g(t) is obtained by interpolating the samples

gk with the reconstruction filter hr(t) = T
Tc

sinc(t/Tc) using Equation (2.2), where

hr(t) is an ideal lowpass (or reconstruction) filter with cutoff frequency ωc = π/Tc

and gain T .

A frequency domain interpretation of the Shannon’s scheme is given in

Figure 2.2. The Fourier transform ĝ(ω) of signal g(t) is assumed to be bandlim-

ited up to ωm as shown in part (a). Note that the Fourier transform ∆ωs(ω) of the

periodic train of Diracs ∆T (t) =
∑

k∈Z δ(t − kT ) is also a periodic train of Diracs

∆ωs(ω) = 2π
T

∑
k∈Z δ(ω−kωs). Therefore, the Fourier transform ĝs(ω) of the sampled

signal gs(t) = g(t)∆T (t) is given by

ĝs(ω) =
1

2π
(ĝ(ω) ∗∆ωs(ω)) =

1

T

∑
k∈Z

ĝ(ω − kωs),

where ĝs(ω) is periodic with period ωs = 2π/T , and is obtained by the periodic

copies of ĝ(ω) at every integer multiples of ωs as shown in Figure 2.2(b). Recall that

the reconstruction filter ĥr(ω) = T Π
(

ω
2ωc

)
is an ideal lowpass filter with gain T and

cutoff frequency ωc satisfying (2.3). This means that one can extract one instance of
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Figure 2.2: Sampling and perfect reconstruction in frequency domain: (a)
ĝ(ω) is the Fourier transform (FT) of input signal g(t), (b) ĝs(ω) is the FT of
sampled signal gs(t), and ĥr(ω) is the FT of reconstruction filter hr(t) with cutoff
frequency ωc and gain T , (c) ˆ̃g(ω) is the FT of reconstructed signal g̃(t) = g(t).

the spectrum ˆ̃g(ω) from the periodic spectra ĝs(ω) without any overlap (or aliasing)

by multiplying ĝs(ω) with ĥr(ω) as shown in part (b). In fact, the spectrum of the

reconstructed signal ˆ̃g(ω) is identical to the spectrum of the original signal ĝ(ω) as

given in part (c). This clearly illustrates that it is possible to perfectly recover a

continuous-time bandlimited signal g(t) from its samples gk = g(kT ) using the sinc

interpolator of (2.2).

Recall that the reconstruction in (2.2) is exact if g(t) is bandlimited to ωm.

This highest frequency ωm is the Nyquist frequency,2 a term coined by Shannon

in recognition of Nyquist (1928) for his contribution in communication theory [62].

In fact, Shannon was well aware of equivalent forms of the sampling theorem that

2 The Nyquist rate is twice the the Nyquist frequency and is commonly known as the minimum
sampling rate ωs(min) = 2ωm = 2π/T that avoids aliasing.
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had appeared in mathematical literature, in particular, the work of J. M. Whittaker

(1929) [91]. While Shannon must get full credit for formalizing this result and real-

izing its potential for communication theory and signal processing, it is important

to remember that in Russian literature, this theorem was independently introduced

to the communication theory by Kotel’nikov (1933) [45, 46], similarly in German

literature by Raabe (1939) and in Japanese literature by Someya (1949) [50]. Inter-

estingly, the formulation of (2.2) is known as ‘cardinal series expansion’ in mathe-

matical literature– often attributed to E. T. Whittaker (1915) [16, 90] but has also

been traced back much further [4,38]. An extensive chronology of interpolation from

ancient astronomy to modern signal/image processing is given by Meijering in [59].

While Shannon’s theory is very elegant and has profoundly influenced the

ways of analog to digital conversions, there are few problems associated with it [78]:

First, the theorem allows perfect reconstruction of bandlimited signals only. Clearly,

real world signals or images are never exactly bandlimited, and therefore, one can-

not perfectly reconstruct such signals. However, we notice that Shannon’s the-

orem cannot be generalized for perfect reconstruction of even synthetic cases of

nonbandlimited signals (e.g. Diracs and piecewise polynomials) from their samples

taken at any finite sampling rate. Nonetheless, one can reconstruct a minimum

error approximations of a nonbandlimited signal as discussed in Section 2.3.2. Sec-

ond, it requires a unique reconstruction filter- an ideal lowpass filter for perfect

reconstruction. Although, the ideal lowpass filter (i.e. infinite support sinc kernel)

cannot be realized in practice, it does not offer any choice of other reconstruction

kernel. Third, Shannon’s original reconstruction formula is rarely used in practice

because of the infinite support and slow decay of the sinc function. Instead, it is

common to use a zero-order hold followed by a reconstruction filter which some-

times includes compensation for the zero-order hold. Increasingly, the signal is first

upsampled. In general, perfect reconstruction is hardly achieved in practice.



2.3 Extensions and Generalizations 32

Finally, Shannon’s theory and its extensions (discussed in the following sec-

tions) are mainly frequency domain formulations. However, we notice that some

signals are better described in other domains (e.g. Joint time-frequency representa-

tions or wavelet transform for non-stationary signals).

2.3 Extensions and Generalizations

There are many extensions and generalizations of the Shannon’s sampling theory

and reviewing them all is beyond the scope of this thesis. However, in this section,

first we quickly review Papoulis’s multichannel (generalized) sampling and other

extensions [64,78,84], mainly for bandlimited signals. We then highlight the case of

approximate reconstruction of nonbandlimited signals in Shannon’s framework [13,

67], where we highlight the subspace based interpretation to the sampling. Finally,

we focus on the modern sampling approach of Unser et al.– known as sampling in

shift-invariant subspaces [78, 80]. The shift-invariant approach explicitly considers

the shortcomings of Shannon’s scheme and allows for sampling of more general

classes of signals that are not necessarily bandlimited.

2.3.1 Papoulis’s framework and other extensions

In 1977, Papoulis introduced a powerful extension of Shannon’s sampling theory,

known as multichannel (or generalized) sampling [64]. It shows that a bandlimited

signal could be reconstructed exactly from the samples of the response of m lin-

ear shift-invariant systems sampled at 1/m the reconstruction rate. This suggest

that there are many different ways of extracting information from a signal, and

the reconstruction is generally possible provided there are as many measurements

as there are degrees of freedom in the signal representation. If the measurements

are taken in a structured manner, then the reconstruction process in simplified.
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For example, in the Papoulis framework, reconstruction is achieved by multivariate

filtering [12,57]. Typical instances of generalized sampling are interlaced and deriva-

tive sampling [48,92], both of which are special cases of Papoulis’s framework. While

the generalized sampling concept is relatively straightforward, the reconstruction is

not always possible due to potential instabilities [14].

In the last two decades, Papoulis’s theory has been generalized in several

directions [78, 84]. Although, remaining bandlimited, it was extended for multidi-

mensional and multicomponent signals [15,66]. Djokovic and Vaidyanathan [25,84]

applied similar ideas for reconstruction of functions in certain wavelet spaces: they

concentrated on the special cases of interlaced sampling, sampling of a functions

and its derivatives, and reconstruction from local averages. A further step was

taken by Unser and Zerubia [78, 82], who showed the reconstruction in shift-

invariant subspaces without any constraint on the input signal (i.e. signal may

be nonbandlimited). Instead of perfect reconstruction, they obtain a consistent ap-

proximation such that the it yields exactly the same measurements (samples) if the

reconstructed signal is reinjected into the system.

2.3.2 Approximation for nonbandlimited signals
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Figure 2.3: Sampling and reconstruction of nonbandlimited signals in Shan-
non’s framework: The continuous-time signal g(t) is first filtered by an ideal
lowpass filter ha(t) followed by the usual sampling and reconstruction scheme
of Figure 2.1. However, in this case, the reconstruction is not perfect.

Recall that the Shannon’s perfect reconstruction scheme (as shown in
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Figure 2.1) relies on the fact that the input signal g(t) is bandlimited. However, it

is possible to reconstruct a nonbandlimited signal g(t) in Shannon’s framework by

making it bandlimited before sampling [13,67]. This is illustrated in Figure 2.3.

A nonbandlimited signal g(t) is first prefiltered by an ideal lowpass filter

ha(t) = sinc(−t/T ) (or antialiasing filter) such that the frequency spectrum of the

filtered signal g(t)∗ha(t) is restricted to [−ωm, ωm]. The filtered signal g(t)∗ha(t) is

then sampled uniformly at every T seconds (with ωs = 2π/T ) to obtain the samples

sk = gs(kT ):

sk = g(t) ∗ ha(t)|t=kT

=

∫ ∞

−∞
g(t) sinc(t/T − k) dt

= 〈g(t), sinc(t/T − k)〉 , (2.4)

where 〈·, ·〉 is the inner-product operator. Note that, now the samples are denoted

by symbol sk rather than gk = g(kT ) since the original signal g(t) is modified by

the antialiasing filter ha(t).

Similar to (2.2), the reconstructed signal g̃(t) is obtained by interpolating the

samples sk with appropriate scaling and shifting of the sinc kernel (or ideal lowpass

filter hr(t) = sinc(t/T )), leading to the signal

g̃(t) =
∑
k∈Z

sk sinc(t/T − k)

=
∑
k∈Z

〈g(t), sinc(t/T − k)〉 sinc(t/T − k). (2.5)

Since the sinc basis functions {sinc(t/T − k)}k∈Z form an orthogonal set in L2(R),

the interpolation formula (2.5) can be viewed as an orthogonal projection of the

input signal g(t) onto the subspace of bandlimited signals spanned by sinc function.

This means that the reconstructed signal g̃(t) is a least square (or minimum-
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error) approximation of g(t) onto the sinc subspace [78]. For more details on the

reconstruction of nonbandlimited signals from their lowpass approximations, we refer

to [17].

2.3.3 Sampling in shift-invariant subspaces

Recently, sampling theory has experienced a strong research revival, mainly due to

increased interest around wavelets [22,51,86]. Researchers found that the mathemat-

ics of wavelets were also applicable to sampling but with more freedom since mul-

tiresolution is not mandatory. This led researchers to reexamine some of the founda-

tions of classical theory and develop more general formulations [78]. In particular,

in [78, 80] Unser et al. addressed the shortcomings of Shannon’s framework, and

provided a more general Hilbert-space formulation for sampling and reconstruction

of signals g(t) that are not necessarily bandlimited (i.e. g(t) ∈ L2).
3 This new

sampling formulation is termed as sampling in shift-invariant subspaces (i.e. sub-

spaces spanned by generating functions and their uniform shifts). The following

summary of the principal results is based on that of [78, 80].

cVsin

ϕ~V

2L

)(tg

)(~ tg

ϕϕ ~2~ : VLP →

Figure 2.4: Nesting of subspaces: Vsinc ⊂ Vϕ̃ ⊂ L2. Notice that the subspace
Vsinc is also a shift-invariant subspace. The sampling procedure is viewed as a
projection operator Pϕ̃ : L2 → Vϕ̃ that computes minimum error approximation
g̃(t) = Pϕ̃ g(t) of the input signal g(t) ∈ L2 onto a shift-invariant subspace Vϕ̃

3Here, L2 is the space of all functions that are square-integrable in Lebesgue’s sense.
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In this formulation, the sampling procedure is viewed as a projection operator

Pϕ̃ : L2 → Vϕ̃ that computes minimum error approximation g̃(t) = Pϕ̃ g(t) of the

input signal g(t) ∈ L2 onto a shift-invariant subspace Vϕ̃ spanned by a generating

(synthesis) function ϕ̃(t) and its uniform shifts. The shift-invariant subspace Vϕ̃ is

more general than the bandlimited sinc space Vsinc. The nesting of the subspaces

Vsinc ⊂ Vϕ̃ ⊂ L2 is shown in Figure 2.4.

The shift-invariant or approximation space Vϕ̃ is given by

Vϕ̃ =

{
g(t) =

∑
k∈Z

ck ϕ̃(t− k)

}
, (2.6)

where coefficients ck are square-summable, i.e. ck ∈ l2, and the family of functions

{ϕ̃k = ϕ̃(t − k)}k∈Z form a Riesz basis of Vϕ̃. The definition of Riesz basis is that

there exists two positive constants A and B satisfying 0 < A ≤ B < ∞ such that

A · ||ck||2l2 ≤

∣∣∣∣∣
∣∣∣∣∣∑
k∈Z

ck ϕ̃(t− k)

∣∣∣∣∣
∣∣∣∣∣
2

≤ B · ||ck||2l2 , (2.7)

where ||ck||2l2 =
∑

k |ck|2 is the squared l2-norm (or energy) of ck.

If the reconstruction kernel ϕ̃(t) satisfies inequality (2.7), it is an admissi-

ble (valid) shift-invariant kernel. For every admissible kernel ϕ̃(t), there exists a

unique dual kernel ϕ̊(t) which can be determined by the biorthogonal constraint:

〈ϕ̃(t−m), ϕ̊(t− n)〉 = δm−n, m, n ∈ Z. In fact, ϕ(t) = ϕ̊(t) is an optimal analysis

kernel for the given synthesis kernel ϕ̃(t). Moreover, the family of dual functions

{ϕ̊k = ϕ̊(t− k)}k∈Z belongs to the shift-invariant space Vϕ̃ as well.

For the special case of A = B = 1 in (2.7), the synthesis functions ϕ̃k are orthonor-

mal, i.e., ∀m, n ∈ Z, 〈ϕ̃m, ϕ̃n〉 = δm−n, and in this case the optimal analysis kernel

ϕ(t) = ϕ̊(t) = ϕ̃(t).

In this case, the standard sampling scheme of Figure 2.3 is seen as a three-
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step paradigm: prefiltering, sampling, and postfiltering, where the input (analysis)

filter ha(t) = ϕ(−t) and output (synthesis) filter hr(t) = ϕ̃(t) may not necessarily

be ideal (i.e. sinc kernels) and the input signal is not necessarily bandlimited, i.e.

g(t) ∈ L2. Additionally, the kernels ϕ(t) and ϕ̃(t) may not be related. The three-

step shift-invariant scheme is depicted in Figure 2.5. The samples sk of the signal

g(t) are given by the inner products: sk = 〈g(t), ϕ(t/T − k)〉, where for simplicity,

one can assume the sampling interval T = 1.

C/D )(~ tϕ
)(tg )(tgs ks )(~ tg

T

∑ −
k

kTt )(δ

)( t−ϕ

Digital 

correction filter

kc

kq

Figure 2.5: Three-step paradigm for sampling in shift-invariant subspaces Vϕ̃:
The prefilter ha(t) = ϕ(−t) and postfilter hr(t) = ϕ̃(t) are not necessarily ideal
lowpass filters (sinc kernels) and they may or may not be related. However,
both kernels span the shift-invariant subspace Vϕ̃. The digital correction filter
qk is optional (e.g. it can be removed when g(t) ∈ Vϕ̃, and ϕ(t) and ϕ̃(t) forms
a biorthogonal (or orthogonal) pair). The filter qk converts the samples sk

into the coefficients ck = sk ∗ qk for reconstructing the output signal g̃(t) =∑
k∈Z ck ϕ̃(t− k). The reconstruction is perfect when g(t) ∈ Vϕ̃.

The shift-invariant formulation of (2.6) suggests that any continuous signal

g(t) ∈ Vϕ̃ is characterized by a sequence of coefficients ck = 〈g(t), ϕ̊(t− k)〉. How-

ever, these coefficients are not necessarily the samples sk = 〈g(t), ϕ(t− k)〉 of signal

g(t). This is explained with the following examples [78] (also see Figure 2.5):

1. Assume that signal g(t) ∈ Vϕ̃ and that the analysis kernel ϕ(t) and syn-

thesis kernel ϕ̃(t) form a biorthogonal pair. In this case, one can perfectly

reconstruct g(t) = g̃(t) =
∑

k∈Z ck ϕ̃(t − k) from a sequence of coefficients

ck = 〈g(t), ϕ̊(t− k)〉 which are, in fact, the samples sk = 〈g(t), ϕ(t− k)〉. In

this case there is no need of digital correction filter qk.

2. Now consider the case when g(t) ∈ Vϕ̃ but the shift-invariant kernels ϕ(t)
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and ϕ̃(t) do not form a biorthogonal pair. In this situation, the dual ϕ̊(t)

of the synthesis kernel ϕ̃(t) is not the same as the analysis kernel ϕ(t).

Therefore, the samples sk = 〈g(t), ϕ(t− k)〉 are not equal to the coefficients

ck = 〈g(t), ϕ̊(t− k)〉 required for perfect reconstruction. However, it is possible

to show that one can recover the correct coefficients ck from the samples sk

by inserting a digital correction filter qk between the sampling and postfilter-

ing stages as shown in Figure 2.5. The filter qk is determined by the cross-

correlation σk = 〈ϕ(t− k), ϕ̃(t)〉 between the analysis filter ϕ(t) and the syn-

thesis filter ϕ̃(t). In particular, the digital correction filter qk is characterized

by its z-transform Q(z) = 1∑
k∈Z σk z−k and the correct coefficients ck are given

by ck = sk ∗ qk.

