
Imperial College London
Department of Electrical and Electronic Engineering

Communications and Signal Processing Group

Sampling and Reconstruction of Finite Rate
of Innovation Signals with Applications in
Neuroscience and Sparse Representation

Jon Oñativia Bravo

2015

Supervised by Prof Pier Luigi Dragotti

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy of Imperial College London





Declaration

I declare that this thesis, and the research it contains, is the product of my own work under
the guidance of my thesis supervisor Prof Pier Luigi Dragotti. Any ideas or quotations
from the work of other people, published or otherwise, are fully acknowledged in accordance
with the standard referencing practices of the discipline. The material of this thesis has
not been submitted for any degree at any other academic or professional institution.

Jon Oñativia Bravo

3





Zuri, nire maitia, Nekane.

5





Copyright Declaration

The copyright of this thesis rests with the author and is made available under a Creative
Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to
copy, distribute or transmit the thesis on the condition that they attribute it, that they do
not use it for commercial purposes and that they do not alter, transform or build upon it.
For any reuse or redistribution, researchers must make clear to others the licence terms of
this work.

7





Abstract

The sampling process is the link between continuous physical quantities and discrete se-
quences. Classical sampling theory restricts perfect reconstruction to bandlimited signals.
During the past decade, a new theory is emerging which overcomes this limitation by de-
scribing a signal in terms of its innovation parameters per unit of time. This theory is
known as Finite Rate of Innovation (FRI). This thesis extends the current theory with
applications in neuroscience and sparse vector recovery.

First, we propose an algorithm to sample and reconstruct streams of Diracs. The FRI
literature has only focused on the sampling of periodic or finite duration signals. The
proposed method is able to reconstruct infinite streams where no clear separation between
consecutive bursts can be established. We sequentially process the discrete samples and
output locations and amplitudes of the Diracs in real-time. The algorithm achieves perfect
reconstruction in the noiseless scenario. An extension for the noisy case is also proposed.
Simulation results show that this novel method is able to reconstruct the original stream
of Diracs very accurately even in very noisy situations.

Next, we present a novel application of the FRI theory to infer the spiking activity
of individual neurones. Fluorescence sequences are obtained from two-photon imaging
of calcium signals in regions of the brain of in vivo mice. Action potentials are well
characterised by decaying exponentials in this type of data. A novel method to sample
and reconstruct streams of decaying exponentials is developed which is directly applied
to fluorescence sequences to infer the timing of action potentials. The algorithm is tested
with both real and surrogate data and outperforms state of the art methods for spike train
inference from calcium imaging data

Finally, we analyse the problem of finding the sparse representation of a finite-dimensional
signal in an overcomplete dictionary. Recently, a new algorithm, ProSparse, has been pre-
sented which solves the sparse representation problem using Prony’s method. We provide a
probabilistic analysis of the algorithm and demonstrate that it presents a phase transition
behaviour. We validate the analysis with extensive simulations and compare the perfor-
mance of this approach against another sparse recovery algorithm: Basis Pursuit. We also
propose a variation of ProSparse for the noisy scenario. This approach outperforms state
of the art algorithms in a number of different scenarios.
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Chapter 1.

Introduction

Real-world signals are usually continuous-time and in order to process them with digital
systems we first have to discretise them, this is known as the sampling process. Sampling
devices from the twentieth century have been driven by the theory developed by Nyquist,
Shannon, Whittaker and Kotelnikov. This approach imposes a limit on the type of signals
that can be acquired based on their frequency content, making perfect reconstruction only
achievable for bandlimited signals. Figure 1.1 is a schematic illustration of a system that
samples a continuous-time signal x(t). The filter h(t) accounts for the modifications that
the analogue signal suffers during the process. Samples are acquired every T seconds
leading to the discrete-time signal y[n]. One obvious question that arises at this point is
whether it is possible to recover x(t) from the only knowledge of the sequence of samples
y[n].

h(t)

t=nT
x(t) y[n]

Figure 1.1.: From continuous-time to discrete-time.

The sampling process inherently produces a loss of information, and if x(t) is an arbitrary
signal we will never be able to reconstruct it from the samples y[n]. However, depending
on the nature of the signal x(t), the properties of the filter h(t), and the sampling period
T , there are some situations where the original signal can be recovered. The traditional
approach in the signal processing literature has been to consider signals that are limited in
frequency, that is, signals that do not present rapid variations. If the sampling rate 1/T is
at least twice the bandwidth of the signal, then the signal can be perfectly reconstructed
from its samples. In the past decade, a new sampling theory has emerged where signals
are characterised in terms of their degrees of freedom. In this new framework, we say that
a signal can be recovered when it presents a limited number of degrees of freedom. The
terminology rate of innovation is coined to refer to the degrees of freedom of the signal per
unit of time. This new sampling theory considers that the signals that can be perfectly
reconstructed are those that present a finite rate of innovation. Thus, the name of this
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Chapter 1. Introduction

new framework: finite rate of innovation (FRI) theory.
The idea that a signal can be reconstructed from some partial information can also be

applied to the entirely discrete-time and finite-dimensional case. In this context, the signal
that we are after is a finite-dimensional vector x of size L and we consider that we have
access to a vector y of size N , with N < L. In other words, we want to reconstruct L
samples x[0], x[1], . . . , x[L − 1] that form the vector x from the knowledge of N samples
y[0], y[1], . . . , y[N − 1]. We further assume that the two vectors have a linear relationship
that can be written in matricial form as y = Dx, where D is a matrix of size N × L. In
general, this is an underdetermined linear system of equations that cannot be solved since
N < L. We thus have to impose some conditions on the vector x. Similarly to the finite
rate of innovation concept for the continuous-time case, here we consider sparse vectors,
that is, vectors that have a small number of non-zero elements. Depending on the number
of non-zero elements and the specific structure of the matrix D, there are cases where x
can be perfectly reconstructed from the observed vector y. This setup has a wide range
of applications that include signal compression, denoising or separation. Moreover, if we
consider that a two-dimensional image can be represented by a one-dimensional vector,
for instance, by stacking all the pixel values in a single column, this framework is also
extensible to image processing applications such as image super-resolution or inpainting,
as well as image compression or denoising.

In this thesis we analyse and propose some novel algorithms and theoretical results in
the context of these two scenarios:

1. the recovery of a continuous-time signal x(t) from some discrete-time samples y[n],

2. and, the reconstruction of a finite-dimensional vector x of size L from an observed
vector y of size N with N < L.

In particular, in the continuous-time case, we analyse the problem where the signal x(t)

corresponds to the activity of a neuron and the goal is to estimate when this neuron
has fired an action potential. In the finite-dimensional case, we consider the problem of
estimating vectors that correspond to a mixture of sinusoidal and spike elements.

1.1. Original contribution and outline of the thesis

The work presented in this thesis contains the contribution of several persons. The first
page of each chapter contains a footnote acknowledging the particular contribution of the
persons that collaborated to obtain the results that are described.

In Chapter 3 we present a sequential algorithm to sample and reconstruct streaming
trains of Diracs. In the noiseless scenario, the algorithm is able to achieve perfect recon-
struction, even if there is no clear separation between consecutive burst of Diracs. An
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extension is also proposed for the noisy scenario that achieves a very high success rate
with very few false positives.

Chapter 4 is a novel application of the FRI theory to neuroscience. We extend the
sequential algorithm of the previous chapter to the case where the streaming signal is a
train of decaying exponentials. This model is applied to fluorescence sequences obtained
from the measurement of calcium ion concentration in neurones of in vivo mice. This
algorithm operates in real-time and accurately estimates the spiking activity of neurones
outperforming state of the art algorithms.

In Chapter 5 we move to the finite-dimensional scenario. We present a probabilistic
analysis of the performance of a sparse reconstruction algorithm. We characterise a sharp
phase transition behaviour of the algorithm which allows us to predict the performance of
the algorithm depending on the sparsity level of the vector to be estimated.

Chapter 6 is a novel extension of the algorithm presented in the previous chapter for
the noisy scenario. The proposed method is faster than state of the art algorithms and
presents better performances in a number of scenarios.

1.2. Reproducible research

The results presented in this thesis are illustrated with figures and numerical experiments
that should be reproducible. The text in this manuscript contains theoretical descriptions
and diagrams that should allow the readers to implement their own versions of the dif-
ferent algorithms. However, a full description of all the parameters and details that are
involved in these complex computations is not always possible. In order to guarantee the
reproducibility of all the results, the code and data that has been used to generate the
figures and experiments is publicly available online. Please follow this link to obtain the
files: https://github.com/jonativia/thesis (click on the button Download ZIP on the
lower right corner of the website to obtain all the content in a single compressed file).

This address corresponds to a public repository of the source code. Simulations and
figures have been generated with MATLAB scripts, and when needed, data is stored in
.mat files. The README.md text file describes which scripts reproduce the figures and the
results of the thesis. The source code is organised in different folders that follow the
chapters structure of the thesis, and in general, there is one script per figure. In addition
to the scripts that reproduce the figures, there are a number of other source files that
contain MATLAB functions that are used within these scripts. The publicly available
source code corresponds to the contents that have already been published. The source
code to reproduce the results of unpublished work is available upon request.
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Chapter 2.

From classical sampling theory to sampling
signals with finite rate of innovation

The world is analogue but computation is digital. The process that bridges this gap is
known as the sampling process and has been instrumental to the digital revolution of the
past 60 years. Without the sampling process we could not convert real-life signals in digi-
tal form and without digital samples we could not use computers for digital computation.
The sampling process is also ubiquitous in that it is present in any mobile phone or digital
camera but also in sophisticated medical applications like magnetic resonance imaging or
ultrasound machines, in sensor networks and in digital microscopes just to name a few ex-
amples. Our understanding of the conversion of continuous-time signal in discrete form has
been heavily influenced by the Shannon-Whittaker-Kotelnikov sampling theorems [13–16].
This approach restricts the class of signals that can be sampled and perfectly reconstructed
to bandlimited signals. During the past few years, a new framework has emerged that over-
comes these limitations and extends sampling theory to a broader class of signals named
signals with Finite Rate of Innovation (FRI) [17]. Instead of characterising a signal by its
frequency content, FRI theory describes it in terms of the innovation parameters per unit
of time. As we shall see, bandlimited signals are a subset of this more general definition.
In this chapter, we first revisit the classical sampling theory. We then introduce the theory
of FRI signals and show how to sample and perfectly reconstruct classes of band unlimited
signals. We also present extensions to this framework that deal with the noisy scenario,
that is, when samples are corrupted with noise. In this case perfect reconstruction cannot
be achieved, however, robust algorithms exist that perform reliable reconstructions of the
original signal.

2.1. Classical sampling theory

The conversion of real world signals into streams of samples that can be stored or transmit-
ted has been central to communications and signal processing. Under certain conditions,
a continuous-time signal can be completely reconstructed from the knowledge of its values
at points equally spaced in time. This surprising property follows from a result that is
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referred to as the sampling theorem [18, Chapter 7]. In 1949, Shannon published one of
his seminal papers, “Communications in the presence of noise” [13] where he stated the
following sampling theorem:

Theorem 1 (Shannon, 1949 [13]). If a function x(t) contains no frequencies higher than
W cycles per second, it is completely determined by giving its ordinates at a series of points
spaced 1/2W seconds apart.

As mentioned in the paper, this was common knowledge in the communication art.
He called the quantity 1/2W the Nyquist interval in recognition to Nyquist’s work in
communication theory during the 1920s [19, 20]. If we denote by fs = 2W the sampling
rate measured in Hz, the Nyquist interval T = 1/fs corresponds to the sampling period
in seconds. In the ideal bandlimited case, we can obtain an unambiguous discrete-time
representation of the signal by just storing its values every T seconds:

x[n] = x(t)|t=nT . (2.1)

From samples x[n], we can perfectly reconstruct the original signal as follows:

x(t) =
∞∑

n=−∞
x[n] sinc

(
t

T
− n

)
, (2.2)

where sinc(t)
def
= sin(πt)/πt is the cardinal sine function or sinc function. In his paper,

Shannon provides a concise proof for the sampling theorem in terms of a Fourier series
expansion. If the signal is bandlimited, we can write its time domain expression in terms
of the inverse Fourier transform as follows

x(t) =
1

2π

∫ +2πW

−2πW
x̂(ω) eiωt dω, (2.3)

where we have used the fact that the Fourier transform of x(t) is zero outside [−2πW,+2πW ]

since x(t) is, by hypothesis, bandlimited. If we sample the analogue signal at regular in-
tervals of time T = 1/2W we obtain

x[n] = x(t)|t=n/2W =
1

2π

∫ +2πW

−2πW
x̂(ω) eiωn/2W dω

(a)
=

∫ W

−W
x̂(2πν) ei 2πνn

2W dν, (2.4)

where (a) follows from the change of variable ω = 2πν. This expression corresponds to
the Fourier series coefficients of a 2W -periodic version of x̂(2πν) up to a scaling factor
2W . The sequence x[n] is therefore a sufficient representation of x̂(ω) in the interval
ω ∈ [−2πW,+2πW ], and therefore also determines completely the function x(t). Figure 2.1
illustrates the sampling and reconstruction process of a bandlimited signal.

This approach does not apply strictly to real world signals since it is well known that for
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Figure 2.1.: The bandlimited signal x(t) in (a) is sampled at regular intervals of time (black dots) leading
to the discrete-time signal x[n]. The reconstruction is performed using the sinc function
(b). The signal is reconstructed by weighting shifted versions of the sinc function with the
discrete-time signal x[n] (c).

a function to be bandlimited it must have infinite time duration [21]. Moreover, in practice
Shannon’s reconstruction formula is rarely used due to the slow decay of the sinc function.
If x(t) is not bandlimited, prefiltering with an ideal lowpass filter (h(t) = sinc(t/T )) and
reconstructing applying (2.2) provides a lowpass approximation of x(t). This is the best
approximation in the least squares sense of x(t) in the space spanned by {sinc(t/T−n)}n∈Z
[16]. However, it is an approximation, and perfect reconstruction of the original signal is
not achieved. Moreover, the ideal lowpass filter is not realisable. The acquisition process
where the continuous-time signal is prefiltered before taking samples at regular intervals
of time T is illustrated in Figure 2.2. We refer the reader to Unser’s paper [16] for a
comprehensive review of classical sampling theory with a Hilbert space formulation. A
different interpretation of the classical sampling theory is to say that the space of all
bandlimited functions is spanned by {sinc(t/T − n)}n∈Z.

x(t) h(t) = ϕ(−t/T )

t=nT

y[n]
y(t)

Figure 2.2.: Acquisition process. The continuous-time signal x(t) is filtered with h(t) in the analogue
domain and then sampled at regular intervals of time t = nT . If the filter can be expressed
as h(t) = ϕ(−t/T ) the discrete-time samples are given by y[n] = 〈x(t), ϕ(t/T − n)〉.

2.1.1. The aliasing effect

The last step of the acquisition process, that is, sampling the continuous-time signal y(t) at
regular intervals of time T , can also be modelled by multiplying y(t) with an impulse-train
signal p(t) =

∑+∞
n=−∞ δ(t− nT ) [18]:

yp(t) = y(t) p(t) =

+∞∑
n=−∞

y(nT ) δ(t− nT ). (2.5)
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Chapter 2. Classical sampling theory and sampling FRI signals

The Dirac delta function δ(t) is useful in making the transition from real variable functions
to discrete sequences. A Dirac is an idealisation of a pulse whose duration is reduced to
zero (it is equal to zero everywhere except at t = 0) with an integral over the real line
equal to unity. It was introduced by Paul Dirac in the context of theoretical physics to
represent a point mass or a point charge [22]. Strictly speaking it is not a function since
its integral should be equal to zero. However, symbolic calculations with Diracs simplify
notations and are justified by the theory of distributions (see [23, Appendix A.7]). We can
see yp(t) as the continuous-time representation of the discrete-time signal y[n] = y(nT ).
This function is useful to understand what happens in the frequency domain when we
discretise a continuous-time function. The Fourier transform of the impulse-train signal is
given by

p̂(ω) =
2π

T

+∞∑
k=−∞

δ (ω − k ωs) , (2.6)

where ωs = 2πfs = 2π/T . Multiplying two functions in time is equivalent to convolving
their Fourier transforms in the frequency domain and applying a factor of 1/2π. Therefore,

ŷp(ω) =
1

2π
ŷ(ω) ∗ p̂(ω) =

1

T

+∞∑
k=−∞

ŷ (ω − k ωs) . (2.7)

That is, the spectrum of the Dirac train yp(t) is a periodic repetition of ŷ(ω) with period
ωs and scaled by 1/T . If the frequency content of ŷ(ω) is limited to ω ∈ [−W,+W ] and
W < ωs/2, the conditions of the sampling theorem are satisfied, and the original signal can
be recovered by low-pass filtering yp(t), which is equivalent to applying the reconstruction
formula given in (2.2). However, if W > ωs/2 the replicas ŷ (ω − k ωs) overlap and y(t) is
no longer recoverable by lowpass filtering. This effect is referred to as aliasing.

Let y(t) ∈ L2(R) be a finite energy signal and yp(t) be given as in (2.5). The relation
between the discrete-time Fourier transform of the signal y[n] = y(t)|t=nT ,

Y (eiω) = F {y[n]} =
∑
n∈Z

y[n] e−iωn, (2.8)

and the Fourier transform of yp(t), is given by

Y (eiω) = ŷp

(ω
T

)
, (2.9)

since the Fourier transform of yp(t) can also be written as

ŷp(ω) =

∫ +∞

−∞

+∞∑
n=−∞

y[n] δ(t− nT ) e−iωt dt =
+∞∑

n=−∞
y[n] e−iωnT . (2.10)

We assume that the sequence y[n] is of finite energy, that is y[n] ∈ `2(Z), which allows
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2.1. Classical sampling theory

us to swap the order of the summation and the integral in the previous equation without
having convergence issues. It follows that the aliasing effect is directly reflected in the
discrete-time Fourier transform of y[n]:

Y (eiω) = F {y[n]} =
1

T

+∞∑
k=−∞

ŷ

(
ω − 2πk

T

)
. (2.11)

The signal y(t) is obtained by filtering the input signal x(t) with h(t). In the frequency
domain, we have

ŷ(ω) = x̂(ω) ĥ(ω). (2.12)

If the input signal is not limited in frequency to [−W,W ], the aliasing effect can be reduced
having a filter h(t) that attenuates all frequencies |ω| > W . Thus the name of anti-aliasing
filter.