3. Finally, if g(t) ∈ L2 but g(t) 6∈ Vϕ̃, then one cannot achieve perfect

reconstruction of g(t). This is due to the fact that the shift-invariant

reconstruction acts as the projector operator Pϕ̃ : L2 → Vϕ̃ that computes

the minimum-error approximation g̃(t) of g(t) onto the subspace Vϕ̃. That

is g̃(t) = Pϕ̃ g(t) = arg minf(t)∈Vϕ̃
||g(t) − f(t)||2. Clearly, g̃(t) 6= g(t) when

g(t) 6∈ Vϕ̃. Alternative reconstruction algorithms try to obtain an approxima-

tion g̃(t) that would yield exactly the same measurements if injected back into

the system. This is the case of consistent sampling or reconstruction [78,80].

Thus, the shift-invariant formulation generalizes the classical framework for nonideal

acquisition devices. The projection property allows perfect reconstruction of any

signal g(t) that is included in a more general reconstruction space Vϕ̃. This is not

only true for bandlimited signals but also for any signal (e.g. polynomial spline) that

resides in the shift-invariant space. However, this formulation cannot be applied to

an arbitrary nonbandlimited signal g(t) ∈ L2, and typically, only a projection (or

approximation) g̃(t) of g(t) onto a specific subspace Vϕ̃ can be recovered.
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2.4 Summary

In this chapter, we introduced the fundamentals of sampling and reviewed classical

sampling theories. In particular, we started with Shannon’s sampling scheme for

bandlimited signals, and then highlighted various extensions to this scheme. Fi-

nally, we presented a modern subspace-based interpretation to the sampling of more

general signals. Throughout the chapter, we focused on 1-D sampling framework.

However, we note that the classical schemes have been extended and utilized for

multidimensional sampling as well [15,64,78].

In the following chapter, we introduce the state-of-the-art developments in

sampling parametric nonbandlimited signals known as signals with finite rate of

innovations (FRI) [28,87].
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Chapter 3

Sampling Signals with Finite Rate

of Innovation (FRI)

3.1 Introduction

In 2002, Vetterli, Marziliano, and Blu [87] showed that it is possible to sample and

perfectly reconstruct a large class of signals that are neither bandlimited nor reside

in a fixed subspace. However, these nonbandlimited signals are finite complexity

parametric signals. A common feature of such signals is that they are characterized

by a finite number of degrees of freedom per unit of time. The number of degrees

of freedom per unit of time is defied as rate of innovation, and therefore, such

signals are termed as signals with finite rate of innovation (FRI)1 [87]. Vetterli et al.

showed that it is possible to sample and perfectly reconstruct 1-D FRI signals such

as streams of Diracs, nonuniform splines, and piecewise polynomials from a finite

number of uniform samples using infinite support sinc and Gaussian kernels. The

reconstruction is based on annihilating or locator filter, a tool widely used in spectral

estimation [73] and error-correction coding [7]. The results of [87] provide theorems

1Formal definition of FRI signals is given in Section 3.2.2.
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for sampling and perfect reconstruction of 1-D FRI signals without considering the

effect of noise. However, the presence of noise in 1-D FRI sampling is considered

in [28, 56]. Moreover, the results of [87] are extended further for 2-D FRI signals

such as sets of 2-D Diracs and polygons (again using sinc and Gaussian kernels)

by Maravic and Vetterli in [54, 55]. A detailed treatment on 1-D and 2-D FRI

sampling is given in the PhD theses of Maziliano [58] and Maravic [53] respectively.

A geometrical approach for sampling FRI signals can be found in [49].

Later, Dragotti et al. [27, 28] realized that the sampling schemes of [54, 55,

87] are limited by the use of infinite support (global) kernels, and such kernels

make the reconstruction algorithm unstable and complex. In fact, the complexity

is influenced by the global rate of innovation of the input signal. The results of [27,

28] show that many 1-D FRI signals 2 with local finite rate of innovation can be

sampled and perfectly reconstructed using a wide range of sampling kernels and

local reconstruction algorithm (again based on annihilating filter). In particular, it

was shown that the local kernels that reproduce polynomials (i.e. satisfy Strang-Fix

conditions [74]) are more convenient in practice.

In a very short span, the theory of 1-D and 2-D FRI sampling has been ex-

plored in number of signal processing applications. The initial results are promising

in applications such as:

� Resolution enhancement of signals and images [28,58,70,71].

� Image super-resolution algorithms [2] and in distributed compression [31].

� High-resolution synchronization and channel estimation [53] and in economic and

successive approximation based architecture [47] for ultra-wideband systems.

� Compression of ECG signals [37].

� A/D conversions [42].

This chapter is organized as follows: In the following section, we review

2 This includes streams of Diracs, piecewise polynomials [27,28], and piecewise sinusoidals [6].
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the basics of 1-D FRI sampling. We then focus onto the multidimensional FRI

framework in Section 3.3. Finally, we summarize in Section 3.4.

3.2 1-D Sampling Framework

In the following discussion, we describe the core elements of 1-D FRI sampling,

namely, 1) Sampling setup, 2) FRI signals, 3) Sampling kernels, and 4)

Reconstruction algorithm.

C/D A
)(tg )(tgs ksT

∑ −
k

kTt )(δ

)/()( Tttha −= ϕ

Annihilating filter methodPrefiltering Sampling

Degrees of 

freedom of g(t)

Figure 3.1: 1-D FRI sampling setup: The continuous-time FRI signal g(t) is
prefiltered by the smoothing filter ha(t) = ϕ(−t/T ) and then sampled uniformly
to obtain the samples sk = 〈g(t), ϕ(t/T − k)〉 (with T as sampling interval). The
samples sk are used to retrieve the degrees of freedom of the original signal
g(t) using a nonlinear postfiltering block A (annihilating filter method). Note
that g(t) is completely characterized by its degrees of freedom. The block
C/D stands for continuous-to-discrete transformation and corresponds to the
readout of samples sk, k ∈ Z from sampled signal gs(t).

3.2.1 Sampling setup

The setup for sampling 1-D FRI signals is given in Figure 3.1. It consists of three

standard elements: prefiltering, sampling, and postfiltering. However, as opposed

to the classical and shift-invariant schemes, the postfiltering block A, in this case, is

not a kernel based interpolator but a nonlinear reconstruction algorithm known as

annihilating filter method (discussed in Section 3.2.4).

The original continuous-time FRI signal g(t) is filtered with ha(t) = ϕ(−t/T )
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and the filtered version g(t)∗ha(t) is sampled uniformly to obtain the set of samples

sk = gs(kT ), k ∈ Z given by

sk = g(t) ∗ ha(t)|t=kT

=

∫ ∞

−∞
g(t)ϕ(t/T − k) dt

= 〈g(t), ϕ(t/T − k)〉 , (3.1)

where ϕ(t) is the sampling kernel and T is the sampling interval. For simplicity,

assume that T = 1 when not specified. The filter ha(t) represents an impulse

response of the acquisition device.

The aim of this framework is to achieve the perfect reconstruction of the input

FRI signal g(t) from a finite number of samples sk. The key questions, in this case,

are: (i) What exactly is an FRI signal g(t)? (ii) What classes of sampling kernels

ϕ(t) can be employed? (iii) What kind of reconstruction algorithm is required?

The answers to these questions are presented in the following subsections.

Note that we are considering a framework for developing perfect reconstruction

sampling schemes, and therefore, the signal g(t) and its samples sk are assumed to

be noiseless [87]. As mentioned earlier, the reconstruction of 1-D FRI signals in the

presence of noise is treated in [28,56].

3.2.2 FRI signals

Consider a 1-D signal of the form

g(t) =
N∑

i=0

∑
n∈Z

λi,n φi (t− tn) , (3.2)

where the set of functions {φi(t)}, i = 0, 1, . . . , N is known. Notice that the degrees

of freedom of g(t) are the time instants tn and coefficients λi,n.
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It is therefore natural to introduce a counting function Cg(ta, tb) that counts the

number of free parameters of g(t) over an interval τ = [ta, tb]. The rate of innovation

of g(t) is then defined as

ρ = lim
τ→∞

1

τ
Cg

(
−τ

2
,
τ

2

)
. (3.3)

Definition 1 (Vetterli, Marziliano, and Blu, [87]). A signal with a finite rate of

innovation is a signal that is characterized by (3.2) and with a finite ρ as given

in (3.3).

It is of interest to note that shift-invariant signals, including bandlimited

signals, fall under Definition 1. For instance, if we call fm the maximum non-zero

frequency in a bandlimited real signal, then it is straightforward to compute the

rate of innovation ρ = 1/T = fs = 2fm, where T is a sampling interval and fs is a

sampling frequency. Therefore, one possible interpretation is that it is possible to

sample bandlimited signals because they have finite rate of innovation (rather than

because they are bandlimited) [28,87].

In some case, it is more convenient to consider a local rate of innovation with

respect to a moving window of size τ . The local rate of innovation at time t is thus

given by [87]

ρτ (t) =
1

τ
Cg

(
t− τ

2
, t +

τ

2

)
. (3.4)

Clearly, ρτ (t) tends to ρ as τ →∞. In particular, the local rate of innovation plays

a more important role than the global rate of innovation when local reconstruction

is desired [28].

Examples of signals with finite rate of innovation include streams of Diracs,

nonuniform splines, and piecewise polynomials and sinusoidals.
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3.2.3 Sampling kernels

As shown in the sampling setup of Figure 3.1, the signal g(t) is filtered before being

sampled. The samples sk are given by sk = 〈g(t), ϕ(t− k)〉, where the sampling

kernel ϕ(t) is the time reversed version of the filter’s impulse response ha(t).

It is desirable to have a freedom in selecting or designing the sampling kernel ϕ(t) of

choice. However, in practice, the kernel is characterized by the physical properties

of the acquisition device (or processing algorithm), and in most cases, it is specified

a-priori and cannot be modified. In general, it is useful to develop sampling schemes

that do not require non-realizable or very specific kernels.

In comparison with the classical framework, the FRI framework provides a

larger choice of kernels that allow perfect reconstruction. In particular, the initial

results on FRI sampling concentrate on sinc and Gaussian kernels [55, 87]. While,

more recent results on 1-D FRI sampling [28] show that one can use a wide range

of kernels that can reproduce polynomials (e.g. B-splines [77]) or exponentials (e.g.

E-splines [81]), or can be characterized by rational Fourier transforms. To be more

precise, these kernels are classified into three families [28]:

1. Polynomial reproducing kernels : Any kernel ϕ(t) that together with its uniform

shifts ϕ(t− k) can reproduce polynomials tn up to certain degree N . That is,

any kernel that satisfies

∑
k∈Z

cn
k ϕ(t− k) = tn, n = 0, 1, . . . , N (3.5)

for a proper choice of coefficients cn
k (with subscript k as an index along t and

superscript n deciding the degree of the polynomial tn).

Note that the kernels of this family include any function that satisfy so-called

Strang-Fix conditions [74]. To be more precise, any kernel ϕ(t) follows Equa-
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tion (3.5) if and only if, its Fourier transform ϕ̂(ω) satisfies:

ϕ̂(0) 6= 0 and ϕ̂(n)(2mπ) = 0 for m 6= 0 and n = 0, 1, . . . , N, (3.6)

where ϕ̂(n)(ω) denotes n-th order derivative of ϕ̂(ω). Note that the functions

that satisfy Strang-Fix conditions can either be of compact support or of in-

finite support [8]. However, the case of kernels with compact support is more

relevant in sampling of FRI signals, since it allows local reconstruction with

local complexity.

One important example of kernels that satisfy Strang-Fix conditions is given

by the family of B-splines [77]. For example, a B-spline of order zero β0(t) (or

a box function) is given by

β0(t) = 1, 0 ≤ t < 1;

= 0, otherwise,

with its Fourier transform β̂0(ω) = 1−e−iω

iω
. Similarly, a B-spline βN(t) of order

N is obtained from the (N + 1)-fold convolution of the box function β0(t),

that is, βN(t) = β0(t) ∗ β0(t) . . . ∗ β0(t)︸ ︷︷ ︸
N+1 times

. The B-spline of order N has support

size N + 1 and can reproduce polynomials up to degree N . Interestingly, B-

splines are the shortest support kernels known for a given order of polynomial

approximation. Moreover, any kernel ϕ(t) that reproduces polynomial up to

degree N can be decomposed into a B-spline and a distribution u(t) with∫
u(t)dt 6= 0, that is, ϕ(t) = u(t) ∗ βN(t) [77].

Strang-Fix conditions are used extensively in wavelet theory as well. In

particular, any wavelet with N + 1 vanishing moments is generated by a scal-

ing function that can reproduce polynomials up to degree N . This means that

such a scaling function is also a valid sampling kernel ϕ(t) [28].
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2. Exponential reproducing kernels : Any kernel ϕ(t) that together with its shifted

versions can reproduce exponentials of the form eαnt with αn = α0 +nλ, where

λ ∈ C, and n = 0, 1, . . . , N . That is, any kernel satisfying

∑
k∈Z

cn
k ϕ(t− k) = eαnt, with αn = α0 + nλ and n = 0, 1, . . . , N (3.7)

for a proper choice of the coefficients cn
k .

For example, the kernels that reproduce exponentials are exponential splines

(E-splines) [81]. The higher order E-splines are obtained by successive con-

volution of lower-order ones, and are of compact support. The immediate

advantage of compact support property is that it makes the reconstruction

algorithm local.

3. Rational kernels : Any stable kernel ϕ(t) with rational Fourier transform of

the form

ϕ̂(ω) =

∏M
m=0 (iω − bm)∏N
n=0 (iω − αn)

with M < N, αn = α0 + nλ and λ ∈ C, (3.8)

where ϕ̂(ω) is the Fourier transform of ϕ(t), and i =
√
−1.

This family of kernels include any linear differential acquisition device. That

is, any linear device or system for which the input and output are related by

a linear differential equation. This includes most of the commonly used elec-

trical or mechanical systems. Again the rational kernels can be converted into

compactly supported kernels that reproduce exponentials (e.g. E-spines [81]

or generalized E-splines [79]), which in turn, allow reconstruction algorithm to

be local and easier to implement [28].

In all cases, the choice of N depends on the local rate of innovation of the original

FRI signal g(t). This means that a signal with a higher number of degrees of freedom

in a given interval would require a higher order sampling kernel. Nonetheless, in all
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cases, the reconstruction algorithm is local, and therefore, more stable [28].

Note that in this thesis we concentrate on compactly supported kernels that

satisfy Strang-Fix conditions and thus reproduce polynomials (i.e. the first family

of kernels).

3.2.4 Reconstruction algorithm

Consider the sampling setup of Figure 3.1. Recall that the reconstruction of FRI

signals g(t) is based on a nonlinear parameter estimation algorithm known as the

annihilating filter method [87]. The central theme of the reconstruction algorithm

is illustrated in Figure 3.2.

Samples to useful 

quantity
0=∗ nnA σ

ks nσ },{ ii uwAnnihilating filter

Samples Free parametersComputed values

Figure 3.2: Reconstruction algorithm: The samples sk = 〈g(t), ϕ(t− k)〉 are
used to compute the useful values σn of form σn =

∑N−1
i=0 (ui)nwi, where {wi, ui}

are the free parameters (not necessarily the degrees of freedom) useful in
characterizing the input FRI signal g(t). The annihilating filter An is designed
in such a way that the convolution An ∗ σn = 0. The filter coefficients An and
the values σn are then used to retrieve the parameters {wi, ui} by solving the
systems of linear equations.

The samples sk are used to compute a finite number of useful values σn of

form σn =
∑N−1

i=0 (ui)
nwi, where {wi, ui} are the free parameters (not necessarily the

degrees of freedom) useful in characterizing the input FRI signal g(t). Depending on

the type of the sampling kernel involved (e.g. sinc/Gaussian [87] or B-splines/scaling

functions [28]), the computed values σn are either the Fourier coefficients (DFT)

or the geometric moments of the original signal g(t) [28, 87]. In particular, the

computed values σn are the Fourier coefficients (DFT) in the schemes that use sinc
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and Gaussian kernels [87], whereas σn are the moments3 of g(t) in the schemes that

use polynomial reproducing kernels [28].

In both cases, the values σn are in form of a powersum series (or linear

combinations of exponentials) [47]:

Definition 2 (Powersum series). A Powersum series of N components is given by

σn =
N∑

i=0

(ui)
nwi, n = 0, 1, . . . M − 1, (3.9)

where {wi, ui} are the N pairs of parameters to be estimated from M values of σn.

A sequence of form (3.9) was first studied by Baron de Prony in 1795 in

finding the decay rates of chemical processes. De Prony showed that in the noiseless

case it is possible to find the N pairs {wi, ui} exactly from only M = 2N values of

σn. The Prony’s method is sometimes called ‘real exponential fitting’ or ‘exponential

analysis’ in the natural sciences literature [21, 40]. Note that the the values σn and

the parameters {wi, ui} were real-valued in the original formulation. However, they

can be complex-valued as well.