2.1.2. Acquisition process

Consider the typical acquisition process illustrated in Figure 2.2. This is usually modelled
as a filtering stage followed by a sampling stage. The filter accounts for the modifications
that the analogue signal x(t) experiences before being sampled. It may model an anti-
aliasing filter or it might be due to the distortion introduced by the acquisition device,
for example, in the case of a digital camera the distortion due to the lens. If the filter is
expressed in terms of a scaled and time reversed function ϕ(t), we have that filtering signal
x(t) with h(t) = ϕ(−t/T ) and retrieving samples at instants of time t = nT is equivalent
to computing the inner product between x(t) and ϕ(t/T − n). Specifically, the filtered
signal is given by

y(t) = x(t) ∗ h(t) =

∫ +∞

−∞
x(τ)h(t− τ) dτ =

∫ +∞

−∞
x(τ)ϕ

(
− t− τ

T

)
dτ. (2.13)

Moreover, sampling y(t) at regular intervals of time t = nT leads to

y[n] = y(t)|t=nT =

∫ +∞

−∞
x(τ)ϕ

( τ
T
− n

)
dτ =

〈
x(t), ϕ

(
t

T
− n

)〉
. (2.14)

The function ϕ(t) is called the sampling kernel. The classical sampling approach does not
achieve perfect reconstruction of the original signal x(t) unless it is a perfectly bandlimited
signal. However, in the next section we present some classes of non-bandlimited signals
where perfect reconstruction is achievable when the input signal and the sampling kernel
satisfy some conditions.

We tend to forget that the Shannon sampling theorem provides sufficient but not nec-
essary conditions for perfect reconstruction. In other words, this theorem does not claim
that it is not possible to sample and reconstruct classes of non-bandlimited signals. It is
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Chapter 2. Classical sampling theory and sampling FRI signals

therefore incorrect to assume that the bandwidth of a signal is related to its information
content. A first attempt to reconcile these two notions: sampling rate and information
content, was made in 2002 by Vetterli et al. [17]. Here, they introduced a new class of
signals called signals with finite rate of innovation (FRI) which includes both bandlimited
signals as well as non-bandlimited functions. They showed that classes of FRI signals can
be sampled and perfectly reconstructed using an appropriate acquisition device. The liter-
ature presents a variety of scenarios where perfect reconstruction of FRI signals is achieved
with different types of kernels. The sampling scheme presented in Equations (2.13) and
(2.14), and illustrated in Figure 2.2, is therefore extensible to modern sampling schemes
such as FRI theory.

2.2. Signals with Finite Rate of Innovation

Consider now a new class of signals that extend the one in (2.2):

x(t) =
∑
k∈Z

R∑
r=0

ar,k gr(t− tk), (2.15)

where {gr(t)}Rr=0 is a set of known functions. We note that, since gr(t) are known, signals
in (2.15) are uniquely determined by the set of parameters ar,k and tk. We denote these
parameters as degrees of freedom. Let Cx(ta, tb) be a counting function that counts the
number of degrees of freedom in x(t) over the interval [ta, tb). For x(t) defined as in (2.15)
we have that

Cx(ta, tb) = (R+ 2) |{tk ∈ [ta, tb)}| , (2.16)

where |{tk ∈ [ta, tb)}| corresponds to the number of tk that belong to the interval [ta, tb).
In other words, there are R+ 2 degrees of freedom per index k: R+ 1 amplitudes ar,k and
one location tk. We define the rate of innovation ρ as follows [17, 24, 25]:

ρ = lim
τ→∞

1

τ
Cx

(
−τ

2
,+

τ

2

)
. (2.17)

We can now give a proper definition of FRI signals:

Definition 1 (FRI signals [17]). A signal with finite rate of innovation is a signal whose
parametric representation is given in (2.15) and with a finite ρ, as defined in (2.17).

It is of interest to note that bandlimited signals fall under this definition. Let τ be an
odd multiple of the sampling period T , that is, τ = N T for some odd integer N . For a
given time interval [−τ/2,+τ/2], let

gr(t) = sinc

(
t

T
−
(
r − R

2

))
, r = 0, 1, . . . , R, (2.18)
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Figure 2.3.: gr(t) functions from equation (2.18) for r = 0, r = 1 and r = R. These functions cover the
entire temporal interval [−τ/2,+τ/2]. The R parameter is assumed to be even in order to
have a sinc function located at the origin for r = R/2, R/2 replicas of the sinc function in
the negative half of the temporal interval and another R/2 in the positive half.

be the set of R + 1 known functions, where we assume that R is an even integer that
satisfies (R+ 1) = τ/T . This set of functions is illustrated in Figure 2.3 where we can see
that they cover the entire temporal interval of duration τ . The following function

xτ (t) =
R∑
r=0

ar gr(t), (2.19)

has R + 1 degrees of freedom in [−τ/2,+τ/2) due to the unknown amplitudes ar. Note
that in this context we do not have the degree of freedom that corresponds to the temporal
delay tk, and therefore

Cx(−τ/2, τ/2) = R+ 1. (2.20)

If we set ar = x[n]
∣∣
n=(r−R/2)

and make τ tend to infinity, the function xτ (t) coincides with
the expression for bandlimited functions given in (2.2). By considering that R+ 1 = τ/T ,
we have that

ρ = lim
τ→∞

1

τ
(R+ 1) =

1

T
, (2.21)

and conclude that bandlimited functions have a rate of innovation of 1/T . Therefore, one
possible interpretation is that we can reconstruct them because they have a finite rate of
innovation (rather than because they are bandlimited). We can also define a local rate of
innovation with respect to a sliding window:

ρτ (t) =
1

τ
Cx

(
t− τ

2
, t+

τ

2

)
. (2.22)

In this case, we are usually interested in the maximum local rate of innovation:

ρmax(τ) = max
t∈R

ρτ (t). (2.23)
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Note that, for bandlimited functions and provided that τ is equal to a multiple of T , the
local, maximum and global rates of innovation are equal and have a value of 1/T .

2.2.1. Examples of FRI signals

From now on we are going to focus our attention on signals that are not bandlimited
and therefore cannot be sampled and perfectly reconstructed within the classical sampling
framework. Examples of FRI signals which are not bandlimited and that are of interest to
us include

• Stream of pulses: x(t) =
∑

k ak p(t− tk). For instance, stream of decaying exponen-
tials:

x(t) =
∑
k

ak e−(t−tk)/τ 1t≥tk , (2.24)

which are a good fit for calcium transient signals induced by neural activity in two-
photon calcium imaging. Here 1t≥tk is zero for t < tk and 1 otherwise. This is the
type of signal that we are going to deal with in the application of FRI theory in
neuroscience presented in Chapter 4. Figure 2.4(a) and 2.4(b) are examples of such
signals.

• Stream of Diracs (see Figure 2.4(c)):

x(t) =
∑
k

ak δ(t− tk). (2.25)

The Dirac delta function is defined by the effect it has when applied to another
function:

∫ +∞
−∞ δ(t) f(t) dt = f(0). This integral satisfies the same properties as

usual integrals such as change of variables and integration by parts. This allows us
to represent a stream of pulses in terms of a stream of Diracs as follows:∑

k

ak p(t− tk) = p(t) ∗
∑
k

ak δ(t− tk). (2.26)

• Piecewise sinusoidal signals (see Figure 2.4(d)):

x(t) =
∑
k

∑
r

ak,r ei(ωk,rt+ϕk,r) 1[tk,tk+1)(t). (2.27)

This is another example of not bandlimited signal and FRI theory has successfully
been applied to this type of signals in [26].

• Piecewise polynomial signals:

x(t) =
∞∑
k=0

R∑
r=0

ak,r (t− tk)r+, (2.28)
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Figure 2.4.: Examples of signals with FRI. When the shape of the pulse is known the signal depends only
on the amplitude and location of such pulses.

where tr+ = max(t, 0)r. This type of model is particularly interesting when we are
dealing with piecewise smooth signals and is another example of signal that can be
perfectly recovered using FRI theory.

The literature presents different strategies to sample and perfectly reconstruct these
signals. These strategies are based on imposing some conditions on the sampling kernels
and then applying some specific reconstruction algorithms to recover the free parameters.
Next, we present some of the sampling kernels that are used in the FRI theory.

2.3. Sampling kernels

FRI theory shows that it is possible to sample and perfectly reconstruct not bandlimited
signals. In order to achieve this goal, different reconstruction schemes are based on different
sampling kernels. We present here the main ones.

• Infinite support kernels: sinc and Gaussian (hσ(t) = e−t
2/2σ2). The original paper on

FRI theory [17] presents a perfect reconstruction strategy to determine the locations
and amplitudes of a stream of Diracs based on these two kernels. However, these two
kernels have infinite support and this fact leads to reconstruction algorithms that are
potentially unstable.