Prony’s method is known as the annihilating filter method in signal processing

literature [73,87]. It involves locator or annihilating filter- a tool widely used in spec-

tral estimation [73], error-control coding [7] but also for sampling-interpolation [88],

array processing [89], and shape reconstruction [30, 61]. In particular, in spec-

tral estimation, it is common to obtain the values of form σn =
∑N−1

i=0 (ui)
nwi,

wi ∈ C, ui ∈ C, n ∈ N, where wi denotes weights, and ui denotes locations of the

spectral components.

In such case, the annihilating method consists of two steps:

3The computation of the moments from samples is given in Equation (3.15).
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1. The design of an FIR filter An, n = 0, 1, . . . N with z-transform

A(z) =
N∑

n=0

An z−n =
N−1∏
i=0

(
1− ui z−1

)
(3.10)

that annihilates the quantity σn, that is An ∗ σn = 0, where ui’s are distinct.

2. Determination of the locations ui and weights wi using filter An and finite

number of known values σn.

Given that one has access to at least 2N values of σn, n = 0, 1, . . . , 2N − 1, one can

show that for ∀ n = N + 1, . . . , 2N − 1, the convolution

An ∗ σn =
N∑

l=0

Al σn−l (3.11)

=
N∑

l=0

N−1∑
i=0

wi Al (ui)
n−l

=
N−1∑
i=0

wi

( N∑
l=0

Al (ui)
−l
)

︸ ︷︷ ︸
=0 from (3.10)

(ui)
n

= 0. (3.12)

Since the filter An annihilates the given quantity σn, it is known annihilating filter.

In case of spectral estimation, the locations ui are usually distinct, and hence there

exists a unique filter An for the given values σn. Moreover, the knowledge of the

filter An is sufficient to retrieve the locations u0, u1, . . . , uN−1 from the fact that

these locations are the roots of the filter A(z) as shown in (3.10).

Recall that the filter A(z) consists of N unknown coefficients An (since A0 =

1). In order to determine the N unknowns An, we need to solve a system of N linear

equations, and therefore, we require at least 2N values of σn. Using the values

σ0, σ1, . . . , σ2N−1, the convolution σn ∗ An can be described by the matrix/vector
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form: 

σN−1 σN−2 · · · σ0

σN σN−1 · · · σ1

...
...

. . .
...

σ2N−2 σ2N−3 · · · σN−1





A1

A2

...

AN


= −



σN

σN+1

...

σ2N−1


. (3.13)

The solution of this Yule-Walker system gives the filter coefficients An. From (3.10),

it is straightforward to see that the roots of filter A(z) are the locations ui.

Once the locations ui are known, the weights wi are determined by solving

Equation (3.9) as follows



1 1 · · · 1

u0 u1 · · · uN−1

...
...

. . .
...

(u0)
N−1 (u1)

N−1 · · · (uN−1)
N−1





w0

w1

...

wN−1


=



σ0

σ1

...

σN−1


. (3.14)

Given that all locations ui are distinct, the Vandermonde system of (3.14) is invert-

ible and yields a unique solution for the weights wi.

In a similar manner, one can also show that signals of form σn =
∑N−1

i=0 (ui)
nwi n

R

are annihilated by the filter A(z) =
∏N−1

i=0 (1− uiz
−1)

R+1
, where n,R ∈ N [87].

The annihilating filter method plays an important role in determining the

degrees of freedom (or innovations) in FRI sampling. For example, a stream of

N Diracs g(t) =
∑N−1

i=0 aiδ(t − ti) with N pairs of free parameters {ai, ti} (i.e.

amplitudes ai and locations ti) can be determined from M = 2N values of σn as

discussed above. Moreover, the annihilating filter method has been successfully

utilized for sampling streams of differentiated Diracs, and piecewise polynomial and

sinusoidal signals [6, 28,87].
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3.2.5 Key results

Given the important role played by kernels that reproduce polynomials in this thesis,

and for the sake of completeness, we now present in more detail the reconstruction

schemes of [28]. In particular, we highlight the reconstruction of streams of Diracs,

differentiated Diracs, and piecewise polynomial signals. We will recall some of these

results in the Radon transform based approach discussed in Chapter 6.

Stream of Diracs:

Consider a finite length stream of N Diracs, that is, g(t) =
∑N−1

i=0 aiδ(t− ti), t ∈ R.

The observed samples sk = 〈g(t), ϕ(t− k)〉 =
∑N−1

i=0 aiϕ(ti−k), where for simplicity,

we assume that T = 1 and that the sampling kernel ϕ(t) can reproduce polynomials

up to degree 2N − 1. Under these hypotheses, one can retrieve the locations ti and

amplitudes ai of the stream of Diracs g(t) from its samples sk. The reconstruction

algorithm operates in three steps [28]:

1. Compute 2N moments µn of the stream of Diracs g(t) using the observed

samples sk and the coefficients cn
k identified from Equation (3.5).4 In fact, it

follows that

µn =
∑

k

cn
ksk

(a)
=

〈
g(t),

∑
k

cn
kϕ(t− k)

〉

(b)
=

〈
N−1∑
i=0

aiδ(t− ti),
∑

k

cn
kϕ(t− k)

〉

(c)
=

∫ ∞

−∞

N−1∑
i=0

aiδ(t− ti)t
ndt

=
N−1∑
i=0

ait
n
i , n = 0, 1, . . . , 2N − 1, (3.15)

4The coefficients cn
k are bounded for a finite interval and can be accurate to the machine

precision.
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where (a) follows from the linearity of the inner product, (b) from the fact that

g(t) =
∑N−1

i=0 aiδ(t − ti), and (c) from the polynomial reproduction property

of (3.5). Note that the integral in (c) is the n-th order moment of the original

signal g(t).

2. Since the computed moments µn =
∑N−1

i=0 ait
n
i are in the form of powersum

series defined in (3.9), retrieve the locations ti and amplitudes ai of the N

Diracs from the 2N moments µn by solving the Yule-Walker system given

in (3.13).

3. Once the locations ti are known, find the amplitudes ai by solving the Van-

dermonde system given in (3.14).

Following the three steps shown above, it is indeed possible to uniquely reconstruct

a stream of N Diracs from its samples using annihilating filter method. It is also

possible to extend this algorithm for an infinite stream of Diracs with finite local

rate of innovation using a sequential, local reconstruction algorithm. In particular,

this involves grouping of finite number of consecutive Diracs, allowing sufficient

empty interval between any two groups. In this situation, each group of Diracs

is reconstructed independently and sequentially by using the local reconstruction

algorithm discussed above [28].

Stream of differentiated Diracs:

In second case, assume that g(t) is a stream of differentiated Diracs, that is,

g(t) =
N−1∑
i=0

Ri−1∑
r=0

ai,rδ
(r)(t− ti). (3.16)

Note that this signal has N Diracs with N̂ =
∑N−1

i=0 Ri weights. Moreover, re-

call that the r-th derivative of a Dirac is a distribution that satisfies the property∫
f(t)δ(r)(t− t0) dt = (−1)rf (r)(t0).

In this case, g(t) is sampled with a kernel ϕ(t) that can reproduce polynomials
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up to degree 2N̂ − 1, and the observed samples sk = 〈g(t), ϕ(t− k)〉 =∑N−1
i=0

∑Ri−1
r=0 (−1)rai,rϕ

(r)(ti − k) are used for computing the moments µn of dif-

ferentiated Diracs. The moments are then used to retrieve the locations ti and the

weights ai,r of differentiated Diracs g(t) by employing the annihilating filter An with

the z-transform A(z) =
∏N−1

i=0 (1− tiz
−1)

Ri . The annihilating filter method, in this

case, involves solution of N̂ equations using 2N̂ moments µn.

Piecewise polynomial signals:

Finally, consider a piecewise polynomial signal g(t) with pieces of maximum degree

R− 1 (R ≥ 0). That is,

g(t) =
∑
i∈Z

R−1∑
r=0

ai,r(t− ti)
r
+, (3.17)

where tr+ = max(t, 0)r. Clearly, the R-th order derivative of g(t) is a stream of

differentiated Diracs given by g(R)(t) =
∑

i∈Z
∑R−1

r=0 r! ai,rδ
(R−r−1)(t−ti). This means

that if one can relate the samples of g(t) to those of g(R)(t) then one can use the

results of differentiated Diracs in sampling piecewise polynomial signals. This is

indeed shown in [28] by recalling the link between discrete differences and continuous

derivatives. More precisely, consider a function ϕ(t) with Fourier transform ϕ̂(ω)

and consider the difference: ϕ(t)−ϕ(t−1). The Fourier transform of ϕ(t)−ϕ(t−1)

is

ϕ(t)− ϕ(t− 1) ⇔ ϕ̂(ω)
(
1− e−iω

)
= iωϕ̂(ω)

(1− e−iω)

iω
= iωϕ̂(ω)β̂0(ω).

It thus follows that

ϕ(t)− ϕ(t− 1) =
d

dt

[
ϕ(t) ∗ β0(t)

]
. (3.18)

The above formula can be used in the sampling formulation as follows: Consider

the samples sk = 〈g(t), ϕ(t− k)〉 where ϕ(t) is a generic sampling kernel. Let s
(1)
k
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denote the first order finite difference sk+1 − sk. It then follows that

s
(1)
k = sk+1 − sk = 〈g(t), ϕ(t− k − 1)− ϕ(t− k)〉

(a)
=

〈
g(t),− d

dt

[
ϕ(t− k) ∗ β0(t− k)

]〉
(b)
=

〈
d

dt
g(t), ϕ(t− k) ∗ β0(t− k)

〉
,

where equality (a) is obtained using Equation (3.18) and (b) follows from integration

by parts. Thus, the samples s
(1)
k are equivalent to those given by the inner products

between the derivative of g(t) and the new kernel ϕ(t) ∗ β0(t). In a similar manner,

it is straightforward to show that the R-th order finite difference s
(R)
k represents the

samples obtained by sampling g(R)(t) with the kernel ϕ(t)∗βR−1(t), where βR−1(t) is

the B-spline of degree R−1. Moreover, if we assume that ϕ(t) is of compact support

L and that it can reproduce polynomials of maximum degree n then the new kernel

ϕ(t)∗βR−1(t) has support L+R and can reproduce polynomials of maximum degree

n + R.

Now, assume that we observe the samples sk = 〈g(t), ϕ(t/T − k)〉 of an

infinite-length piecewise polynomial signal g(t), where ϕ(t) is the sampling kernel

of support L that can reproduce polynomials up to certain degree n, and T is the

sampling interval. Also assume that g(t) has pieces of maximum degree R−1(R ≥ 0)

with at most N polynomial discontinuities in an interval of size 2N(L + R)T .

Given the samples sk, it is possible to compute the R-th order finite difference s
(R)
k

given by: s
(R)
k = D(R) [sk] =

〈
g(R)(t), ϕ(t/T − k) ∗ βR−1(t/T − k)

〉
. In fact, the

difference samples s
(R)
k are equivalent to the inner products between differentiated

Diracs g(R)(t) and new kernel ϕ(t/T ) ∗ βR−1(t/T ), where βR−1(t) is the B-spline

of degree R − 1. The new kernel is of compact support L + R that can reproduce

polynomials up to degree n+R. Since by hypothesis, g(t) has at most N polynomial

discontinuities in an interval of size 2N(L + R)T , the signal g(R)(t) consists of at



3.3 Multidimensional Framework 56

most N differentiated Diracs at locations ti with N̂ = NR number of weights ai,r

in the same interval. Now recalling back the case of differentiated Diracs, one can

uniquely retrieve the weights ai,r and the locations ti from the 2N̂ = 2NR moments

of g(R)(t). However, to be able to obtain the 2N̂ = 2NR moments, the new sampling

kernel must be able to reproduce polynomials at least up to degree 2NR − 1, that

is, the condition n + R ≥ 2NR − 1 must be satisfied. This means that the original

sampling kernel ϕ(t) must be able to reproduce polynomials of maximum degree

n ≥ 2NR−R− 1.

Thus, it shows that by computing the finite differences of the samples sk

of the polynomial signal g(t), one can obtain a new set of samples s
(R)
k which is

sufficient for retrieving the the weights ai,r and the locations ti of the differentiated

Diracs g(R)(t), and therefore, for reconstructing the original polynomial signal g(t).

With this, we complete the review of 1-D FRI sampling. We now formulate

the multidimensional FRI framework.

3.3 Multidimensional Framework

Note that the sampling of 2-D FRI signals (e.g. Diracs and bilevel polygons) has been

considered by Maravic et al. [54,55]. The schemes of [54,55] first compute the Fourier

coefficients from the samples and then use these coefficients in the annihilating filter

method for retrieving the degrees of freedom of FRI signals. In particular, in [54],

it was shown that a set of N 2-D Diracs or a bilevel-convex polygon with N corner

points can also be reconstructed by sampling its N +1 Radon projections. However,

the schemes of [54,55] are complex and unstable since they employ infinite support

sinc and Gaussian sampling kernels. In the proposed work, we consider the kernels

with compact support that reproduce polynomials.

Recalling the existing background and the scope of our work, we now
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present the multidimensional FRI framework in detail. In the following discus-

sion, we describe the FRI signals, the sampling setup, the sampling kernels, and the

reconstruction algorithms. Mainly, we concentrate on the 2-D case.

FRI signals

It is possible to extend the notion of FRI in 2-D (or in higher dimension). In

particular, a 2-D FRI signal g(x, y) is given by

g(x, y) =
N∑

i=0

∑
j∈Z

∑
k∈Z

λi,j,k φi (x− xj, y − yk) , (3.19)

where {φi (x, y)} is the set of known functions. The free parameters, in this case,

are the shifts xj and yk and the coefficients λi,j,k, where x, y, λi,j,k ∈ R. The local

rate of innovation is then given by ρxy = 1
τxτy

Cg

[
(− τx

2
, τx

2
), (− τy

2
, τy

2
)
]

determined

over the window of size τx × τy.

For instance, when φi (x, y) = δ(x, y), and both xj − xj−1 and yk − yk−1 are

i.i.d. random variables with exponential density, then g(x, y) describes a separable

2-D Poisson process. A set of 2-D Diracs is one particular realization of the 2-D

Poisson process. Other examples of 2-D FRI signals include lines in 2-D, polygonal

lines, convex and bilevel polygons, and classes of algebraic curves (e.g. ellipses,

cardioids, and lemniscates) [55, 60].

Sampling setup

The 2-D FRI sampling setup is shown in Figure 3.3, where a continuous 2-

D FRI signal g(x, y) is prefiltered by a smoothing (sampling) kernel ha(x, y) =

ϕ(−x/Tx,−y/Ty), and the filtered version g(x, y) ∗ ϕ(−x/Tx,−y/Ty) is sampled
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Figure 3.3: The 2-D FRI sampling setup: Continuous signal g(x, y) is convolved
by a smoothing kernel ϕ(x, y) and then sampled uniformly by

∑
j∈Z
∑

k∈Z δ(x−
jTx, y−kTy) to obtain the sampled signal gs(x, y). The block C/D represents con-
tinuous to discrete transformation and corresponds to the read-out of sample
values sj,k, j, k ∈ Z from gs(x, y).

uniformly to obtain the set of samples sj,k = gs(jTx, kTy) given by

sj,k = g(x, y) ∗ ha(x, y)|x=jTx,y=kTy

=

∫ ∫
R2

g(x, y) ϕ(x/Tx − j, y/Ty − k) dx dy

= 〈g(x, y), ϕ(x/Tx − j, y/Ty − k)〉 , (3.20)

where Tx, Ty ∈ R+ are sampling intervals along x and y directions respectively. For

simplicity, we assume Tx = Ty = 1 unless explicitly specified. Note that the setup

of Figure 3.3 is typical for acquisition devices and processing algorithms, and can

be extended to higher dimensions [78].

Sampling kernels

In this thesis, we consider any compactly supported kernel that satisfies Strang-Fix

conditions [74] and therefore reproduce polynomials up to certain degree n. To be

more precise, the 2-D sampling kernel ϕ(x, y), in our case, is given by the tensor

product of two 1-D functions ϕ(x) and ϕ(y) that reproduce polynomials xα and yβ

respectively, where α, β ∈ {0, 1, . . . , n} and x, y ∈ R. In particular, there exists real
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coefficients cα,β
j,k such that the kernel ϕ(x, y) satisfies:

∞∑
j=−∞

∞∑
k=−∞

cα,β
j,k ϕ(x− j, y − k) = xα yβ, (3.21)

where α, β specify the degrees of polynomials that the kernel ϕ(x, y) can reproduce

along x and y directions respectively. For instance, B-spline of order n can reproduce

polynomial up to degree n, i.e. α, β ∈ {0, 1, . . . , n}. Note that cα,0
j,k is responsible for

the reproduction of a polynomial of degree α along x-axis, while c0,β
j,k is responsible

for the reproduction of a polynomial of degree β along y-axis.