• Polynomial and exponential reproducing kernels. An extension to the original frame-
work based on kernels that are able to reproduce polynomial and exponential func-
tions was presented in [24]. A kernel ϕ(t) is said to reproduce polynomials of maxi-
mum degree P if, together with its shifted versions, it satisfies∑

n∈Z
cm,n ϕ(t− n) = tm, m = 0, 1, . . . , P. (2.29)

Similarly, a kernel ϕ(t) is said to reproduce exponentials when there exists a linear
combination of ϕ(t) with its integer shifts that reproduces functions of the form eαmt,
that is, ∑

n∈Z
cm,n ϕ(t− n) = eαmt, m = 0, 1, . . . , P. (2.30)
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These kernels normally have compact support. The exponential reproducing kernels
are of particular interest, especially when the parameters αm are purely imaginary.
This leads to the most stable reconstruction schemes in the presence of noise [27].
For this reason, the work in the following sections and chapters focuses mostly on
this type of kernels.

• Rational kernels: Finally, the authors in [24] also extended the FRI framework to
kernels with a rational Fourier transform of the form

ϕ̂(ω) =

∏Q
n=0(iω − bn)∏P
m=0(iω − am)

, Q < P. (2.31)

This class of kernels is quite general and includes, for instance, the transfer function
of any linear electric circuit.

The family of kernels that are able to reproduce a set of functions are of particular
interest since many FRI reconstruction algorithms are based on this property. It is therefore
important to provide a formal definition of this property:

Definition 2 (Reproduction [28]). A family of functions {fn(t)}n∈Z reproduces a function
f(t) if and only if there exists a sequence (cn)n∈Z such that the equality

f(t) =
∑
n∈Z

cn fn(t) (2.32)

holds almost everywhere.

2.3.1. Strang-Fix conditions and splines for polynomial reproduction

The study of functions that are able to reproduce other functions stems from different
areas such as approximation theory in numerical analysis or the finite element method in
engineering. In 1971, Strang and Fix established the conditions that the Fourier transform
of a function has to satisfy in order to reproduce polynomials of order up to P . These are
the so-called Strang-Fix conditions [29]:

Proposition 1 (Strang-Fix conditions). A function ϕ(t) is able to reproduce polynomials,
that is,

tm =
∑
n∈Z

cm,n ϕ(t− n), m = 0, 1, . . . , P, (2.33)

if and only if

ϕ̂(0) 6= 0 and ϕ̂(m)(2π`) = 0 for

` ∈ Z \ {0},

m = 0, 1, . . . , P.
(2.34)
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The superscript (m) stands for the mth derivative of ϕ̂(ω) and for m = 0 we adopt the
following convention: ϕ̂(0)(ω) = ϕ̂(ω).

A versatile family of functions that satisfy these conditions are the basis splines or
B-splines, term that was coined by Schoenberg [30]. In general, splines are piecewise poly-
nomial functions of a certain maximum degree P . The extremal points of the intervals that
define the pieces are called knots. At these knots, the splines also present some degree of
smoothness: they are continuous as well as their derivatives up to order P −1. These func-
tions were developed for mathematical approximation and interpolation and knew a great
success for modelling automobile bodies or smooth surfaces in the aeronautic industry in
the 1950s and 1960s (see Ferguson’s work published while he was at Boeing [31], De Boor’s
work while at General Motors [32] as well as De Casteljau’s work at Citroën and Bézier’s
at Renault which lead to the Bézier curves that are widely used in computer graphics). In
the 1990s polynomial splines became popular in the signal processing community thanks
to their fit within the wavelet framework and their application in image processing [33–35].
B-splines are a type of splines of minimal support for a given degree of smoothness. In
1946, Schoenberg proved that any polynomial spline of degree P with knots at the integers
could be represented as a linear combination of shifted B-splines, thus the name of basis
splines or B-splines [36].

Consider the following function:

β0(t) =

1, 0 ≤ t < 1,

0, otherwise,

F−→ β̂0(ω) =
1− e−iω

iω
. (2.35)

This is the zero order B-spline. It is easy to verify that it satisfies the Strang-Fix conditions
given in (2.34) with P = 0. Hence, β0(t) is able to reproduce zero order polynomials, that
is, constant functions. This is pretty obvious since β0(t) corresponds to a unity width box
function, and therefore, by setting the weights cn applied to each shifted β0(t − n) equal
to the amplitude of the constant function to be reproduced, equation (2.32) is perfectly
satisfied. Higher order B-splines are constructed by convolving recursively lower order
ones, that is,

βP (t) = βP−1(t) ∗ β0(t). (2.36)

Convolving two functions in the time domain corresponds to computing their product in
the frequency domain. This leads to a closed-form expression for the Fourier transform of
the P th order B-spline:

β̂P (ω) = β̂P−1(ω) β̂0(ω) =

(
1− e−iω

iω

)P+1

. (2.37)

We can also verify that this function satisfies the Strang-Fix conditions of order P , and
therefore, βP (t) can reproduce polynomials of order up to P . B-splines of order 0, 1 and
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Figure 2.5.: B-splines of orders P = 0, 1, 2. Note that the support of a B-spline of order P is [0, P + 1].

2 are shown in Figure 2.5. As the order increases, βP (t) is smoother since higher order
derivatives are also continuous. Moreover, it has been shown that the B-splines converge
to a shifted and scaled Gaussian function as P → ∞ [37]. Note that the support of the
B-splines increase with their order. We have that supp(βP (t)) = [0, P + 1], where

supp(f(t))
def
= {t ∈ R : f(t) 6= 0}. (2.38)

Sampling kernels of compact support are of particular interest in our scenario since they
lead to a finite number of non-zero samples y[n] if the continuous-time signal that is being
acquired is also of compact support.

In order to reproduce a specific polynomial tm we have to compute the cm,n coefficients
that correspond to the weights that are applied to the shifted versions of the kernel ϕ(t−n)

(see Equation (2.29)). Note that the index m refers to the polynomial that is reproduced
and the index n to the specific shift of the kernel. The steps to compute these coefficients
are detailed in the Appendix A.1. In practice, the summation in (2.29) is truncated in
order to cover a given temporal interval. The reproduction of the polynomial is thus not
satisfied for the entire real line. However, since the support of the kernel is compact,
there is a temporal region where the reproduction is exact. Figure 2.6 illustrates the
reproduction of polynomials up to order P = 3 with a B-spline of order P = 3. Since the
summation over the index n has been truncated, we can appreciate these border effects
near the beginning and the end of the temporal interval of interest. It can easily be verified
that if we are considering B-splines of support [0, P + 1] and we restrict the summation
in the polynomial reproduction formula to indices n ∈ {n0, n0 + 1, . . . , n0 + N − 1}, the
polynomials are perfectly reproduced in the temporal interval [n0 + P, n0 +N ].

The amplitude of the coefficients cm,n is directly linked to the amplitude of the polyno-
mials in the temporal region of interest, and therefore, become very large when we move
away from the origin. As it will become clear in Section 2.4, these coefficients play a crucial
role in the reconstruction process of a sampled FRI signal. Having cm,n coefficients that
become very large leads to numerical instabilities and this effect penalises heavily the per-
formance of reconstruction algorithms in the presence of noise. It is therefore preferable to
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Figure 2.6.: Polynomial reproduction with B-spline of order P = 3. This function is able to reproduce
polynomials of order up to P = 3. The thin lines represent the shifted and weighted kernels,
the thick line represents their sum and the dashed line the true polynomials. The border
effects are due to the fact that we truncate the summation in (2.29).

consider reproducing functions that are bounded in order to improve performances. This
leads to the family of kernels that are presented in the next subsection: the exponential
reproducing kernels.

2.3.2. Generalised Strang-Fix conditions and splines for exponential
reproduction

The notion of reproduction of functions can also be extended to the exponential case,
that is, we assume that linear combinations of shifted versions of a given function ϕ(t)

are able to reproduce exponential functions as in (2.30). The exponential functions to be
reproduced can have arbitrary complex parameters αm ∈ C, however, we will restrict our
presentation to the purely imaginary case, that is, αm = iωm where ωm ∈ R. Besides
simplifying derivations, having purely imaginary parameters leads to the most resilient to
noise FRI reconstruction schemes.

Strang-Fix conditions can be extended to the exponential case leading to the generalised
Strang-Fix conditions [28, 38]. Here, we provide a formulation that was presented by
Urigüen et al. in [27] and is more suited to our context:

Proposition 2 (Generalised Strang-Fix conditions). A function ϕ(t) is able to reproduce
exponential polynomials, that is,

tr eiωmt =
∑
n∈Z

cm,n,r ϕ(t− n), (2.39)

if and only if
ϕ̂(ωm) 6= 0 and ϕ̂(r)(ωm + 2π`) = 0, (2.40)

for ` ∈ Z \ {0}, r = 0, 1, . . . , Rm and m = 0, 1, . . . , P .

The parameters R0, R1, . . . , RP , are some positive integers. If we restrict to the case
where all Rm = 0, we obtain the conditions that a kernel has to satisfy to reproduce purely
exponential functions as in (2.30). The proof follows from considering a function ψ(t) that
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Figure 2.7.: Absolute value of the Fourier transform of zero order E-splines given by (2.41). If the
parameter α is equal to zero, the E-spline corresponds to the zero order B-spline and the
Fourier transform corresponds to a sinc function. For α = iω0 purely imaginary, the Fourier
transform of the E-spline is a shifted version of the sinc function.

satisfies the Strang-Fix conditions for the polynomial case and by multiplying this function
by eiωmt. This condition can easily be extended to the more general case where α ∈ C by
imposing conditions similar to (2.40) to the bilateral Laplace transform of ϕ(t). A direct
consequence of the generalised Strang-Fix conditions is that distinct ωm parameters have
to satisfy ωn − ωm 6= 2π`, ` ∈ Z. If this condition is not satisfied the zeros introduced by
one of the parameters ωm in ϕ̂(ωm + 2π`) will make the condition ϕ̂(ωn) 6= 0 fail for the
other parameter ωn.

Similarly to the polynomial case, there exists a family of functions that originate from
spline theory that are well suited for exponential reproduction, these are the exponential
B-splines [39, 40] or E-splines [24]. Consider the following function:

βα(t) =

eαt, 0 ≤ t < 1,

0, otherwise,

F−→ β̂α(ω) =
1− eα−iω

iω − α
. (2.41)

This function satisfies the generalised Strang-Fix conditions, and therefore, is able to re-
produce the exponential function eαt. This corresponds to the zero order E-spline with
parameter α and can also be written as βα(t) = eαt β0(t). For purely imaginary parameter
α = iω0, this can be seen as a modulated zero-order B-spline. Figure 2.7 illustrates this
function for two different values of the parameter α. Note that for α = 0, the E-spline
corresponds to the zero order B-spline.

As for the polynomial case, higher order E-splines can be built by convolving zero order
ones. That is, an E-spline that can reproduce a set of exponential functions {eiωmt}Pm=0 is
given by

βα(t) = βiω0(t) ∗ βiω1(t) ∗ . . . ∗ βiωP (t), (2.42)
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row represents the E-spline in the temporal and frequency domain and the parameters eαm .
The second row depicts the reproduction of the real part of the exponentials eαmt. The thin
lines represent the shifted and weighted kernels, the thick line represents their sum and the
dashed line the true exponential functions.

where α = (iω0, iω1, . . . , iωP ). It follows that the Fourier transform of βα(t) is given by:

β̂α(w) =
P∏

m=0

1− e−i(ω−ωm)

i(ω − ωm)
, (2.43)

which satisfies the generalised Strang-Fix conditions with Rm = 0. So far, we have assumed
that all ωm are distinct which leads to E-splines that reproduce exponential functions eiωmt.
If we want to reproduce polynomial exponentials tr eiωmt up to a given degree Rm it is
necessary to repeat each coefficient ωm Rm times.

Figures 2.8(a) and (b) depict an E-spline of order P = 6 in the temporal and frequency
domains respectively. Since the parameters αm = iωm considered are purely imaginary,
the different eαm lie on the unit circle as illustrated in Figure 2.8(c). The Fourier transform
of the E-spline shows that the generalised Strang-Fix conditions are satisfied, that is, the
function is non-zero at the frequencies ωm, but vanishes at the frequencies ωm + 2π` with
` ∈ Z \ {0}.

E-splines of order P have also compact support and have continuous derivatives up to
order P − 1. The construction of higher order E-splines through convolution is justified by
the following proposition:

Proposition 3 (Unser and Blu, 2005 [41]). Let ϕα be a function that reproduces the expo-
nential polynomials in span{eαt, . . . , tp eαt}. Then, for any ϕ such that

∫ +∞
−∞ ϕ(t) e−αtdt 6=
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0, the composite function ϕ(t) ∗ ϕα(t) also reproduces these exponential polynomials.

Moreover, there is a strong relation between exponential reproducing functions and E-
splines since it can be shown that any compactly supported function ϕ(t) that reproduces
exponential polynomials satisfy

ϕ(t) = γ(t) ∗ βα(t), (2.44)

where βα(t) is the corresponding E-spline that reproduces the same exponential polyno-
mials [42].

In the same way as in the reproduction of polynomials, in order to reproduce a specific
exponential function eαmt we have to obtain the coefficients cm,n that correspond to the
weights that are applied to the shifted versions of the kernel ϕ(t−n). The steps to compute
these coefficients are detailed in Appendix A.2. Figures 2.8(a), (b) and (c) illustrate the
reproduction of some exponential functions. Since the parameters αm are complex, the
resulting function is also complex: eiωmt = cos(ωmt) + i sin(ωmt); the figures only depict
the real parts.

2.4. Sampling and perfect reconstruction of FRI signals

In the previous section we have seen some properties of exponential reproducing kernels.
In this section we analyse how we can make use of these properties in order to perfectly
reconstruct streams of Diracs. Streams of Diracs are the canonical FRI signals because
many phenomena can be modelled as a pulse shape convolved with a stream of Diracs.
Hence, the framework presented to sample and reconstruct streams of Diracs can easily be
extended to a wide range of different scenarios.

2.4.1. Sampling with an exponential reproducing kernel

We consider an acquisition device where the sampling kernel is able to reproduce exponen-
tial functions {eiωmt}Pm=0. When we have control over the acquisition device, the parame-
ters αm = iωm are part of the design problem. As will become clear in what follows, these
parameters will determine the information in the input analogue signal x(t) that we can re-
trieve. Specifically, the different ωm correspond to the frequencies of the Fourier transform
of x(t) that we will be able to retrieve from knowledge only of the samples y[n]. We assume
that the signal x(t) is localised, in other words, that x(t) has compact support. Moreover,
if we assume that supp(x(t)) = [0, L), and that the transfer function of the acquisition
device is also of compact support with h(t) = ϕ(−t/T ) and supp(ϕ(t)) = (−P, 0], from
(2.14), we have that the number of non-zero samples y[n] is finite. Specifically, y[n] 6= 0

for n = 0, 1, . . . , N − 1 where N = dL/T e+ P .
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Let s[m], m = 0, 1, . . . , P , be a new sequence obtained by linearly combining samples
y[n] with the coefficients cm,n from (2.30), that is,

s[m] =

N−1∑
n=0

cm,n y[n], m = 0, 1, . . . , P, (2.45)

where N is the number of non-zero samples y[n]. If we make use of the fact that the
sampling kernel is able to reproduce exponentials, it follows that

s[m]
(a)
=

N−1∑
n=0

cm,n 〈x(t), ϕ(t/T − n)〉 (2.46)

(b)
=

∫ L

0
x(t)

N−1∑
n=0

cm,n ϕ(t/T − n) dt (2.47)

(c)
=

∫ L

0
x(t) eiωmt/Tdt = x̂

(
−ωm
T

)
, (2.48)

where (a) follows from (2.14), (b) from the linearity of the inner product and the fact that
supp(x(t)) = [0, L) and (c) from the exponential reproduction property. The quantity s[m]

therefore corresponds to the Fourier transform of x(t) evaluated at ω = −ωm/T .

Remark on generalised Strang-Fix conditions and alias-free sampling

At this point, it might seem that we are facing a contradiction, since we are retrieving
exact Fourier information of a signal at some frequencies but we are not imposing the
classical sampling theorem’s conditions that the input signal is bandlimited or that the
acquisition filter is an ideal lowpass filter. The only condition we have imposed is that
the sampling kernel be able to reproduce exponentials. In Figure 2.8(b) we can observe
that an E-spline that reproduces the exponentials eiωmt is not bandlimited. Yet due to the
generalised Strang-Fix conditions, it is possible to retrieve uncorrupted Fourier information
at the frequencies that the sampling kernel reproduces. In what follows we show that
the generalised Strang-Fix conditions are essentially anti-aliasing conditions at specific
frequencies.

From (2.11) and (2.12) it follows that

Y (eiω) = F {y[n]} =
1

T

+∞∑
k=−∞

x̂

(
w − 2πk

T

)
ĥ

(
w − 2πk

T

)
. (2.49)

Note that x(t) and h(t) are of compact support in the temporal domain, and therefore both
functions are unlimited in frequency, which produces aliasing in Y

(
eiω
)
. The sampling

kernel ϕ(t) and the impulse response of the acquisition device h(t) are related by h(t) =
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ϕ(−t/T ). We thus have that ĥ(ω) = T ϕ̂(−ωT ), and

Y (eiω) =
+∞∑

k=−∞
x̂

(
w − 2πk

T

)
ϕ̂ (2πk − ω) . (2.50)

Appendix A.2 shows that the cm,n coefficients can be expressed as cm,n = eiωmn/ϕ̂(ωm). If
we plug this expression in (2.48) we have that

s[m] =
N−1∑
n=0

cm,n y[n] =
1

ϕ̂(ωm)

N−1∑
n=0

y[n] eiωmn =
1

ϕ̂(ωm)
Y (eiω)

∣∣
ω=−ωm . (2.51)

Replacing the expression of Y (eiω) obtained in (2.50) into equation (2.51) yields

s[m] =
1

ϕ̂(ωm)

+∞∑
k=−∞

x̂

(
2πk − ωm

T

)
ϕ̂ (ωm − 2πk) . (2.52)

From the generalised Strang-Fix conditions (see Proposition 2) we know that if ϕ(t) is an
exponential reproducing kernel that reproduces the functions eiωmt then ϕ̂(ωm + 2πk) = 0

for k = Z \ {0}. This is the condition that allows us to recover exact Fourier information
of the original signal x(t) at these specific frequencies without having any aliasing. In fact,
by using Strang-Fix conditions in (2.52) we obtain:

s[m] = x̂
(
−ωm
T

)
. (2.53)

We can thus conclude that, despite the aliasing effect in Y (eiω), we can obtain uncorrupted
information of the Fourier transform of x(t) at some specific frequencies thanks to the fact
that the sampling kernel satisfies the generalised Strang-Fix conditions.