Furthermore, for α = β = 0, if the kernel ϕ(x, y) allows cα,β
j,k = c0,0

j,k = 1,

then (3.21) reduces to

∞∑
j=−∞

∞∑
k=−∞

ϕ(x− j, y − k) = 1. (3.22)

The above equation states that the sum of shifted versions of sampling kernel pro-

duces unit amplitude polynomial of degree zero, and is often termed as ‘partition

of unity’ in wavelet community. For instance, orthogonal Daubechies scaling func-

tions [22] and biorthogonal B-splines [77] are included in the class of kernels that

satisfy the property of (3.21).

Reconstruction algorithms

The polynomial reproduction property of the sampling kernel allows us to compute

the moments of FRI signal from its samples. To be more precise, assume that we

observe the samples sj,k = 〈g(x, y), ϕ(x/Tx − j, y/Ty − k)〉 of the FRI signal g(x, y),

where ϕ(x, y) the sampling kernel of compact support that reproduce polynomials

up to certain degree n along both x and y directions, and Tx, Ty are the sampling

intervals along these directions. Moreover, from (3.21), we know that there exists
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coefficients cα,β
j,k , α, β ∈ {0, 1, . . . , n} such that the weighted sum of samples (for

Tx = Ty = 1) follows

∑
j

∑
k

cα,β
j,k sj,k

(a)
=

∑
j

∑
k

cα,β
j,k 〈g(x, y), ϕ(x− j, y − k)〉

=
∑

j

∑
k

cα,β
j,k

∫ ∫
R2

g(x, y)ϕ(x− j, y − k) dx dy

=

∫ ∫
R2

g(x, y)
∑

j

∑
k

cα,β
j,k ϕ(x− j, y − k) dx dy

(b)
=

∫ ∫
R2

g(x, y) xαyβ dx dy

= µα,β, (3.23)

where µα,β are the (geometric) moments of signal g(x, y) by definition [39,75]. The

equalities (a) and (b) are obtained from (3.20) and (3.21) respectively.

In theory, these moments are then used in the annihilating filter method for

retrieving the degrees of freedom of g(x, y) and thus for reconstructing the signal

g(x, y) uniquely. However, as opposed to 1-D FRI sampling, the reconstruction

algorithms for the multidimensional case are more intricate. In particular, depending

on the classes of FRI signals, the reconstruction algorithms also involve various

tools such as directional derivatives (Chapter 4), complex-moments (Chapter 5)

and Radon transform (Chapter 6).

3.4 Summary

In this chapter, we reviewed the recent developments in sampling (and perfect

reconstruction) of signals with finite rate of innovation (FRI) [28,87]. In particular,

we described the key elements of 1-D and multidimensional FRI framework.
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In the following chapters, we employ the multidimensional framework and

present novel approaches for sampling higher dimensional FRI signals.
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Chapter 4

Directional Derivatives based

Approach

4.1 Introduction

We have presented multidimensional FRI framework in the previous chapter. We are

now ready to propose novel sampling schemes for higher dimensional FRI signals.

In this chapter, we consider sampling of 2-D Diracs and planar polygons.

In order to introduce the essential role of polynomial reproducing kernels

in our sampling schemes, we begin with a ‘warm up’ example, that is, local

reconstruction of 2-D Diracs. In fact, the example of Diracs serves as a comprehen-

sive model for understanding various sampling approaches of this thesis, including

the directional derivatives based approach presented in the second part of this chap-

ter. In directional derivatives based approach, we discover a link between ‘continuous

domain directional derivatives’ and ‘discrete domain directional difference’ using the

fundamentals of lattice theory [20]. We then show that this link together with the

local reconstruction scheme of 2-D Diracs can be utilized for local reconstruction of

planar polygons.
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In the following section, we begin with a local reconstruction scheme for 2-D

Diracs. We then extend the reconstruction of 2-D Diracs for planar polygons in

Section 4.3. Finally, in Section 4.4, we summarize the contribution of this chapter.

4.2 Local reconstruction of 2-D Diracs

Consider a simple class of FRI signals, that is, a set of 2-D Diracs g(x, y) =∑
i∈Z ai δ (x− xi, y − yi), a, x, y ∈ R as shown in Figure 4.1. Note that each 2-D

Dirac can be parameterized by an amplitude ai and a coordinate position (xi, yi),

and thus has a finite number of degrees of freedom (or rate of innovation) which

equals three.

Figure 4.1: A set of 2-D Diracs: g(x, y) =
∑

i∈Z ai δ(x− xi, y − yi)

Now recall the 2-D sampling setup given in Figure 3.3. For the given set of

2-D Diracs g(x, y), we observe the samples sj,k = 〈g(x, y), ϕ(x/Tx − j, y/Ty − k)〉,

where Tx, Ty are the sampling intervals and ϕ(x, y) is the sampling kernel with

compact support Lx × Ly.

We assume that the Diracs in signal g(x, y) are distributed in such a way

that there is at most one Dirac in any given window of size (Lx +1)Tx× (Ly +1)Ty.

The kernel ϕ(x, y), we consider, satisfies partition of unity (3.22) and can reproduce

polynomials up to degree one, i.e. α, β ∈ {0, 1} in (3.21). Since the kernel satisfies

partition of unity (3.22), an algebraic sum of shifted kernels is constant and is equal

to unity. This is illustrated in Figure 4.2 (b). Moreover, from (3.21), the linear
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combinations of shifted kernels with coefficients c1,0
j,k and c0,1

j,k produce unit-slope

linear functions along x and y directions (see Figures 4.2 (c) and (d)).

Since there is at most one Dirac in any given window of size (Lx+1)Tx×(Ly+

1)Ty, we are sure that only Lx × Ly samples sj,k = 〈g(x, y), ϕ(x/Tx − j, y/Ty − k)〉

are influenced by a unique Dirac ap δ(x− xp, y − yp), p ∈ Z.

(a)

a
p
 δ

xy
(x−x

p
,y−y

p
)

(b)

a
p
 δ
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(x−x

p
,y−y

p
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Figure 4.2: Local reconstruction of a 2-D Dirac ap δ(x − xp, y − yp): The B-
spline sampling kernel β3(x, y) that can reproduce polynomials up to degree 3
is given in part (a). The reproduction of polynomial of degree 0 (partition of
unity) responsible for the determination of amplitude ap is given in part (b),
whereas the reproduction of polynomials of degree 1 along x and y directions
responsible for the determination of coordinates xp and yp are given in part (c)
and part (d) respectively.
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Therefore, for a given Dirac (assuming Tx = Ty = 1), we have that

Lx∑
j=1

Ly∑
k=1

sj,k =

〈
apδ(x− xp, y − yp),

Lx∑
j=1

Ly∑
k=1

ϕ(x− j, y − k)

〉

=

∞∫
−∞

∞∫
−∞

apδ(x− xp, y − yp)

(
Lx∑
j=1

Ly∑
k=1

ϕ(x− j, y − k)

)
dx dy

= ap

Lx∑
j=1

Ly∑
k=1

ϕ(xp − j, yp − k)

= ap (from Equation (3.22)) (4.1)

and

Lx∑
j=1

Ly∑
k=1

c1,0
j,k sj,k =

〈
apδ(x− xp, y − yp),

Lx∑
j=1

Ly∑
k=1

c1,0
j,k ϕ(x− j, y − k)

〉

=

∞∫
−∞

∞∫
−∞

apδ(x− xp, y − yp)

(
Lx∑
j=1

Ly∑
k=1

c1,0
j,k ϕ(x− j, y − k)

)
dx dy

= ap

Lx∑
j=1

Ly∑
k=1

c1,0
j,k ϕ(xp − j, yp − k)

= apxp. (from Equation (3.21)) (4.2)

Similarly, it is straightforward to arrive at
Lx∑
j=1

Ly∑
k=1

c0,1
j,k sj,k = ap yp in the line of above

derivation.

Hence, the amplitude ap of a given Dirac is retrieved using

ap =
Lx∑
j=1

Ly∑
k=1

sj,k, (4.3)

and the position (xp, yp) is retrieved using

xp =

∑Lx

j=1

∑Ly

k=1 c1,0
j,k sj,k

ap

, yp =

∑Lx

j=1

∑Ly

k=1 c0,1
j,k sj,k

ap

, (4.4)

where the coefficients c1,0
j,k and c0,1

j,k are identified from Equation (3.21).
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The above equations allow us to reconstruct one Dirac per time from the

set of samples sj,k = 〈g(x, y), ϕ(x/Tx − j, y/Ty − k)〉. To be more precise, since the

samples of an arbitrary Dirac do not overlap with the samples of any other Dirac,

each Dirac is completely characterized by a distinct group of only Lx ×Ly samples.

In such condition, the observed samples sj,k (with precomputed coefficients c1,0
j,k and

c0,1
j,k) are used to reconstruct the Diracs as follows:

Algorithm 1. Local reconstruction of 2-D Diracs

1. Start with a hypothetical window of Lx × Ly points overlayed at the top-left

corner 1 of the set of samples sj,k.

2. If all Lx × Ly elements of sj,k within the window are non zero, compute the

amplitude ap and the position (xp, yp) of the detected Dirac apδ(x− xp, y− yp)

using (4.3) and (4.4).

3. Shift the window by one sample (from left to right and then from top to bottom)

and repeat the Step 2 for all possible shifts (i.e. until the window arrives at

the bottom-right corner of sj,k).

Thus, the local reconstruction scheme of 2-D Diracs follows

Proposition 1. Assume a sampling kernel ϕ(x, y) with support Lx × Ly that can

reproduce polynomials of degree zero and one along the Cartesian axes x and y.

A set of finite amplitude 2-D Diracs g(x, y) =
∑

i∈Z ai δ (x− xi, y − yi) is uniquely

determined from its samples sj,k = 〈g(x, y), ϕ(x/Tx − j, y/Ty − k)〉, if there is at

most one Dirac in any distinct window of size (Lx + 1)Tx × (Ly + 1)Ty.

Essentially, this proposition concludes the local reconstruction of 2-D Diracs.

However, in the following paragraphs, we introduce a moment based interpretation

to the local reconstruction of 2-D Diracs and initiate a background for the global

and higher dimensional extensions discussed in the following chapters.

1Here, we assume that the samples sj,k are stored in matrix form, that is, the top-left corner
corresponds to sample s0,0.
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Recall that the polynomial reproduction property of the sampling kernel

ϕ(x, y) makes it possible to obtain the (geometric) moments µα,β of the original sig-

nal g(x, y) from its samples sj,k, that is, µα,β =
∑

j

∑
k cα,β

j,k sj,k (see Equation (3.23)).

In case of Diracs, we assume that the Diracs are sufficiently apart, and that the ker-

nel ϕ(x, y) can reproduce polynomials of degree zero and one. These assumptions

enable us to obtain the first order moments µα,β, α, β ∈ {0, 1} of each 2-D Dirac

locally. Therefore, the Equations (4.3) and (4.4) can also be written in the following

form:

ap =
Lx∑
j=1

Ly∑
k=1

sj,k = µ0,0, (4.5)

and

xp =

∑Lx

j=1

∑Ly

k=1 c1,0
j,k sj,k

ap

=
µ1,0

µ0,0

, yp =

∑Lx

j=1

∑Ly

k=1 c0,1
j,k sj,k

ap

=
µ0,1

µ0,0

, (4.6)

where µα,β, α, β ∈ {0, 1} are the local moments of a given 2-D Dirac apδ(x−xp, y−yp).

Note that in the local reconstruction scheme we only need to determine three

unknown parameters: ap, xp and yp per time. However, the reconstruction of two

or more 2-D Diracs at a time (i.e. the global scheme) requires a higher number of

unknowns to be determined. This in turn involves the solution of a large system of

equations, which uses the higher order moments and the annihilating filter method.

This scenario is treated in the following chapter using complex-moments.

Moreover, it is possible to show that the local reconstruction scheme of 2-

D Diracs can be extended to higher dimensions (i.e. in 3-D and above) using the

multidimensional FRI framework of Chapter 3. For instance, a set of 3-D Diracs

g(x, y, z) =
∑

i∈Z aiδ(x − xi, y − yi, z − zi), spaced sufficiently apart, can be sam-

pled by a 3-D kernel ϕ(x, y, z) = ϕ(x)ϕ(y)ϕ(z) of support Lx × Ly × Lz that can

reproduce polynomials of degree zero and one along the Cartesian axes x, y and z.

The observed samples sj,k,l = 〈g(x, y, z), ϕ(x/Tx − j, y/Ty − k, z/Tz − l)〉 with pre-
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computed coefficients cα,β,γ
j,k,l , α, β, γ ∈ {0, 1} can be used to retrieve the amplitude

ap and the position (xp, yp, zp) of an arbitrary Dirac locally by extending Equa-

tions (4.3) and (4.4) for the 3-D case. Again, the reconstruction of two or more

multidimensional Diracs per time (i.e. the global reconstruction) is more intricate

and involves ‘annihilating filter based back-projection’ (AFBP) algorithm discussed

in Chapter 6.

4.3 Planar polygons

1θ

2θ

y)
g(x,

A
A

][)1(
1

⋅θd ][)1(
2

⋅θd

)(a )(b )(c

Figure 4.3: The continuous model for local reconstruction of polygonal corner
points: For a given planar polygon g(x, y), a pair of two successive first order
directional derivatives d

(1)
θ1

[·] and d
(1)
θ2

[·] decomposes a corner point A into a 2-D
Dirac.

Consider a planar polygon g(x, y) with N corner points as shown in

Figure 4.3(a). The sides of the polygon are identified by the 2-D lines:

yi = tan(θi) xi + bi, i = 1, 2, . . . , N,

where bi are the shifts and θi are the orientations.

For this N sided polygon, consider an arbitrary corner point (e.g. point A in

Figure 4.3) formed by two sides with orientations θ1 and θ2. A pair of first or-
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der directional derivatives d
(1)
θ1

[·] and d
(1)
θ2

[·] on g(x, y) can be written as

d
(1)
θ2

[
d

(1)
θ1

[g(x, y)]
]

= cos(θ1) cos(θ2)
∂2

∂x2

(
g(x, y)

)
+ sin(θ1 + θ2)

∂

∂y

( ∂

∂x

(
g(x, y)

))
+

sin(θ1) sin(θ2)
∂2

∂y2

(
g(x, y)

)
. (4.7)

Clearly, this pair of directional derivatives produces a 2-D Dirac at the corner point A

(see Figures 4.3(b) and (c)). Likewise, we can ‘turn’ other corner points into Diracs

by selecting proper pairs of derivatives. This suggests that the local reconstruction

scheme of 2-D Diracs, described in the previous section, can be tailored for recon-

structing the corner points of planar polygons.

However, the practical difficulty is that, instead of a direct access to the poly-

gon g(x, y), we only have access to its samples sj,k = 〈g(x, y), ϕ(x/Tx − j, y/Ty − k)〉,

where ϕ(x, y) is a sampling kernel that can reproduce a polynomial of degree zero.

Fortunately, discrete equivalent to the directional derivatives is directional differ-

ences, and directional differences can be connected to the corresponding continuous

derivatives. The connection between them is based on the fundamentals of lattice

theory, and in particular, involves subsampling over rectangular lattices. Since we

are dealing with a finite number of samples sj,k, j, k ∈ Z over a uniform rectangular

grid, we focus onto the 2-D integer lattices. For further details on lattice theory, we

refer to [20,44,85].

For a given corner point (e.g. point A), assume that the orientations θ1

and θ2 of the two adjacent polygonal sides are such that θ1 = tan−1
(

v1,2

v1,1

)
and

θ2 = tan−1
(

v2,2

v2,1

)
where v1,1, v1,2, v2,1, v2,2 ∈ Z. Let the corresponding base lattice

Λ be given by Λ = {λ : λ = n1~v1 + n2~v2}, where ~vi = [vi,1, vi,2], i = 1, 2 are its

basis vectors and n1, n2 ∈ N. The lattice Λ is characterized by a sampling matrix

VΛ =

 v1,1 v1,2

v2,1 v2,2

 with determinant det(VΛ).
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Figure 4.4: The map for computing two successive differences D(1)
θ1

[·] and D(1)
θ2

[·]
on every pair of samples sj,k arranged in accordance with the base lattice Λ.
The first difference is computed along the lattice direction ~v1 followed by the
second difference along the direction ~v2.