2.4.2. Reconstruction of a stream of Diracs

We assume that the input signal is a stream of K Diracs:

x(t) =

K∑
k=1

ak δ(t− tk). (2.54)

The signal is filtered and sampled at regular intervals of time which leads to the discrete-
time signal y[n]. The continuous-time signal x(t) is perfectly determined by the pairs
{(ak, tk)}Kk=1. We assume that all the locations are distinct and that the amplitudes are
non-zero. Thus, the goal is to estimate this set of parameters from samples y[n]. We
consider the case where the sampling kernel ϕ(t) satisfies the exponential reproduction
property for a choice of α = (αm)Pm=0 such that αm = iωm, where ωm ∈ R for m =

0, 1, . . . , P . We further impose the frequencies ωm to be equispaced, that is ωm+1−ωm = λ.
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We can thus express the frequencies as

ωm = ω0 +mλ. (2.55)

Since x(t) is a sum of Diracs, we have that the Fourier transform is given by a sum of
exponentials:

x̂(ω) =

∫ +∞

−∞

K∑
k=1

ak δ(t− tk) e−iωtdt =
K∑
k=1

ak e−iωtk . (2.56)

This is clearly a band unlimited signal. The signal x(t) in the temporal domain and its
Fourier transform are illustrated in Figures 2.9(a) and (e).

We now consider the sequence s[m] that is obtained by linearly combining samples y[n]

with the coefficients cm,n from the exponential reproducing property (2.30). From (2.48)
we have that s[m] = x̂(−ωm/T ) and therefore:

s[m] =
K∑
k=1

ak eiωmtk/T =
K∑
k=1

ak eiω0tk/T︸ ︷︷ ︸
bk

eiλtk/T︸ ︷︷ ︸
uk

m

=
K∑
k=1

bk u
m
k , (2.57)

where bk
def
= ak eiω0tk/T and uk

def
= eiλtk/T . Note that we have also used the fact that the

frequencies can be expressed as ωm = ω0 +λm. The perfect recovery of the original stream
of Diracs, that is, the estimation of the locations tk and the amplitudes ak of the K Diracs,
is now recast as the estimation of parameters bk and uk from the knowledge of values
s[m]. The problem of estimating the parameters of a sum of exponentials from a set of
samples arises in a variety of fields and has been analysed for several years by the spectral
estimation community [43]. It arises in a variety of applications such as identifying an
auto-regressive system from its output [44], estimating exponentially damped sinusoids in
noise [45, 46], estimating the direction of arrival of signals in array processing [47–49] and
reconstructing polygons from its moments [50, 51]. The problem is linear in the parameters
bk, but is nonlinear in the parameters uk. The main difficulty is in finding the nonlinear
terms. There are two main approaches to solve this problem, one based on homogeneous
recurrence relations, known as Prony’s method, and the other based on signal subspace
estimation techniques, which is solved using matrix pencils.

Prony’s method

One way to solve the problem of estimating {(bk, uk)}Kk=1 from s[m], is by realising that
the sequence s[m] given as in (2.57) is the solution to the following linear homogeneous
recurrence relation

s[m] + h[1] s[m− 1] + . . .+ h[K] s[m−K] = 0. (2.58)

45



Chapter 2. Classical sampling theory and sampling FRI signals

t [s]
0 5 10 15

0

1

2

3

4

(a) Input signal, x(t)

t [s]
0 2 4 6 8

0

0.1

0.2

0.3

0.4

(b) h(t) = ϕ(−t/T )

Real Part
-1 0 1

Im
a
g
in
a
ry

P
a
rt

-1

0

1

e
α0 e

α1

e
αP

(c) eαm

t [s]
0 5 10 15

0

0.5

1

1.5

2

y(t)
y[n]

(d) Filter and sample

ω [rad·s−1]
-2π/T -π/T 0 π/T 2π/T

2

4

6

8

10 |x̂(ω)|
|s[m]|

(e) F {x(t)} and s[m]

t [s]
0 5 10 15

0

1

2

3

4

(f) Reconstructed signal

Figure 2.9.: Sampling and perfect reconstruction of a stream of Diracs. (a) is the continuous-time stream
of Diracs, (b) the sampling kernel h(t) = ϕ(−t/T ) where ϕ(t) is an E-spline of order P = 7
that reproduces the exponentials illustrated in (c). (d) is the continuous-time signal y(t) =
x(t) ∗h(t) and the corresponding discrete samples y[n] = y(t)|t=nT . In (e), absolute value of
the Fourier transform of x(t) and of the sequence s[m] obtained from samples y[n] linearly
combined with coefficients cm,n. (f) perfect reconstruction of the Diracs from the sequence
s[m].

This approach is referred to as Prony’s method or the annihilating filter method. Baron de
Prony developed this method in 1795 to estimate the frequency, phase and amplitudes of
a finite sum of sinusoids [52]. The name of annihilating filter method comes from the fact
that the coefficients (1, h[1], . . . , h[K]) can be seen as a finite impulse response filter with
K+1 taps that annihilates the sequence s[m], that is, the output of this filter vanishes when
the input signal corresponds to s[m] =

∑K
k=1 bk u

m
k . Note that the coefficients (h[m])Km=1

are still unknown. In order to estimate the coefficients of the annihilating filter, we assume
that it has zeros at z = uk, that is, its z-transform satisfies

H(z) = Z {h[m]} =

K∑
m=0

h[m] z−m =

K∏
k=1

(1− uk z−1), (2.59)

where h[0] = 1. Note that H(z)|z=uk = 0. Filtering the sequence s[m] with h[m] corre-
sponds to convolving both sequences in the temporal domain. If we plug the expression of
s[m] obtained in (2.57) into the discrete convolution formula we obtain

h[m] ∗ s[m] =
K∑
`=0

h[`] s[m− `] =
K∑
`=0

h[`]
K∑
k=1

bk u
m−`
k =

K∑
k=1

bk u
m
k

K∑
`=0

h[l]u−`k︸ ︷︷ ︸
H(z)|z=uk=0

= 0. (2.60)
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This convolution can also be written in matricial form as follows

0 =


s[K] s[K − 1] . . . s[0]

s[K + 1] s[K] . . . s[1]
...

...
. . .

...

s[2K − 1] s[2K − 2] . . . s[K − 1]




1

h[1]
...

h[K]

 def
= S h. (2.61)

The matrix S is a Toeplitz matrix of size K × (K + 1) built from 2K consecutive values
s[m]. It can be shown that if all bk are non-zero and all uk are distinct, the matrix S
has full row rank K (see Appendix B.1). Hence, the null space has dimension one and
the coefficients of vector h are unique. This vector can be obtained by taking the singular
value decomposition (SVD) of S and choosing the singular vector associated with the zero
singular value. If we scale this singular vector in order to have the first element equal
to 1 the solution is unique. The parameters uk are then obtained from the roots of the
polynomial

H(z) = 1 +
K∑
m=1

h[m] z−m = z−K
(
h[K] + h[K − 1] z + . . .+ h[1] zK−1 + zK

)
. (2.62)

Note that the roots can be obtained numerically from the eigenvalues of the companion
matrix

C(h) =



0 0 . . . 0 −h[K]

1 0 . . . 0 −h[K − 1]

0 1 . . . 0 −h[K − 2]
...

...
. . .

...
...