Now, as illustrated in Figure 4.4, we compute the finite differences of the

samples sj,k, first along the lattice direction ~v1 and then along ~v2. Assuming Tx =

Ty = 1, a pair of directional differences D(1)
θ1

[·] and D(1)
θ2

[·] modifies the samples sj,k

into a new set of samples s′j,k as given by

s′j,k = D(1)
θ2

[
D(1)

θ1
[sj,k]

]
=

{
s(j+v2,1+v1,1),(k+v2,2+v1,2) − s(j+v2,1),(k+v2,2)

}
−
{
s(j+v1,1),(k+v1,2) − sj,k

}
=

〈
g(x, y),{
ϕ
(
x− (j + v2,1 + v1,1), y − (k + v2,2 + v1,2)

)
− ϕ

(
x− (j + v2,1), y − (k + v2,2)

)}
−
{

ϕ
(
x− (j + v1,1), y − (k + v1,2)

)
− ϕ

(
x− j, y − k

)}〉
.

By using Parseval’s identities, and after certain manipulations (refer to Appendix A),
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we derive that

s′j,k
|det(VΛ)|

=
D(1)

θ2

[
D(1)

θ1
[sj,k]

]
|det(VΛ)|

=

〈
∂

∂θ2

( ∂

∂θ1

(
g(x, y)

))
, ζθ1,θ2(x− j, y − k)

〉
, (4.8)

where ζθ1,θ2(x, y) =

(
ϕ(x,y)∗β0

θ1
(x,y)
)
∗β0

θ2
(x,y)

| sin(θ2−θ1)| is a modified kernel, and β0
θ1

(x, y) and

β0
θ2

(x, y) are the 1-D B-splines of order zero in xy-plane along orientations θ1 and

θ2 respectively. The skewness of the modified kernel depends on the orientations

θ1 and θ2, and therefore, we denote the modified kernel as ‘directional kernel’. For

instance, assuming that the original kernel ϕ(x, y) is a Haar scaling function (see

Figure 4.5(a)), the directional kernel ζθ1,θ2(x, y) is shown in Figure 4.5(b).

(a) (b)

Figure 4.5: Original and directional kernels: (a) ϕ(x, y) is a Haar scaling func-
tion with support 1 × 1, (b) Directional kernel ζθ1,θ2(x, y) with support 4 × 4 is
related to the corner point of the polygon g(x, y) formed by the two sides with
orientations tan(θ1) = 2/1 and tan(θ2) = −1/2.

The kernel ζθ1,θ2(x, y) is of compact support (|v1,1| + |v2,1| + Lx) × (|v1,2| +

|v2,2| + Ly), where Lx × Ly is the support of the original sampling kernel ϕ(x, y).

The skewed shape of kernel ζθ1,θ2(x, y), and the factors 1
|det(VΛ)| and 1

| sin(θ2−θ1)| in

Equation (4.8) are due to subsampling over integer lattices. It is important to note

that there exists an independent directional kernel ζθ1,θ2(x, y) for each independent

corner point of the polygon g(x, y).

Equation (4.8) states that the new samples s′j,k given by the finite differences
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along ~v1 and ~v2 are equivalent to those obtained by sampling d
(1)
θ2

[
d

(1)
θ1

[g(x, y)]
]

with

the directional kernel ζθ1,θ2(x, y). Moreover, if all the corner points of the polygon

g(x, y) are sufficiently apart such that there is only one corner point (e.g. point A)

in the support of its associated directional kernel ζθ1,θ2(x, y), then it is possible to

reconstruct the corner points using the local reconstruction scheme of 2-D Diracs as

discussed in Section 4.2.

Assuming that the kernel ϕ(x, y) satisfies partition of unity (3.22), the

directional kernel ζθ1,θ2(x, y) always satisfies partition of unity (3.22) but also re-

produces polynomials up to degree one (3.21) along both x and y directions.

The polynomial reproduction property of the directional kernel ζθ1,θ2(x, y) enables

us to determine the amplitude ap and the coordinate position (xp, yp) of the re-

sultant 2-D Dirac apδ(x − xp, y − yp) at the given corner point from the new

set of samples s′j,k. In fact, we only need an isolated group of samples (i.e.

(|v1,1| + |v2,1| + Lx) × (|v1,2| + |v2,2| + Ly) samples) in the vicinity of the given

corner point. In particular, the local reconstruction scheme of (4.3) and (4.4) for

the case of polygonal corner point (e.g. point A) leads to the following identities

ap =

∑
j

∑
k s′j,k

|det(VΛ)|
, (4.9)

xp =

∑
j

∑
k c1,0

j,k s′j,k
ap |det(VΛ)|

, yp =

∑
j

∑
k c0,1

j,k s′j,k
ap |det(VΛ)|

, (4.10)

where c1,0
j,k and c0,1

j,k are the coefficients of kernel ζθ1,θ2(x, y), identified from Equa-

tion (3.21).

Clearly, the coordinate pair (xp, yp) gives the position of the given corner

point (e.g. point A), whereas ap gives the amplitude of the planar polygon g(x, y).

It is straightforward to see that this reconstruction scheme applies equally to all
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the corner points of g(x, y) using their associated directional kernels. From the

knowledge of the corner points and associated directions, it is possible to perfectly

reconstruct the polygon g(x, y). Finally, to summarize the local reconstruction of

planar polygons, we have

Proposition 2. Assume an N sided planar polygon g(x, y) with the orientations

θi, i = 1, 2, . . . , N of its sides satisfying tan(θi) ∈ Q, and the sampling kernel

ϕ(x, y) that can reproduce polynomial of at least degree zero. A set of samples

sj,k = 〈g(x, y), ϕ(x/Tx − j, y/Ty − k)〉 is sufficient to reconstruct the polygon g(x, y)

provided that there is at most one corner point in the support of each directional

kernel ζθi,θi+1
(x, y), where θi+N = θi.

In practice, the orientations of the polygonal sides are not known in advance.

However, if we assume that the sides of the N sided planar polygon g(x, y) take only

a finite number of orientations θi, where tan(θi) ∈ Q, then by trying all possible

orientations we can retrieve the correct ones. More precisely, given a sufficiently

large set of samples sj,k = 〈g(x, y), ϕ(x/Tx − j, y/Ty − k)〉, the reconstruction of

g(x, y) is realized by the following steps:

Algorithm 2. Local reconstruction of planar polygon

1. Apply a distinct pair of finite differences D(1)
θ1

[·] and D(1)
θ2

[·] over the set of

samples sj,k and obtain a new set of samples s′j,k = D(1)
θ2

[
D(1)

θ1
[sj,k]

]
.

2. Check whether at least one isolated group of samples in sj,k is segmented. If yes,

then using the local reconstruction scheme of (4.9) and (4.10), determine the

amplitude ap and the position (xp, yp) of the Dirac, and therefore, the corner

point.

3. Reiterate from step 1 (with a new pair) until all N corner points are deter-

mined.

4. Using the recovered corner points and the successful pairs of orientations,

reconstruct the polygon g(x, y).
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Figure 4.6: Simulation result for the local reconstruction of planar polygon:
The original image of size 2500 × 2500 pixels as given in part (a) consists of
a triangle g(x, y) with three corner points A, B, and C such that its sides
AB, BC, and CA are oriented at tan(θ1) = 2, tan(θ3) = −∞, and tan(θ2) = −1

2
respectively. The part (b) consists of the set of 25× 25 samples sj,k is obtained
by sampling g(x, y) with the Haar kernel ϕ(x, y) of size 100 × 100 pixels. The
set of new samples s′j,k as shown in part (c) is obtained by computing two

successive directional differences D(1)
θ1

[·] and D(1)
θ2

[·] (i.e. along the sides AB
and AC) on the original set of samples sj,k. Note that the isolated group of
samples in part (c) represents the corner point A. Similarly, the other two sets
of differentiated samples s′j,k with isolated corner points B and C are given in
parts (d) and (e) respectively. Using the local reconstruction scheme of (4.9)
and (4.10), the reconstructed corner points A,B, and C (marked with +) are
given in part (a).

We conclude this section with a simple numerical example. The simulation

result is shown in Figure 4.6. As shown in Figure 4.6(a), consider a planar polygon

g(x, y) (i.e. a planar triangle ABC) with three corner points A, B, and C such

that its sides AB, BC, and CA are oriented at tan(θ1) = 2, tan(θ3) = −∞, and

tan(θ2) = −1
2

respectively. The set of samples sj,k = 〈g(x, y), ϕ(x− j, y − k)〉 given

in part (b) is obtained by sampling the polygon g(x, y) with the Haar kernel ϕ(x, y).

The new set of samples s′j,k = D(1)
θ2

[
D(1)

θ1
[sj,k]

]
as shown in part (c) is derived from

the original set of samples sj,k using two successive differences D(1)
θ1

[·] and D(1)
θ2

[·]
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along the orientations AB and AC. In a similar manner, the other two sets of

differentiated samples s′j,k are obtained using the difference pairs D(1)
θ3

[
D(1)

θ1
[sj,k]

]
and D(1)

θ3

[
D(1)

θ2
[sj,k]

]
as given in parts (d) and (e) respectively. Note that the small

isolated groups of samples in parts (c), (d), and (e) represent three 2-D Diracs

located at the corner points A, B, and C respectively. These corner points are

retrieved using the local reconstruction scheme of (4.9) and (4.10) and are marked

with + in Figure 4.6(a). The reconstruction of the corner points is exact to machine

precision. The computational cost of this local reconstruction algorithm is linear

with the number N of the corner points, that is, of the order O(N).

In the case of an image with two or more polygons, each polygon is

reconstructed independently assuming that the polygons are sufficiently apart and

that the samples of one polygon do not influence the samples of any other polygon.

4.4 Summary

In this chapter, we have proposed local schemes for sampling and perfect

reconstruction of Diracs and planar polygons. The contribution of this chapter

is three-fold: 1) In the first part of the chapter, we have shown that it is possible

to perfectly reconstruct Diracs in 2-D (and above) from their samples locally (i.e.

one Diracs per time); 2) In the second part of the chapter, we extended the local

reconstruction scheme of 2-D Diracs for planar polygons and proposed an algorithm

useful for super-resolution corner reconstruction; 3) The algorithm, we developed,

exploits a novel link between directional derivatives and differences based on the

fundamentals of lattice theory. This new link provides a background for the Radon

transform based approach discussed in Chapter 6.
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Chapter 5

Complex-moments based

Approach

5.1 Introduction

In the previous chapter, we have shown that planar polygons can be reconstructed

locally if the corner points are sufficiently apart. In this chapter, we present a global

scheme for reconstructing bilevel and convex polygons with close corner points. In

particular, we consider simultaneous recovery of all the corner points using complex-

moments and annihilating filter method. In addition to bilevel and convex polygons,

we show that sets of 2-D Diracs and quadrature domains (e.g. circles, ellipses, and

cardioids) are perfectly reconstructed from their samples. Implicitly, we provide a

sampling perspective to the ‘shape from moments method’ of [30, 60].

In the following section, we provide a background on moments and draw a

useful connection to obtain the moments of a signal from its samples. In Sections 5.3,

we use this ‘sample-moment’ connection for global reconstruction of bilevel-convex

polygons. We then extend the reconstruction scheme of bilevel polygons for 2-D

Diracs and quadrature domains in Section 5.4. Finally, in Section 5.5, we summarize
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the contribution of this chapter.

5.2 Background and ‘sample-moment’ connection

The relationship between shapes and moments finds its application in many diverse

fields such as computer tomography, geophysical inversion, thermal imaging, and

pattern recognition [29, 30, 39, 60]. In fact, the general formulation of recovering

shapes from their moments is a highly ill-posed problem [30, 60]. However, it has

been shown that certain classes of shapes such as binary polygons and quadrature

domains are uniquely determined by a finite number of moments [23,60].

Formally, the geometric moments µα,β of order n = (α + β) of a square-

integrable function g(x, y) in the closure Ω ∈ R2 are defined as [39,75]

µα,β =

∫ ∫
Ω

g(x, y) xα yβ dx dy, (5.1)

where α, β ∈ {0, 1, . . . , n}.

Similarly, the complex-moments τα,β of order n = (α+β) of g(x, y) are defined as [1]

τα,β =

∫ ∫
Ω

g(x, y) (x + iy)α (x− iy)β dx dy, (5.2)

where i =
√
−1.

Sometimes, it is convenient to use simple complex-moment τn of order n = (α + β)

as given by [61]

τn =

∫ ∫
Ω

g(x, y) (x + iy)n dx dy. (5.3)

Note that the binomial expansion of (x + iy)n in (5.3) makes it possible to retrieve
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an nth order complex-moment τn from the geometric moments µα,β of order n using:

τn =
n∑

β=0

(
n

β

)
iβ µα,β, with α = n− β. (5.4)

Moreover, one can also compute weighted complex-moments τ
′′
n from the simple

complex-moment τn [61]. For instance, the complex-moment with weight n(n − 1)

is given by τ
′′
n = n(n− 1)τn−2, ∀n ≥ 2, where τ

′′
0 = τ

′′
1 = 0.

Now going back to the 2-D sampling setup of Figure 3.3, assume that

we observe a sampled version of g(x, y), that is, we observe samples sj,k =

〈g(x, y), ϕ(x/Tx − j, y/Ty − k)〉, where the kernel ϕ(x, y) can reproduce polynomials

up to degree n along x and y directions. From the polynomial reproduction property

of kernel ϕ(x, y), we know that it is possible to retrieve the moments µα,β of g(x, y)

from its samples sj,k (recall Equation (3.23)). In fact, we have that

µα,β =

∫ ∫
Ω

g(x, y) xα yβ dx dy

(a)
=

∫ ∫
Ω

g(x, y)
∑

j

∑
k

cα,β
j,k ϕ(x− j, y − k) dx dy

=
∑

j

∑
k

cα,β
j,k

∫ ∫
Ω

g(x, y) ϕ(x− j, y − k) dx dy

(b)
=

∑
j

∑
k

cα,β
j,k sj,k, ∀ α, β ∈ {0, 1, . . . , n}, (5.5)

where the equalities (a) and (b) are obtained from (3.21) and (3.20) respectively.

Note that cα,β
j,k are the pre-computed coefficients associated with the kernel ϕ(x, y).

This result is at the heart of our sampling schemes. With the ‘sample-

moment’ connection (5.5) at our disposal, we now begin with the global

reconstruction of bilevel-convex polygons.
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5.3 Global reconstruction of bilevel polygons

Assume that g(x, y) is a bilevel, simply connected, and non-degenerate polygon

with N corner points (vertices) zl, l = 1, 2, . . . , N in the complex plane z = x + iy.

Moreover, the polygon g(x, y) is regular and resides in a bounded closure Ω. For

such a polygon, Davis’s theorem [23] states that

∫ ∫
Ω

g(x, y) h(2)(z) dx dy =
N∑

l=1

%lh(zl), (5.6)

where h(z) is an analytic function with h(2)(z) being its second order derivative, and

%l are complex coefficients.

The above result suggests that the integral of the second derivative of any analytic

function h(z) over a bilevel polygonal region g(x, y) (enclosed within the closure

Ω) in the complex plane depends on the values of h(z) at the corner points zl.

This means that the double integral in (5.6) is accurately determined by a finite

number of complex values. In particular, Davis showed that any triangular region

in the complex plane is uniquely determined by its complex-moments τn up to order

3 [23,61].

Later, Milanfar et al. [61] re-examined Davis’s result (5.6) by employing a

specific analytic function h(z) = zn. To be more precise, assuming that the corner

points zl (with z∗l as their complex conjugates) are arranged in counter-clockwise

direction in order of increasing index and satisfy modulo operation zl = zl+N , it was

shown that the complex coefficients %l are given by [61]:

%l =
i

2

(
z∗l−1 − z∗l
zl−1 − zl

−
z∗l − z∗l+1

zl − zl+1

)
, l = 1, 2, . . . , N,

and that
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N∑
l=1

%l (zl)
n =

∫ ∫
Ω

g(x, y) h(2)(z) dx dy

=

∫ ∫
Ω

g(x, y)(zn)(2) dx dy

= n(n− 1)

∫ ∫
Ω

g(x, y)(x + iy)n−2 dx dy

= n(n− 1)τn−2

= τ
′′

n ∀n ≥ 2, (5.7)

where τ
′′
n is the complex-moment with weight n(n− 1), and is related to the simple

complex-moment τn of (5.3) by τ
′′
n = n(n − 1)τn−2. Note that τ

′′
0 = τ

′′
1 = 0 by

definition.

It is clear to see that the weighted complex-moments τ
′′
n =

∑N
l=1(zl)

n %l are rep-

resented by the linear combinations of exponentials (zl)
n. Since the moments

τ
′′
n =

∑N
l=1(zl)

n%l are in the form of powersum series (3.9), one can employ the

annihilating filter method for retrieving the N corner points zl of g(x, y) using the

2N complex-moments τ
′′
n , n = 0, 1, . . . 2N − 1 (recall Section 3.2.4 for annihilating

filter method). Moreover, if the bilevel polygon g(x, y) is convex, it can be uniquely

reconstructed from the retrieved corner points zl [61]. Hence, it follows that a

bilevel and convex polygon with N corner points is uniquely reconstructed from

the weighted complex-moments τ
′′
n up to order 2N − 1 or from the simple complex-

moments τn up to order 2N − 3 [61]. In fact, it is straightforward to compute the

simple complex-moments τn up to order 2N − 3 from the geometric moments µα,β

of order 2N − 3 by using (5.4).

Let us now return to the sampling setup of Figure 3.3, where the input signal

g(x, y) is a bilevel and convex polygon with N corner points zl = (xl + iyl), l =

1, 2, . . . , N . Clearly, g(x, y) is an FRI signal with degrees of freedom equal to 2N . For

this setup, what we observe is a set of samples sj,k = 〈g(x, y), ϕ(x/Tx − j, y/Ty − k)〉

produced by the kernel ϕ(x, y) that can reproduce polynomials up to degree 2N − 3
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along x and y directions. The polynomial reproduction property of the kernel ϕ(x, y)

allows us to obtain the moments µα,β of the polygon g(x, y) from its samples sj,k

(recall the ‘sample-moment’ connection given in (5.5)). In particular, since the

kernel can reproduce polynomials up to degree 2N − 3, it allows us to obtain the

geometric moments µα,β of order 2N −3 using: µα,β =
∑

j

∑
k cα,β

j,k sj,k, where α, β =

{0, 1, . . . , 2N − 3}. The knowledge of µα,β then allows us to retrieve the simple

complex-moments τn up to order 2N−3 using: τn =
∑n

β=0

(
n
β

)
iβ µα,β with α = n−β

and n = 0, 1, . . . , 2N − 3. Finally, we obtain the weighted complex-moments τ
′′
n

of (5.7) using: τ
′′
n = n(n− 1)τn−2 for all n = 2, 3, . . . , 2N − 1 and τ

′′
0 = τ

′′
1 = 0.

We use these 2N complex-moments τ
′′
n in the annihilating filter method to retrieve

the corner points zl of the polygon g(x, y). To be more precise, we design a filter An

such that the convolution τ
′′
n ∗An = 0. The N complex roots of the annihilating filter

A(z) give the positions of the N corner points zl (in x+ iy form). The assumption of

convexity and bilevelness1 guarantees a unique reconstruction of the polygon g(x, y).

Consequently, the global scheme for sampling bilevel-convex polygon is summarized

as follows

Proposition 3. A bilevel and convex polygon g(x, y) with N corner points is

uniquely determined from the samples sj,k = 〈g(x, y), ϕ(x/Tx − j, y/Ty − k)〉 pro-

vided that the sampling kernel ϕ(x, y) can reproduce polynomials up to degree 2N−3

along both the Cartesian axes x and y.

The simulation result, for a simple scenario, is shown in Figure 5.1. The

original bilevel image g(x, y) with three convex polygons: triangle, rectangle,

and pentagon is shown in Figure 5.1(a). We observe the set of samples sj,k =

〈g(x, y), ϕ(x/Tx − j, y/Ty − k)〉 produced by the inner product between g(x, y) and

sampling kernel ϕ(x, y) as shown in part (b). In this case, the sampling kernel is a

B-spline β7(x, y) of order 7 that can reproduce polynomials up to degree seven.

1If the convex polygon is large enough such that there is at least one sample enclosed within
the polygonal boundary then we can reconstruct its amplitude as well.
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Figure 5.1: Simulation result for the global reconstruction of bilevel-
convex polygons: (a) The original image g(x, y) consists of three bilevel
polygons: triangle, rectangle, and pentagon. (b) The set of samples sj,k =
〈g(x, y), ϕ(x/Tx − j, y/Ty − k)〉 produced by the inner product between g(x, y) and
sampling kernel ϕ(x, y). In this case, the sampling kernels is a B-spline β7(x, y)
of order 7 that can reproduce polynomials up to degree seven. (c) The sam-
pled version of the pentagon. (d) Original pentagon and reconstructed corner
points (marked with +).

Moreover, we assume that the polygons are sufficiently apart, and for that reason,

the samples of one polygon do not overlap with the samples of the other polygons.

This makes it possible to reconstruct each polygon independently. In fact, for each

set of polygonal samples, we first compute the complex-moments τ
′′
n of appropriate

order (i.e. 2N moments for N corner points) and then run the annihilating filter

method to retrieve the corner points. For instance, a set of samples around the

pentagon is given in part (c). The reconstructed corner points of the pentagon are

indicated with + in part (d) and the reconstruction is exact to machine precision.

The computational cost of this global reconstruction is influenced by the cost
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of root finding and is of the order of O(N3), where N is the number of corner points.

5.4 2-D Diracs and Quadrature domains

In addition to bilevel polygons, there are other 2-D signals that are uniquely de-

termined from a finite number of moments. We now investigate sampling of such

signals.

2-D Diracs:

Assume that g(x, y) is a set of N 2-D Diracs in the compact closure Ω, that is,

g(x, y) =
∑N

l=1 al δ(x − xl, y − yl), where al denotes amplitudes and zl = xl + iyl

denotes positions. Notice that g(x, y) is not regular in Ω, and therefore, in this

case, we cannot apply Davis’s theorem. However, it is straightforward to obtain the

simple complex-moments τn of g(x, y) as given by

τn =

∫ ∫
Ω

g(x, y) (x + iy)n dx dy

=

∫ ∫
Ω

N∑
l=1

alδ(x− xl, y − yl)(x + iy)n dx dy

=
N∑

l=1

al (zl)
n, where zl = xl + iyl. (5.8)

Note that the moments τn =
∑N

l=1 al (zl)
n in above formulation are in form of

powersum series (3.9). Therefore, by using the annihilating filter method, one can

accurately retrieve the amplitudes al and positions zl of N Diracs from the 2N

complex-moments τn, n = 0, 1, . . . , 2N − 1. The knowledge of degrees of freedom

(i.e. amplitudes al and positions zl) is sufficient for the unique reconstruction of

g(x, y).

From the sampling point of view, we observe the Diracs g(x, y) in form of its
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samples sj,k = 〈g(x, y), ϕ(x/Tx − j, y/Ty − k)〉, where ϕ(x, y) is the sampling kernel

that can reproduce polynomials up to degree 2N − 1. From the samples sj,k, we

compute the moments τn of (5.8) by using the identities (5.4) and (5.5). To be more

precise, the moments are given by

τn =
n∑

β=0

(
n

β

)
iβ
∑

j

∑
k

cα,β
j,k sj,k with α = n− β, (5.9)

where n = {0, 1, . . . , 2N − 1}, and using these moments we reconstruct the original

Diracs. Therefore, we have the following result:

Proposition 4. A set of N 2-D Diracs g(x, y) =
∑N

l=1 al δ(x−xl, y−yl) is uniquely

determined from its samples sj,k = 〈g(x, y), ϕ(x/Tx − j, y/Ty − k)〉 provided that the

sampling kernel ϕ(x, y) can reproduce polynomials up to degree 2N − 1 along both

the Cartesian axes x and y.

A simple simulation result for the global reconstruction of 2-D Diracs is il-

lustrated in Figure 5.2. The input image g(x, y) of size 3711 × 3711 pixels shown

in Figure 5.2(b) contains N = 3 Diracs with amplitudes 10, 20, and 30 located at

pixel positions (1100, 1300), (1500, 900), and (1500, 1300) respectively. The Diracs

are filtered by the B-spline sampling kernel ϕ(x, y) = β5(x, y) (given in part (a)) of

support 379× 379 pixels that can reproduce polynomials up to degree 2N − 1 = 5.

The filtered (or low resolution) version g(x, y) ∗ϕ(−x/Tx,−y/Ty) of part (c) is then

uniformly sampled (with Tx = Ty = 63 pixels) to obtain the set of 50× 50 samples

sj,k = 〈g(x, y), ϕ(x/Tx − j, y/Ty − k)〉 as shown in part (d) (excluding some bound-

ary samples). Since the B-spline kernel can reproduce polynomials up to degree

2N − 1 = 5, the samples sj,k are used to compute the simple complex-moments τn

up to order 2N − 1 = 5. By using these moments in the annihilating filter method,

the Diracs are reconstructed and the reconstruction is exact to machine precision.
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Figure 5.2: Global reconstruction of 2-D Diracs: (a) The B-spline sampling
kernel ϕ(x, y) = β5(x, y) of support 379 × 379 pixels that can reproduce
polynomials up to degree 2N − 1 = 5. (b) The input image g(x, y) of size
3711× 3711 pixels contains N = 3 Diracs with amplitudes 10, 20, and 30 located
at pixel positions (1100, 1300), (1500, 900), and (1500, 1300) respectively. (c) The
low resolution version g(x, y) ∗ ϕ(−x/Tx,−y/Ty) of the Diracs obtained by the
convolution of g(x, y) with the smoothing kernel ϕ(x, y). (d) The set 50× 50 of
samples sj,k = 〈g(x, y), ϕ(x/Tx − j, y/Ty − k)〉 obtained by the uniform sampling of
the low resolution version of part (c), where the sampling intervals Tx = Ty = 63
pixels.

Quadrature domains:

Finally, we consider a class of algebraic planar domains in the complex plane z =

x + iy. Formally, a quadrature domain is a bounded planar domain of closure Ω

such that for any regular analytic function h(z) in Ω, it satisfies [60]

∫ ∫
Ω

h(z) dx dy =
m∑

k=1

νk−1∑
j=0

ak,j h(j)(γk), (5.10)

where γk ∈ Ω are the quadrature nodes, and for 1 ≤ k ≤ m N = ν1 + ν2 + . . . +

νm is the order of the domain. The simplest example of the quadrature domain

is the circle of radius r centered at the origin satisfying the quadrature identity:∫ ∫
Ω

h(z) dx dy = πr2h(0).
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In general, a quadrature domain Ω has real algebraic boundary determined by

a polynomial equation: Ω = {z ∈ C; P (z, z∗) < 0}, where P (z, z∗) is a polynomial

of degree less than or equal to N in each variable, and N denotes the order of the

quadrature domain [60]. Note that the circles and ellipses are the first order quadra-

ture domain (with N = 1), where as cardioids and lemniscates are the domains with

N = 2. For further details on quadrature domains, we refer to [34,69].

In particular, consider a quadrature domain g(x, y) ⊂ Ω whose boundary is

expressed by the algebraic equation

P (x, y) = P (z, z∗) = 0, with x =
z + z∗

2
, y =

z − z∗

2i
. (5.11)

In [34], it was shown that the domain g(x, y) satisfying (5.11) can be uniquely

reconstructed from its finite complex-moments τα,β, α, β ≤ N as defined in (5.2),

where N is the order of the domain g(x, y). The exact reconstruction algorithm

for such domain is given in [60]. The reconstruction algorithm involves complex

mapping of the moments τα,β, α, β ≤ N into other complex numbers bα,β, α, β ≤ N

using the following form of exponential transform

1− exp

(
− 1

π

∞∑
α=0

∞∑
β=0

τα,β Xα+1 Y β+1

)
=

∞∑
α=0

∞∑
β=0

bα,β Xα+1 Y β+1, (5.12)

where X and Y are unknowns.

The new complex numbers bα,β are then used to derive the annihilating filter

A[l], l = 0, 1, . . . , N such that its coefficients produce a polynomial

p(z) = A[0]zN + A[1]zN−1 + . . . + A[N ]z0. (5.13)
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The polynomial p(z), in turn, is used to form the product

R(z, z∗) = p(z) (p(z))∗
(

1−
N−1∑
α=0

N−1∑
β=0

bα,β
1

zα+1 (z∗)β+1

)
. (5.14)

Finally, the product R(z, z∗) is manipulated to identify a polynomial P (z, z∗) that

does not contain negative powers of z or z∗, that is,

R(z, z∗) = P (z, z∗) +O(z−1, (z∗)−1). (5.15)

The equation P (z, z∗) = 0 represents the minimal defining equation for the bound-

ary of the quadrature domain g(x, y) characterized by Equation (5.11).

Moreover, any bounded planar domain can be approximated by a sequence of

quadrature domains, and therefore can be approximated by a finite number of

moments [60].

Since it is possible to obtain the moments of g(x, y) from its samples sj,k,

Proposition 3 can be extended for the quadrature domain of order N provided that

the sampling kernel ϕ(x, y) can reproduce polynomials at least up to degree N along

x and y directions. In support of the sampling assertion and for the sake of clarity,

we now present a simulations result for the simplest form of quadrature domain, that

is, the circle. In particular, we show that it is possible to reconstruct a circle from its

samples using a finite number of moments. However, rather than using the involved

reconstruction algorithm discussed above, we retrieve the free parameters (center

and radius) from the first order moments directly [39, 75]. This is explained in the

following discussion. A similar approach can be used for the case of ellipses [43,65].

As shown in Figure 5.3(a), consider a bilevel circle g(x, y) with center

zc = xc + iyc and radius r in the complex plane. Note that the number of

degrees of freedom for a circle in the complex plane is two (i.e. zc and r).

Since the circle is a quadrature domain of order 1, we use the sampling kernel
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Figure 5.3: Reconstruction of the circle: (a) The original circle g(x, y) with
center (xc, yc) and radius r. (b) The samples sj,k = 〈g(x, y), ϕ(x/Tx − j, y/Ty − k)〉
obtained by the kernel ϕ(x, y) that can reproduce polynomials up to degree
one.

ϕ(x, y) that can reproduce polynomials up to degree one to obtain the samples

sj,k = 〈g(x, y), ϕ(x/Tx − j, y/Ty − k)〉 as shown in Figure 5.3(b). From the samples

sj,k, using the sample-moment connection (5.4) and (5.5), we compute the simple

complex-moments

τ0 =

∫ ∫
Ω

g(x, y)(x + iy)0 dxdy =
∑

j

∑
k

c0,0
j,ksj,k =

∑
j

∑
k

sj,k, (5.16)

and

τ1 =

∫ ∫
Ω

g(x, y)(x + iy)1 dxdy =
∑

j

∑
k

(
c1,0
j,k + ic0,1

j,k

)
sj,k, (5.17)

where c0,0
j,k = 1 for the normalized kernel ϕ(x, y), and c1,0

j,k and c0,1
j,k are the pre-

computed coefficients responsible for reproducing polynomials of degree 1 along x

and y directions respectively.

The knowledge of the moments τ0 and τ1 allows us to retrieve the center zc = xc+iyc

and the radius r from the identities:

zc = xc + iyc =
τ1

τ0

, and πr2 = τ0. (5.18)

It is straightforward to see that the parameters zc and r are sufficient for the unique
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reconstruction of g(x, y).

5.5 Summary

In this chapter, we presented global reconstruction schemes for bilevel-convex

polygons, 2-D Diracs, and quadrature domains. In the beginning, we provided a

background on various types of moments and have drawn a sample-moment con-

nection which we have utilized throughout the chapter. First, we showed that it is

possible to reconstruct bilevel and convex polygons from their samples. In particular,

we achieved the global reconstruction of the polygon by retrieving all the corner

points at the same time using complex-moments and annihilating filter method. We

then extended the global reconstruction scheme of bilevel-convex polygons to 2-D

Diracs and quadrature domains.
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Chapter 6

Radon Transform based Approach

6.1 Introduction

Before we present the last approach, we would like to mention that there are many

interesting papers in computed tomography (CT) that exploit Radon transform for

parametric and nonparametric estimation of multidimensional shapes and contours

from noisy tomographic data (e.g. [32, 61, 72]). In particular, the approach of [72]

considers estimation of polygonal and polyhedral corner points in Bayesian frame-

work, where as the focus of [32] is on information-theoretic issues in nonparametric

boundary estimation.

In this chapter, we utilize the link between Radon transform projections and

moments [61] as well as the connection between directional derivatives and differ-

ences (refer to Appendix A) for sampling more general FRI signals. In particular,

we show that, in addition to polygons and Diracs, it is possible to reconstruct 2-D

polynomials with convex polygonal boundaries from their samples. The key fea-

ture of the proposed scheme is an annihilating-filter-based-back-projection (AFBP)

algorithm.



6.2 Reconstruction of 2-D polynomials 91

6.2 Reconstruction of 2-D polynomials

Radon transform:

Let g(x, y) be a 2-D square-integrable function within a compact region Ω over the

Euclidean space R2. Then, the conventional Radon transform projection of g(x, y)

is defined as [24] (see Figure 6.1(b)):

Rg(t, θ) =

∫ ∫
Ω

g(x, y) δ (t− x cos(θ)− y sin(θ)) dx dy, (6.1)

where the projection angle θ ∈ [0, π), and lt,θ = δ (t− x cos(θ)− y sin(θ)) is a

straight line of integration at an angle θ + π
2

with the x-axis and at a radial distance

t away from the origin. The projections Rg(t, θ) are square integrable 1-D functions

with finite support. The original function g(x, y) can again be reconstructed from

its projections Rg(t, θ) using filtered back-projection (FBP) reconstruction [24].