0 0 . . . 1 −h[1]


, (2.63)

since the characteristic polynomial of this matrix is equivalent to the polynomial zK H(z).
Once the nonlinear parameters uk are recovered, the amplitudes bk of the exponentials
can be obtained from (2.57) by solving K linear equations. The parameters that uniquely
determine the stream of Diracs are then obtained as follows:

tk =
T log uk

iλ
and ak = bk e−iω0tk/T , for k = 1, . . . ,K. (2.64)

The perfect reconstruction of the stream of Diracs is therefore achieved. Note that we only
require 2K consecutive samples of the sequence s[m] to estimate the 2K parameters. This
establishes a minimum requirement on the order of the sampling kernel, since each sample
s[m] is related to one of the exponential functions that are reproduced by ϕ(t). Hence, in
order to reconstruct K Diracs, the sampling kernel has to reproduce at least P + 1 = 2K

exponentials. The entire sampling and reconstruction process is illustrated in Figure 2.9.
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Matrix pencil method

An alternative method to retrieve the parameters {(bk, uk)}Kk=1 from the sequence s[m] is
based on subspace techniques for estimating generalised eigenvalues of matrix pencils [45,
46]. Matrix pencils are the matricial counterpart of polynomials. For some nonnegative
integer P and a set of square matrices A0,A1, . . . ,AP of the same size, the matrix pencil
of order P is defined as

LP (x) = A0 +A1 x+ . . .+AP x
P . (2.65)

A variation of the first order matrix pencil that has the form A0 − xA1 is known as
linear matrix pencil. The approach that estimates the parameters of a sum of exponentials
from a linear matrix pencil is based on the particular structure of Toeplitz matrices where
each element is given by a sum of exponentials. We build a Toeplitz matrix S from 2K

consecutive samples of the sequence s[m] similarly to (2.61), but of size (K+1)×K (instead
of K × (K + 1)). Let S0 be the matrix constructed from S by removing the first row and
S1 the matrix constructed from S by removing the last row. These two matrices are of size
K×K and have rankK. It can be shown that in the matrix pencil S0−µS1 the parameters
{uk}Kk=1 from (2.57) are rank reducing numbers, that is, the matrix S0 − µS1 has rank
K − 1 for µ = uk and rank K otherwise (see Appendix B.2). The parameters {uk}Kk=1 are
thus obtained from the eigenvalues of the generalised eigenvalue problem S0 v = µS1 v.
This generalised eigenvalue problem can be solved by computing the eigenvalues of the
matrix S−1

1 S0, since

(S0 − µS1)v = 0 ⇔ (S−1
1 S0 − µI)v = 0. (2.66)

Note that the matrix S1 is of size K×K and has rank K, hence it is invertible. In practice,
the problem is not solved by finding the eigenvalues of S−1

1 S0 since this matrix might be
ill-conditioned. Moreover, there are algorithms based on the Schur decomposition that
compute the generalised eigenvalues without actually computing the inverse of S1 (see
Chapter 7 in [53] for a detailed description of such algorithms). The algorithm described
in the next section is much more robust and the approach that is used in the following
chapters when we refer to the matrix pencil method. Maravic and Vetterli presented an
extension to the FRI theory using an approach based on this principle in 2005 [54].

2.5. Sampling FRI signals in the presence of noise

The acquisition process inevitably introduces noise, making the solutions described so far
only ideal. Perturbations may arise in the analogue and digital domain. We model the
noise of the acquisition process as a white Gaussian process that is added to the ideal
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samples. The noisy samples are therefore given by

ỹ[n] = y[n] + ε[n], (2.67)

where y[n] are the ideal noiseless samples and ε[n] are independent and identically dis-
tributed (i.i.d.) Gaussian random variables with zero mean and variance σ2

ε . In order
to have a more robust reconstruction, we can increase the number of samples s[m] =∑N−1

n=0 cm,n y[n] by designing a sampling kernel that reproduces more exponentials than
the critical number P + 1 = 2K. The denoising strategies that can be applied to improve
the performance of the reconstruction process come from the spectral analysis community,
where the problem of finding sinusoids in noise has been extensively studied. From now
on we assume that the length P + 1 of the sequence s[m] is larger than 2K. We can thus
build a bigger Toeplitz matrix S:

S =


s[M ] s[M − 1] . . . s[0]

s[M + 1] s[M ] . . . s[1]
...

...
. . .

...

s[P ] s[P − 1] . . . s[P −M ]

 . (2.68)

In the noiseless case, this matrix has still rank K provided that the number of rows and
the number of columns are at least equal to K. Note that in the previous section we have
only considered Toeplitz matrices of size K × (K + 1) or (K + 1)×K.

One approach is based on cleaning the samples s[m] before using Prony’s method by
applying an algorithm proposed by Cadzow for signal enhancement in 1988 [55]. It is an
iterative procedure applied to the Toeplitz matrix constructed from samples s[m] as in
(2.68). This enhancement approach works better when the Toeplitz matrix is made as
square as possible, for instance, by setting M = dP/2e. By construction the matrix S
is Toeplitz, and in the noiseless case it is of rank K. The presence of noise makes this
matrix full rank. The Cadzow algorithm looks for the closest rank deficient matrix which
is Toeplitz. At each step we force matrix S to be of rank K by computing the singular
value decomposition (SVD) and only keeping the K largest singular values and setting the
rest to zero. This new matrix is not Toeplitz anymore, we thus compute a new Toeplitz
matrix by averaging the diagonal elements. This last matrix might not be rank deficient
and we can thus iterate again. After cleaning the sequence s[m], the next step is to solve
the homogeneous system (2.61). This is done by computing the total least squares solution
that minimises ‖Sh‖2 subject to ‖h‖2 = 1. If this vector is normalised with respect to the
first element we have that the following K elements correspond to the coefficients of the
annihilating filter H(z) in (2.59). Note that h is of sizeK+1, and therefore, when applying
Prony’s method we have to build a tall Toeplitz matrix S of size (P −K + 1) × (K + 1)

from the previously cleaned sequence s[m]. We say the matrix is tall because now P + 1 is
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Figure 2.10.: Performance of noisy recovery of 2 Diracs from N = 22 samples y[n] with an E-spline of
order P = 10. For each level of noise 10 000 realisations of the noise have been generated.
(a) Scatter plot of the retrieved locations, the horizontal lines represent the true locations of
the Diracs. (b) and (c) depict the measured standard deviation of the retrieved locations for
the “Cadzow+Prony” and matrix pencil algorithms compared to Cramér-Rao lower bounds.

larger than 2K and therefore the matrix has more rows than columns. This approach has
successfully been applied in the FRI setup in [25].

An alternative approach to the “Cadzow+Prony” method is based on making the matrix
pencil method more resilient to noise. In the matrix pencil method we can also consider the
bigger Toeplitz matrix built as in (2.68). In this robustified matrix pencil method, we also
solve the generalised eigenvalue problem S0 v = µS1 v, but we build the matrices S0 and
S1 in a slightly different way. Instead of building S0 and S1 directly from matrix S we now
build them from the K singular vectors of S that correspond to the K non-zero singular
values. It can be shown that the generalised eigenvalues of this equivalent problem are also
u1, . . . , uK . In the noisy scenario, the Toeplitz matrix is full rank, and therefore all the
singular values are non-zero. We therefore consider the singular vectors that correspond
to the K largest singular values. These are the steps of the noisy matrix pencil algorithm:

1. Build the Toeplitz matrix S from noisy samples s[m].

2. Perform the SVD of S: S = U ΣV H .

3. Keep the K left-singular vectors that correspond to the K largest singular values:
UK = [u1,u2, . . . ,uK ], where uk are the columns of U .

4. Build S0 and S1 from UK by dropping the first and last rows respectively.

5. Solve the following eigenvalue problem:

(S+
1 S0 − µ I)v = 0, (2.69)

where S+
1 is the Moore-Penrose pseudoinverse of S1.
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2.5. Sampling FRI signals in the presence of noise

2.5.1. Performance of the noisy reconstruction algorithms

In order to measure and compare the performance of the noisy recovery algorithms we run
the following experiment. A stream of 2 Diracs is sampled with an E-spline of order P = 10

which leads to the noiseless sequence y[n]. For each level of noise, we add a realisation of
the noise samples, ε[n], in order to satisfy a given signal-to-noise ratio (SNR). The SNR is
the ratio between signal power and noise power measured in decibels (dB):

SNR = 10 log10

(
Py
Pε

)
= 10 log10

(
1
N

∑N−1
n=0 |y[n]|2

1
N

∑N−1
n=0 |ε[n]|2

)
. (2.70)

The Diracs are then retrieved by applying the two methods previously described: “Cad-
zow+Prony” and matrix pencil. In order to compare the two methods, the experiment
is repeated 10 000 times for each level of noise. Let t̂(i)k be the estimated location of the
kth Dirac for the ith realisation of the noise. We measure the accuracy of each method by
computing the standard deviation of the retrieved locations compared to the true locations,
that is,

∆tk =

√√√√∑I
i=1

(
tk − t̂

(i)
k

)2

I
, (2.71)

where tk is the true location of the Dirac and I is the total number of realisations per
noise level; in our case I =10 000. The results are shown in Figure 2.10 where (a) depicts
the retrieved locations for all the realisations of the noise samples (each dot represents
one retrieved location in one realisation of the experiment), and (b) and (c) present a
comparison between the measured accuracies for each method. Note that as the noise power
decreases (the SNR increases) the dots of the scatter plot in (a) concentrate around the true
locations of the Diracs which correspond to the two horizontal lines. The straight lines in
(b) and (c) represent the Cramér-Rao lower bounds (CRB) of this estimation problem. The
CRB provides a theoretical lower bound of the standard deviation of unbiased estimators
[43, 56–58]. See Appendix C.2 for details about how to derive this bound for the FRI
framework. From Figures 2.10(b) and (c) it is clear that both approaches perform very
similarly. This is not surprising since both are based on performing a SVD of the Toeplitz
matrix S and estimating the signal by considering the K largest singular values. Moreover,
both algorithms are close to being optimal since the precision that is achieved reaches the
CRB, and present a breakdown for SNR below 5 dB. The breakdown happens when the
noise power goes beyond a certain threshold that makes the singular values due to the
noise be larger than the singular values of the signal.