Annihilating filter based back-projection (AFBP) algorithm:

Consider a specific case, where g(x, y) is a 2-D polynomial of total degree R − 1

inside a convex polygonal closure Ω with N corner points. To be more precise,

g(x, y) =
∑R−1

j=0

∑j
k=0 bj,k xkyj−k [9, 10]. In this case, we observe that

(a) Each projection Rg(t, θ) is a 1-D piecewise polynomial of maximum degree R

and with at most N discontinuities. Therefore, the (R + 1)-order deriva-

tive of such projection leads to a stream of at most N differentiated Diracs:

d
(R+1)
t [Rg(t, θ)] = dR+1

dtR+1 [Rg(t, θ)] =
∑N−1

i=0

∑R
r=0 ai,rδ

(r)(t− ti), where ti are lo-

cations and ai,r are weights. It means that d
(R+1)
t [Rg(t, θ)] represents at most

N Diracs with N̂ = N(R + 1) weights [27, 28]. A simple illustration of this

scenario is given in Figure 6.1.
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Figure 6.1: AFBP reconstruction: The polynomial g(x, y) of degree R − 1 = 0
inside a convex polygon with N = 5 corner points (i.e. bilevel pentagon) is
shown in part (a). The Radon transform projection Rg(t, θ) along an angle
θ = 0 is shown in part (b). Note that Rg(ti, θ) is a single-valued line-integral at
an arbitrary t = ti within the support of Rg(t, θ). Since this projection Rg(t, θ)
is a piecewise polynomial of degree R = 1, the R + 1 = 2-nd order derivative
can decompose it in a stream of differentiated Diracs d

(2)
t [Rg(t, θ)] as shown in

part (d). In this case d
(2)
t [Rg(t, θ)] represents N Diracs with N̂ = N weights.
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(b) Moreover, following the connection between Radon projections and

moments [61], the moments µn, n ∈ N of the differentiated Diracs

d
(R+1)
t [Rg(t, θ)] are obtained by

µn =

∫
d

(R+1)
t [Rg(t, θ)] t

n dt

=

∫ ∫
Ω

d
(R+1)
θ [g(x, y)] (x cos(θ) + y sin(θ))n dx dy

=
n∑

β=0

(
n

β

)
cosα(θ) sinβ(θ) µα,β, with α = n− β, (6.2)

where µα,β =
∫ ∫

Ω
dR+1

dθR+1 [g(x, y)] xαyβ dxdy are the geometric moments of the

polynomial g(x, y) differentiated R + 1 times along the direction θ.

(c) Since the projection d
(R+1)
t [Rg(t, θ)] consists of at most N Diracs with N̂ =

N(R + 1) weights, the 2N̂ = 2N(R + 1) moments µn, n = 0, 1, . . . , 2N(R +

1) − 1 are sufficient to retrieve the locations ti and weights ai,r of the Diracs

d
(R+1)
t [Rg(t, θ)] (and therefore the piecewise polynomial signal Rg(t, θ) itself)

using annihilating filter method [27,28].

(d) By iterating the steps (a), (b), and (c) over N + 1 distinct projection angles

θl, l = 0, 1, . . . , N , it is possible to retrieve the N + 1 sets of Dirac locations ti.

By back-projecting the N + 1 sets of Dirac locations ti, the N corner points

of the convex closure Ω are uniquely determined, and therefore, the closure of

g(x, y) itself [11, 54].

(e) From the knowledge of closure Ω and Radon projection Rg(t, θ), we have access

to the single-valued line-integral Rg(ti, θ) for an arbitrary t = ti within the

support of Rg(t, θ) (see Figure 6.1(b)). In fact, Rg(ti, θ) =
∫

lti,θ
g(x, y) dl =∫

lti,θ

(∑R−1
j=0

∑j
k=0 bj,k xkyj−k

)
dl is an equation with R̂ = R(R+1)/2 unknown

coefficients bj,k. Clearly, the coefficients bj,k can be determined by solving a

system of R̂ such equations (i.e. a generalized Vandemonde system). Fortu-
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nately, the theory of bivariate polynomial interpolation [9,10] assures a unique

solution if at least R distinct projections Rg(t, θ) are known.1 Since N + 1

projections are required for recovering the closure Ω, and R projections are

required for determining the coefficients bj,k, we are sure that max(N + 1, R)

projections are sufficient for the unique reconstruction of g(x, y).

To summarize, if g(x, y) is a 2-D polynomial of degree R−1 inside a convex polygonal

closure Ω with N corner points, then from the moments µn we can retrieve the

projection Rg(t, θ) and from max(N + 1, R) such projections we can retrieve the

polygonal closure Ω first and the coefficients bj,k next. Notice that the crucial part

of above reconstruction is the recovery of corner points. Since the retrieval of corner

points is based on annihilating filter, we denote the proposed reconstruction as:

annihilating filter based back-projection (AFBP) algorithm.

Equipped with the Radon-moment connection (6.2) and the AFBP algorithm,

it is possible to show that many FRI signals such as 2-D polynomials with con-

vex polygonal boundaries, 2-D Diracs, and bilevel-convex polygons 2 are perfectly

reconstructed from their samples. Moreover, since the Radon transform is multi-

dimensional, the AFBP algorithm can be extended for Diracs and bilevel-convex

polytopes in higher dimensions (i.e. in 3-D and above). However, for simplicity, we

concentrate on sampling of 2-D polynomials with convex polygonal boundaries in

the following discussion.

Sampling result:

Assume that g(x, y) =
∑R−1

j=0

∑j
k=0 bj,k xkyj−k is a 2-D polynomial of degree

R − 1 with at most R̂ coefficients bj,k inside a convex polygonal closure Ω

1 In fact, R projections Rg(t, θ) are exploited to obtain R̂ = R(R + 1)/2 line-integrals Rg(ti, θ)
using arithmetic progression [9]. It is straightforward to obtain a unique (but suboptimal) solution
by directly using R̂ distinct projections Rg(t, θ) [35].

2 In many cases, AFBP algorithm can also be tailored for bilevel-convex polygons with convex
polygonal voids.
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with N corner points. We observe the samples sj,k of g(x, y) given by sj,k =

〈g(x, y), ϕ(x/Tx − j, y/Ty − k)〉, where ϕ(x, y) is the sampling kernel that can

reproduce polynomials up to certain degree n along x and y directions.

Recall that in order to retrieve the corner points of the closure Ω, we need

to compute the moments µn of the differentiated projections d
(R+1)
t [Rg(t, θ)] from

the moments µα,β of the differentiated polynomial d
(R+1)
θ [g(x, y)] as given in (6.2).

Nevertheless, from lattice theory, it is possible to show that there exists a direction

vector ~v = [vx, vy] along a chosen projection angle θ = tan−1( vy

vx
), vx, vy ∈ Z such that

the discrete domain directional differences D(R+1)
θ [sj,k] and the continuous domain

directional derivatives d
(R+1)
θ [g(x, y)] are related by (see Appendix A):

s′j,k = D(R+1)
θ [sj,k] =

〈
d

(R+1)
θ [g(x, y)] , ζθ(x/Tx − j, y/Ty − k)

〉
. (6.3)

The new set of samples s′j,k = D(R+1)
θ [sj,k], obtained by the (R+1)-order directional

differences on the original set of samples sj,k, is equivalent to one produced by the in-

ner products between the differentiated polynomial d
(R+1)
θ [g(x, y)] and the modified

(directional) kernel ζθ(x, y). The kernel ζθ(x, y) is produced by R + 1 successive

convolutions of zero-th order 1-D B-spline β0
θ (x, y) with the original sampling kernel

ϕ(x, y) in the direction of ~v. More precisely, ζθ(x, y) = |v|(R+1)
(
ϕ(x, y) ∗ βR

θ (x, y)
)
.

It is important to note that the directional kernel also satisfies the polynomial

reproduction property of (3.21). In particular, if the sampling kernel ϕ(x, y) can

reproduce polynomials up to degree n along x and y, then the directional kernel

ζθ(x, y) can reproduce polynomials up to degree n + R + 1 along θ.

In the light of link (6.3), Equations (6.2) and (5.5) enable us to obtain the

moments µn of the projection d
(R+1)
t [Rg(t, θ)] using linear combinations of samples
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s′j,k and coefficients cα,β
j,k as given by

µn =
n∑

β=0

(
n

β

)
cosα(θ) sinβ(θ)

(∑
j

∑
k

s′j,k cα,β
j,k

)
, with α = n− β, (6.4)

where cα,β
j,k are the coefficients associated with the kernel ζθ(x, y).

Since d
(R+1)
t [Rg(t, θ)] consists of at most N Diracs with N̂ = N(R + 1) weights,

the directional kernel ζθ(x, y) must allow us to retrieve 2N̂ = 2N(R + 1) moments

µn, n = 0, 1, . . . , 2N(R + 1)− 1, and thus it follows that

n + R + 1 ≥ 2N(R + 1)− 1 ⇒ n ≥ (2N − 1)(R + 1)− 1. (6.5)

Therefore, a sampling kernel ϕ(x, y) that reproduces polynomial of degree n (with n

satisfying (6.5)) allows us to obtain the 2N(R+1) moments of each of max(N +1, R)

differentiated projections d
(R+1)
t [Rg(t, θl)] , l = 0, 1, . . . , max(N + 1, R)− 1 from the

samples s′j,k = D(R+1)
θl

[sj,k] using (6.4). Then following the steps (c) and (d) of the

AFBP algorithm, we retrieve the convex polygonal closure Ω of g(x, y). Finally,

from step (e), we determine the coefficients bj,k of the polynomial of degree R − 1

inside Ω, and thus the 2-D polynomial signal g(x, y) itself. In summary, we have:

Proposition 5. Assume that g(x, y) is a 2-D polynomial of total degree R − 1

inside a convex polygonal closure Ω with N corner points. A set of samples

sj,k = 〈g(x, y), ϕ(x/Tx − j, y/Ty − k)〉 is sufficient to determine g(x, y) uniquely,

if the sampling kernel ϕ(x, y) can reproduce polynomials at least up to degree

(2N − 1)(R + 1)− 1 along both the coordinate axes x and y.

For the sake of completeness, we now show with a pseudo-algorithm

how the reconstruction scheme operates. Given a valid set of samples sj,k =

〈g(x, y), ϕ(x/Tx − j, y/Ty − k)〉, the reconstruction of 2-D polynomial g(x, y) =∑R−1
j=0

∑j
k=0 bj,k xkyj−k of degree R − 1 inside the convex polygonal closure Ω with

N corner points follows the following steps:
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Algorithm 3. AFBP reconstruction of 2-D polynomial

1. For a chosen angle θ = tan−1( vy

vx
), vx, vy ∈ Z, compute the difference s′j,k =

D(R+1)
θ [sj,k] given by (6.3).

2. Using (6.4), compute the first 2N(R + 1) moments µn, n = 0, 1, . . . , 2N(R +

1)− 1 of the projection d
(R+1)
t [Rg(t, θ)] from the new set of samples s′j,k [recall

step (b) of the AFBP algorithm on page 93].

3. From moments µn, using annihilating filter method, obtain the exact locations

ti, i = 1, 2, . . . , N of the N Diracs of d
(R+1)
t [Rg(t, θ)], and thus, the projection

Rg(t, θ) itself [step (c)].

4. Iterate steps 1, 2, and 3 for N +1 distinct projection angles θl, l = 0, 1, . . . , N ,

and then by back-projecting N +1 sets of Dirac locations ti, retrieve the convex

polygonal closure Ω of g(x, y) [step (d)].

5. From the knowledge of the closure Ω and Radon projections Rg(t, θl), l =

0, 1, . . . , R − 1, determine the coefficients bj,k of the polynomial g(x, y) by

solving a system of R̂ linear equations [step (e)].

6. Since the closure Ω and the coefficients bj,k are known, it is straightforward to

reconstruct the 2-D polynomial g(x, y).

A simple simulation result is shown in Figure 6.2. In this case, g(x, y) is a

2-D polynomial of degree R − 1 = 0 (i.e. g(x, y) = b0,0) inside a convex polygonal

closure Ω with N = 3 corner points. In part (a), the original polynomial g(x, y) is

shown with the reconstructed corner points (marked with +). The samples sj,k =

〈g(x, y), ϕ(x/Tx − j, y/Ty − k)〉 are shown in part (b), where ϕ(x, y) is a B-spline

sampling kernel that can reproduce polynomials up to degree n = (2N − 1)(R +

1)−1 = 9 along x and y directions, and therefore, the associated directional kernels

ζθl
(x, y),with l = 0, 1, 2, 3 can reproduce polynomials up to degree n + R + 1 = 11

along θl. The sets of differentiated samples s′j,k = D2
θl

[sj,k] along four distinct angles
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Figure 6.2: Simulation: The original 2-D polynomial g(x, y) of degree R− 1 = 0
and the reconstructed corner points A, B, and C (marked with +) are given
in part (a). The set of samples sj,k produced by the B-spline sampling kernel
β9(x, y) is given in part (b). The N + 1 = 4 sets of differentiated samples
s′j,k = D

(2)
θ [sj,k] along four angles θ = 0, π

4 , tan−1(2), and π
2 are given in parts (c),

(d), (e), and (f). The AFBP reconstruction of the corner points A, B, and C
is illustrated in part (g).
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θ0 = 0, θ1 = π
4
, θ2 = tan−1(2) and θ3 = π

2
are shown in parts (c), (d), (e), and (f).

The AFBP reconstruction of the corner points (marked with ◦) using N + 1 = 4

back-projections is shown in part (g), which is exact to machine precision. These

corner points can uniquely recover the convex closure Ω. Form the knowledge of Ω

and any one projection Rg(t, θl), we can uniquely retrieve the coefficient b0,0, and

thus the polynomial g(x, y) itself.

In this case, the benefit of reconstructing more general signals comes with

the price of higher computational cost. For instance, for a 2-D polynomial of degree

R− 1 = 0 inside a convex polygon with N corner points, the computational cost is

of the order of O(N4). This is due to the fact that the cost of finding the roots of

each Radon projection is O(N3) and we need O(N) projections to reconstruct the

polynomial.

6.3 Real image experiment

Finally, we close this chapter by presenting an illustrative experiment3 that demon-

strates the potential of corner reconstruction algorithm for real images (e.g. a ‘Re-

mote control’ image of Figure 6.3(a) in this case). In this experiment, we model a

simple ‘Remote control’ object as a four-sided bilevel polygon (rectangle) with its

sides parallel to coordinate axis x and y. The aim is to retrieve the corner points

of the object with high precision from a small set of samples by employing AFBP

algorithm. The experiment and the results are discussed as follows:

As shown in Figure 6.3(a), the ‘Remote control’ image (with illumina-

tion/background variations) of size 2592 × 1944 pixels (along x and y directions

respectively) is sampled using B-spline kernel β3(x, y) of order 3 that can reproduce

polynomials up to degree 3 along both x and y directions, where the size (support)

3This experiment was realized during undergraduate project supervision [19].
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Figure 6.3: A real image experiment: As shown in part (a), the original
’Remote control’ image g(x, y) of size 2592×1944 pixels (along x and y directions
respectively) is sampled using B-spline kernel β3(x, y) of order 3 and support
190 × 190 pixels. The raw set of 41 × 31 samples sj,k shown in part (b) is used
to compute the 1st-order difference samples s

′
j,k = D(1)

θ [sj,k] along θ = 0 and π
2

as given in parts (c) and (d). Parts (e) and (f) contain the modified samples
sT
j,k = Thresh(s

′
j,k) after properly thresholding the raw difference samples s

′
j,k.

Finally, the back-projection reconstruction of the corner points is given in
part (g) and is super-imposed on the original image in part (h). The accuracy
of the reconstruction is within ±5 pixels.
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of the kernel β3(x, y) is 190× 190 pixels. The raw set of 41× 31 samples sj,k shown

in part (b) is used to compute the 1st-order difference samples s
′

j,k = D(1)
θ [sj,k] along

θ = 0 and π
2

as given in parts (c) and (d). The difference samples s
′

j,k = D(1)
θ [sj,k] are

appropriately thresholded to reduce the effect of background/illumination variations

and of noise, and are shown in parts (e) and (f). These modified samples are then

used in the AFBP algorithm to achieve the back-projection reconstruction of the

corner points as shown in part (g), which is super-imposed on the original image in

part (h). The accuracy of the reconstruction is within ±5 pixels.

6.4 Summary

In this chapter, we have proposed a global scheme for sampling more general FRI sig-

nals such as 2-D polynomials with convex polygonal boundaries. The reconstruction

is based on annihilating filter based back projection (AFBP) algorithm which uti-

lizes: 1) The link between Radon projections and moments [61]; 2) The results of

1-D and 2-D FRI sampling [28,54]; 3) The connection between directional derivatives

and differences (given in Appendix A); and 4) The theory of bivariate polynomial

interpolation [9, 10].

In particular, by using the AFBP algorithm, we showed that it is possible

to obtain the moments of the Radon projections (and thus the projections them-

selves) from the samples of 2-D polynomial signal. From a finite number of such

moments and projections, we then retrieve the convex polygonal closure first and

the polynomial inside the closure next. Moreover, since the Radon transform is

multidimensional, it is straightforward to extend the AFBP algorithms for Diracs

and bilevel-convex polytopes in higher dimensions (i.e. in 3-D and above). Finally,

we conducted a real image experiment and demonstrated an application of AFBP

algorithm in reconstructing the corner points of a simple ‘Remote control’ object
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with high precision.
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Chapter 7

Conclusion

We have considered the problem of sampling and perfect reconstruction of

nonbandlimited signals known as signals with finite rate of innovation (FRI) [28,87].

In this thesis, we have extended the results of 1-D FRI sampling [28] into higher

dimensions using kernels that reproduce polynomials. In particular, we offer local

and global reconstruction approaches with varying complexities as summarized in

Table 7.1.

Table 7.1: Comparative summary

Approach Signals Merits Computational

cost

Limitations

Directional

derivatives

(Local)

Planar polygons. Local

reconstruction,

local

complexity.

O(N) for

polygon with N
corner points.

Finite

orientations of

polygonal sides,

i.e. tan(θ) ∈ Q.
Complex-moments

(Global)

Convex and

bilevel polygons,

Quadrature domains

(e.g. ellipses,

cardioids), and 2-D

Diracs.

Reconstruction

of corner

points with

any coordinates.

O(N3) for

bilevel-convex

polygon with N
corner points.

Numerically

unstable for

closely spaced

corner points.

Tomographic

(Global)

2-D polynomials

with polygonal

boundaries, n-D
Diracs, and n-D
bilevel-convex

polytopes.

Multidimensional. O(N4) for 2-D

polynomial of

degree R − 1 = 0
inside convex

polygon with N
corner points.

Numerical

instability

in computation

of higher order

moments with

directional

kernels.

In the following section, we briefly summarize the content of each chapter and recall

the key results. In Section 7.2, we highlight some issues that arise in applying this
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work to real problems. Finally, we close the thesis by highlighting the future scope

in Section 7.3.

7.1 Thesis summary

In the introduction, we explained the importance of sampling and identified the

problem of sampling multidimensional FRI signals. We provided the background

on sampling by reviewing the classical and FRI sampling theories in Chapters 2

and 3 respectively. In particular, in Section 3.3, we established the multidimensional

framework for sampling higher dimensional FRI signals. Using the multidimensional

framework of Section 3.3, we then presented novel local (Directional derivatives

based) and global (Complex-moments and Radon transform based) reconstruction

approaches in Chapters 4, 5, and 6 for various FRI signals such as planar and bilevel-

convex polygons, 2-D Diracs, quadrature domains (e.g. circles, ellipses, cardioids),

2-D polynomials with convex polygonal boundaries, and higher dimensional Diracs

and bilevel-convex polytopes. In particular:

In Chapter 4, we proposed local reconstruction algorithms for sampling 2-

D Diracs and planar polygons. By utilizing the connection between directional

derivatives and differences, we showed that it is possible to perfectly reconstruct

planar polygons from their samples using lower order kernels that satisfy partition

of unity. The directional derivatives based approach has local complexity irrespective

of the number of corner points in a given polygon.

In Chapter 5, we presented a complex-moments based approach for the global

reconstruction of convex-bilevel polygons, 2-D Diracs, and quadrature domains that

are capable of approximating arbitrary planar shapes with closed boundaries. Im-

plicitly, we provided a sampling perspective to the ‘shape from moments method’

of [30, 60].



7.2 Discussion on practical issues 105

In Chapter 6, we developed an ‘annihilating filter based back-projection’

(AFBP) algorithm which utilizes the link between Radon transform projections and

moments [61]. By using the AFBP algorithm, we achieved the global reconstruction

of more general FRI signals such as 2-D polynomials with convex polygonal bound-

aries. Since the Radon transform is multidimensional, it is straightforward to extend

the AFBP algorithm for sampling bilevel-convex polytopes and Diracs in higher

dimensions (i.e. in 3-D and above). Finally, a simple experiment using a real image

is presented to highlight the potential of this approach for corner reconstruction.

7.2 Discussion on practical issues

The core of this thesis is fundamental in nature and proposes novel theoretical results

in sampling and perfect reconstruction of multidimensional FRI signals. However,

it is usual for practicing engineers and developers to see how practical issues such as

noise, model mismatch, and numerical instability (or ill-conditioning) of algorithms

affect the ideal performance. These issues are discussed as follows:

• Noise: The proposed reconstruction algorithms rely on continuous (and un-

perturbed) moments computed from the observed samples. If we consider the

case when the observed samples are corrupted by the noise,1 it is clear that

the computed moments are perturbed2 and hence proposed algorithms cannot

achieve perfect reconstruction. However, the accuracy of reconstruction is in-

fluenced by the amount of noise and selected reconstruction approach. For in-

stance, in case of ‘directional derivatives based approach’, where reconstruction

algorithm is local (i.e. one corner point at a time) and uses low order

moments (i.e. 0th and 1st), the effect of noise is less severe. On the con-

1The usual noise model is additive, white, and Gaussian. The input FRI signal is assumed to
be noiseless and the noise is introduced by the acquisition device at the time of sampling.

2The higher order moments are more affected.
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trary, in case of ‘complex-moments’ and ‘Radon transform’ based approaches,

the reconstruction algorithms are global, which use higher order moments and

thus are more sensitive to noise.

In principle, one can employ the techniques used in array processing [30] and

spectral estimation [73] for estimating a signal from its noisy moments. More-

over, the recent result in 1-D FRI sampling shows that the effect of noise in

computed moments can be reduced by oversampling and averaging [28]. On

average, oversampling by a factor M reduces the MSE of the reconstruction

by factor M [28]. It may be interesting to explore similar method for the

multidimensional case.

• Model mismatch: The proposed reconstruction schemes are parametric and

model based. In other words, the input signals (e.g. polygons) and sampling

kernels (e.g. B-splines) have predefined characteristics. Now, if one considers

an arbitrary input signal that is not an FRI signal or a sampling kernel that

does not reproduce polynomials then a range of model mismatches are possible.

In such situation, proposed algorithms do not provide perfect reconstruction.

However, the reconstruction error depends on the degree of model mismatch,

and in many cases, the error can be reduced by best-fit solutions. For in-

stance, in case of ‘directional derivatives based approach’, the polygonal sides

oriented at non-rational tangents may be approximated by the nearest rational

tangents. Similarly, the problem of sampling a bounded smooth shape using

Gaussian kernel may be approximated to the problem of sampling multiple-

sided-polygon (or an appropriate quadrature domain) using a higher order

B-spline and considering a complex-moments based approach. In general, the

proposed reconstruction schemes consider signals (or shapes) that have con-

stant background (or are prior segmented) and are under uniform illumination.

However, it is possible to reduce the effect of background and illumination vari-
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ations by thresholding the background samples as highlighted in the real image

experiment of Section 6.3.

• Numerical instability : The numerical precision, in computation of quantities

such as coefficients cα,β
j,k associated with the sampling kernel or in compu-

tation of (geometric or complex) moments,3 plays important role in perfect

reconstruction. The local approaches (that require first order moments) are nu-

merically more stable. However, the global reconstruction algorithms are based

on annihilating filter method that involves matrix inversion and root finding

components. These components are numerically unstable in some cases, for

example, in reconstructing polygons with large number of corner points or sets

of closely spaced Diracs. Moreover, such cases require computation of higher

order moments that are vulnerable to numerical precision. A particular exam-

ple is the computation of higher order moments using directional kernels in the

Radon transform based approach. One can reduce the numerical instability by

centering the signal at the origin, normalizing the moments, and by employing

more stable algorithms such as matrix pencils based method of [33].

Finally, note that some of the above mentioned issues (e.g. noise and numerical in-

stability) are rather general practical issues that affect many signal/image processing

techniques.

7.3 Future scope

• The sampling results of this thesis have been promisingly explored for image

super-resolution [2] and for distributed sampling and compression in camera sensor

networks [31]. In particular, the novel work on image super-resolution algorithms [2]

3Recall Equations (3.21) and (3.23) for instance.
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aims is to achieve a high resolution image of the real-scene from several low reso-

lution images (or sampled versions) using low cost multiple cameras. By modeling

the camera lens with polynomial reproducing kernels (e.g. cubic B-splines), one can

achieve enough continuous moments so that the disparity between different camera

images can be retrieved accurately up to affine transformations. Thus, the contin-

uous moments allow accurate super-resolved registration of various low resolution

camera images. Moreover, the moment based approach of registration eliminates

the traditional stages of control point extraction and correspondence which are less

efficient while working with very low resolution images. Further details of the mo-

ment based super-resolution algorithm that operates on real images is given in [2].

Similarly, the work on distributed sampling and compression in the network of dig-

ital cameras exploits the FRI sampling schemes for deriving minimum number of

cameras for perfect reconstruction of the scene as well as in establishing novel rate-

distortion behavior using practical distributed coding approach [31].

Finally, the proposed schemes might find their applications in vectored graphics,

computer animations, and machine vision.

• While working with the real images, it might be useful to concentrate on se-

lected regions of interest (ROI). The ROI consideration is potentially suitable for

local feature extraction and reconstruction. In particular, it would be of inter-

est to investigate the use of the corner (or orientation) reconstruction algorithms

for super-resolution feature extraction with applications in modern photogramme-

try/videogrammetry.

• From an academic point of view, we notice that the complex-moments based ap-

proach is limited to 2-D FRI signals. This is due to the fact that the annihilating

filter method in the existing form cannot annihilate hyper-complex numbers (e.g.

quaternions [36] in 3-D and 4-D). It would be interesting to see whether it is possible

to design the annihilating filter for hyper-complex numbers.
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• Since the objective of this research was to develop novel sampling and perfect

reconstruction schemes, the issues of noise, model mismatch, and numerical insta-

bility are still open for further investigation- in particular, for quantitative analysis.

• Finally, discovering other higher dimensional FRI signals and developing more ef-

ficient transformations and reconstruction algorithms remains a challenging sparse

representation problem.4

4One such attempt in different context is compressive sampling [18] (or compressed sensing [26])
which concentrates on sparse representation of discrete/digital signals through random measure-
ments and probabilistic reconstruction algorithms.
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Appendix A

Directional kernel

Consider the set of samples sj,k = 〈g(x, y), ϕ(x/Tx − j, y/Ty − k〉 of the given planar

polygon g(x, y), where ϕ(x, y) is the sampling kernel, and let the sampling intervals

Tx = Ty = 1.

Connecting directional differences to the derivatives: Equation (4.8)

Now, as illustrated in Figure 4.4, apply a pair of finite differences D(1)
θ1

[·] and

D(1)
θ2

[·] on samples sj,k, first along the lattice direction ~v1 = [v1,1, v1,2] and then along

~v2 = [v2,1, v2,2]. The pair of directional differences D(1)
θ1

[·] and D(1)
θ2

[·] modifies the

original set of samples sj,k into a new set of samples s′j,k as given by

s′j,k = D(1)
θ2

[
D(1)

θ1
[sj,k]

]
=

{
s(j+v2,1+v1,1),(k+v2,2+v1,2) − s(j+v2,1),(k+v2,2)

}
−
{
s(j+v1,1),(k+v1,2) − sj,k

}
=

〈
g(x, y),{
ϕ
(
x− (j + v2,1 + v1,1), y − (k + v2,2 + v1,2)

)
− ϕ

(
x− (j + v2,1), y − (k + v2,2)

)}
−
{

ϕ
(
x− (j + v1,1), y − (k + v1,2)

)
− ϕ

(
x− j, y − k

)}〉
.
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Using Parseval’s identity, it follows that

s′j,k =
1

4π2

〈
ĝ(ωx, ωy), ϕ̂(ωx, ωy) · e−i(jωx+kωy) ·({

e−i
(
(v2,1+v1,1)ωx+(v2,2+v1,2)ωy

)
− e−i

(
v2,1ωx+v2,2ωy

)}
−
{

e−i
(

v1,1ωx+v1,2ωy

)
− 1
})〉

=
1

4π2

〈
ĝ(ωx, ωy), ϕ̂(ωx, ωy) · e−i(jωx+kωy) ·(

e−i
(

v1,1ωx+v1,2ωy

)
− 1
)
·
(
e−i
(

v2,1ωx+v2,2ωy

)
− 1
)〉

,

where i =
√
−1, and ĝ(ωx, ωy) and ϕ̂(ωx, ωy) are the 2-D Fourier transforms of

g(x, y) and ϕ(x, y) respectively. After multiplying and dividing by the same factors,

we have that

s′j,k =
1

4π2

〈
ĝ(ωx, ωy),

ϕ̂(ωx, ωy) · e−i(jωx+kωy) ·
(
i
(
v1,1ωx + v1,2ωy

))
·
(
i
(
v2,1ωx + v2,2ωy

))
·(

e−i
(

v1,1ωx+v1,2ωy

)
− 1
)(

e−i
(

v2,1ωx+v2,2ωy

)
− 1
)

(
i
(
v1,1ωx + v1,2ωy

))(
i
(
v2,1ωx + v2,2ωy

))
〉

. (A.1)

Now recall that β̂0(ω) = 1−e−iωt

iω
is a frequency domain representation of the zero-th

order 1-D B-spline β0(t). This representation can be extended for 1-D directional

B-spline in 2-D plane and is given by

β̂0
θ1

(ωx, ωy) =

(
1− e−i(v1,1ωx+v1,2ωy)

)
i(v1,1ωx + v1,2ωy)

, β̂0
θ2

(ωx, ωy) =

(
1− e−i(v2,1ωx+v2,2ωy)

)
i(v2,1ωx + v2,2ωy)

, (A.2)

where β̂0
θ1

and β̂0
θ2

are the 1-D B-splines of order zero in 2-D plane along orientations

θ1 = tan−1
(v1,2

v1,1

)
and θ2 = tan−1

(v2,2

v2,1

)
respectively. For simplicity, let

ξ̂θ1,θ2(ωx, ωy) = ϕ̂(ωx, ωy) β̂0
θ1

(ωx, ωy) β̂0
θ2

(ωx, ωy). (A.3)

Replacing (A.2) and (A.3) in the formulation of (A.1) and then multiplying and
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dividing by a factor |v1||v2|, we have

s′j,k =
|v1||v2|

4π2

〈
ĝ(ωx, ωy), ξ̂θ1,θ2(ωx, ωy) · e−i(jωx+kωy) ·

{
(iωx)

2v1,1 v2,1

|v1||v2|
+ (iωx)(iωy)

(v1,1 v2,2 + v1,2 v2,1)

|v1||v2|
+ (iωy)

2v1,2 v2,2

|v1||v2|

}〉
.

Using the identities v1,1 = |v1| cos(θ1), v1,2 = |v1| sin(θ1), v2,1 = |v2| cos(θ2), v2,2 =

|v2| sin(θ2), |det(VΛ)| = |v1,1 v2,2− v1,2 v2,1|, and |v1||v2| = |det(VΛ)|
| sin(θ2−θ1)| in the righthand

side of the above equation, we have

s′j,k =
|det(VΛ)|

4π2| sin(θ2 − θ1)|

〈
ĝ(ωx, ωy), ξ̂θ1,θ2(ωx, ωy) · e−i(jωx+kωy) ·

{
(iωx)

2 cos(θ1) cos(θ2) + (iωx)(jωy) sin(θ1 + θ2) + (iωy)
2 sin(θ1) sin(θ2)

}〉
.

Using Parseval’s identity, we have

s′j,k =
|det(VΛ)|

| sin(θ2 − θ1)|

〈
g(x, y),

{
cos(θ1) cos(θ2)

∂2

∂x2

(
ξθ1,θ2(x− j, y − k)

)
+

sin(θ1 + θ2)
∂

∂y

( ∂

∂x

(
ξθ1,θ2(x− j, y − k)

))
+

sin(θ1) sin(θ2)
∂2

∂y2

(
ξθ1,θ2(x− j, y − k)

)}〉
.

Comparing the righthand side of the above equation with the continuous directional

derivative model given in Equation (4.7), it follows that

s′j,k
|det(VΛ)|

=
1

| sin(θ2 − θ1)|

〈
g(x, y),

∂

∂θ2

( ∂

∂θ1

(
ξθ1,θ2(x− j, y − k)

))〉
(a)
=

〈
∂

∂θ2

( ∂

∂θ1

(
g(x, y)

))
,

1

| sin(θ2 − θ1)|
ξθ1,θ2(x− j, y − k)

〉

=

〈
∂

∂θ2

( ∂

∂θ1

(
g(x, y)

))
, ζθ1,θ2(x− j, y − k)

〉
, (A.4)
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where equality (a) is obtained using integration by parts, and ζθ1,θ2(x, y) =

ξθ1,θ2
(x,y)

| sin(θ2−θ1)| =

(
ϕ(x,y)∗β0

θ1
(x,y)
)
∗β0

θ2
(x,y)

| sin(θ2−θ1)| is the modified directional kernel.
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