It is obvious that the performance of this type of algorithms is influenced by the sam-
pling kernel. For a given type of kernel that reproduces exponentials, the performance is
affected by the order P and the frequencies ωm that are reproduced. Urigüen’s PhD thesis
[59] provides a good analysis of how these parameters affect the performance of the FRI
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reconstruction algorithms. His work also explored the scenario where we have no control
over the sampling kernel and proposed universal reconstruction schemes to recover FRI
signals [27].

2.5.2. On the effect of coefficients cm,n on the statistics of the noise

In the noisy case, the coefficients cm,n play a crucial role as they will be responsible for
colouring the noise. The effect of noise on the measurements s[m] can be analysed more
precisely as follows:

s̃[m] =
N∑
n=0

cm,n ỹ[n] =
N∑
n=0

cm,n y[n] +
N∑
n=0

cm,n ε[n] = s[m] + η[m], (2.72)

for m = 0, 1, . . . , P . The (`+ 1,m+ 1) element in the covariance matrix Σε of a vector of
random variables ε = [ε[0], ε[1], . . . , ε[N − 1]]T is defined as

[Σε]`,m
def
= E {(ε[`]− E {ε[`]})(ε[m]− E {ε[m]})} . (2.73)

Since the noise samples ε[n] are assumed to be i.i.d. random variables drawn from a
normal distribution N (0, σ2

ε), their covariance matrix is given by Σε = σ2
ε IN , where IN

is the identity matrix of size N × N . The noise term in the samples s̃[m] is given by
η[m] =

∑N−1
n=0 cm,n ε[n]. It is easy to verify that the expected value of these random

variables is also equal to zero:

E {η[m]} = E

{
N−1∑
n=0

cm,n ε[n]

}
=

N−1∑
n=0

cm,nE {ε[n]} = 0. (2.74)

Due to the coefficients cm,n, the terms η[m] are complex. Hence, we consider the covariance
using complex conjugation:

[Ση]`,m = E {(η[`]− E {η[`]})(η[m]− E {η[m]})∗} . (2.75)

If we replace η[m] by
∑N−1

n=0 cm,n ε[n] and consider that cm,n = eiωmncm,0, with ωm =

ω0 +mλ, we obtain

[Ση]`,m =

N−1∑
n=0

N−1∑
k=0

c`,n c
∗
m,k E {ε[n] ε[k]}︸ ︷︷ ︸

=σ2
εδ[n−k]

= σ2
ε c`,0 c

∗
m,0

N−1∑
n=0

ei(m−`)λn. (2.76)

If we do not impose any other condition on the frequencies ωm, the covariance matrix
of η[m] is non-zero outside the main diagonal, which implies that the noise samples are
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correlated. To avoid this, we impose the frequency separation λ to be equal to

λ =
2π

N
. (2.77)

In this case, (2.76) becomes

[Ση]`,m =

N σ2
ε |cm,0|

2 , if ` = m,

0, otherwise.
(2.78)

The noise samples η[m], m = 0, 1, . . . , P , are now uncorrelated. However, note that the
variance of each η[m] is equal to N σ2

ε |cm,0|
2. Since cm,0 = [ϕ̂(ωm)]−1, these variances

might differ considerably for different values of m. This can be seen as the noise power
being different for different frequencies. This is the reason why we say that the noise is
coloured. If we choose frequencies ωm where the Fourier transform of the sampling kernel
is very small, the variance of the corresponding η[m] becomes very large, making the
recovery algorithms unstable. In order to have an accurate reconstruction it is therefore
important to pick frequencies where ϕ̂(ω) is as flat as possible. If the sampling kernel
is an E-spline, this can only be achieved by concentrating all the frequencies around the
origin. To overcome this limitation we can consider the use of more advanced sampling
kernels such as the exponential MOMS (Maximal Order Minimum Support) or eMOMS
[60]. eMOMS are a variation of the E-splines and are still able to reproduce exponential
functions. One of the main advantages of this type of function is that we can control the
amplitude of the Fourier transform at ω = ωm. We can even impose ϕ(ωm) = 1 for all
m = 0, 1, . . . , P . Urigüen et al. introduced this type of kernel in the FRI framework in
[61] (see Appendix D for more details about this type of functions).

2.6. Summary

This chapter revisits the classical sampling theorem for bandlimited signals and introduces
the notion of a more general class of functions known as finite rate of innovation (FRI)
signals. The theory for sampling and perfectly reconstructing FRI signals is presented with
a special emphasis on the sampling kernels that are able to reproduce exponentials. This
framework is also extended to the case where samples are corrupted with additive noise
and the performance of the best FRI reconstruction algorithms in noise are analysed.
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Chapter 3.

Sequential local FRI sampling of infinite
streams of Diracs

The theory of sampling signals with finite rate of innovation (FRI) has shown that it is
possible to perfectly recover classes of non-bandlimited signals such as streams of Diracs
from uniform samples. Most of the papers in the FRI literature, however, have to some
extent focused only on the sampling of periodic or finite duration signals.

In this chapter we present a novel method that is able to reconstruct infinite streams
of Diracs, even in high noise scenarios. We sequentially process the discrete samples and
output locations and amplitudes of the Diracs in real-time. We first establish conditions
for perfect reconstruction in the noiseless case and then present the sequential algorithm
for the noisy scenario. We present simulation results that show that we can achieve a high
reconstruction accuracy of 1000 Diracs for SNRs as low as 5dB. We also propose a different
sampling scheme that takes advantage of the periodicity of the reproduced exponentials
by the sampling kernel that allows us to reduce the number of required temporal samples.

3.1. Introduction

Streams of Diracs are the canonical example of signals with finite rate of innovation in
that they are completely specified by a finite number of parameters per unit of time.
Periodic streams of Diracs are sampled and perfectly reconstructed in [17] using the sinc
kernel. Authors in [24, 62] instead propose the use of kernels that reproduce polynomials or
exponentials and also propose a sequential algorithm to sample and perfectly reconstruct
infinite streams of Diracs. The sequential algorithm, however, was designed to deal only
with noiseless samples. The family of sum of sincs (SoS) kernels was introduced in [63] for
the sampling of periodic stream of pulses such as Diracs, authors also consider the case
of infinite streams of Diracs. However, their method requires that the stream of Diracs
be bursty. Specifically, a group of K Diracs must be followed by a long period of absence

0The work in this chapter includes research conducted jointly with Prof Dragotti and lead to the following
publication [8]. The code to reproduce the results presented in this chapter is available online: https:
//github.com/jonativia/thesis.
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t [s]
-(P+1) 0

(a) ϕ(t)

t [s]
0 (P+1)T

(b) h(t) = ϕ(−t/T )

t [s]
nT-(P+1)T      nT

(c) ϕ(t/T − n)

Figure 3.1.: The impulse response of the acquisition device, h(t), is given by h(t) = ϕ(−t/T ). In order
to have a causal filter, the sampling kernel ϕ(t) is anticausal with support [−(P + 1), 0].
Each sample y[n] = 〈x(t), ϕ(t/T − n)〉 acquires information of x(t) on the temporal interval
[nT − (P + 1)T, nT ].

of Diracs in order for the method to work. They also assume that the reconstruction
algorithm is synchronised with the sampling process in order to be automatically in phase
with the time window containing the burst of Diracs.

In this chapter we present a novel approach to reconstruct infinite streams of Diracs,
in high noise scenarios, with no clear separation between bursts. We sequentially process
the discrete samples and output locations and amplitudes of the Diracs in real-time. We
first establish conditions for perfect reconstruction in the noiseless case and then present
the sequential algorithm for the noisy scenario. We show through simulations that the
algorithm is able to process 10000 samples in about 100 seconds and that it can retrieve
with high accuracy 1000 Diracs even in very low SNR regimes.

The chapter is organised as follows. In Section 3.2 we briefly review the case of sampling
and reconstructing a finite stream of K Diracs as presented in the previous chapter. In
Section 3.3 we explain our sequential algorithm in detail. We treat the noiseless and noisy
scenarios separately, the former to establish conditions for perfect reconstruction, the latter
for application in more realistic situations. We validate our algorithm with simulations in
Section 3.4. In Section 3.5 we present an alternative sampling scheme that is able to reduce
the number of required temporal samples to the critical value of N = 2K to estimate 2K

parameters. We summarise and conclude in Section 3.6.

3.2. Sampling FRI signals

We consider the case of a stream of K Diracs x(t) =
∑K

k=1 ak δ (t− tk), with ak ∈ C \ {0}
and t1 < t2 < . . . < tK . The continuous-time signal is filtered with a compact support
kernel with impulse response h(t) = ϕ(−t/T ) and uniformly sampled at regular intervals
of time t = nT . The acquisition process was illustrated in Figure 2.2 and, as already
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discussed in the previous chapter, the samples y[n] can be expressed as

y[n] =

〈
x(t) , ϕ

(
t

T
− n

)〉
. (3.1)

Figure 3.1(a) illustrates a sampling kernel ϕ(t) of compact support, the impulse response
of the acquisition device h(t) is shown in Figure 3.1(b) and the scaled and shifted kernels
ϕ
(
t
T − n

)
in Figure 3.1(c). When the sampling kernel is of compact support, each sample

y[n] captures information about x(t) on the time interval which is covered by the support
of the scaled and shifted kernel. In our setup, this interval corresponds to

t ∈ [nT − (P + 1)T, nT ] (3.2)

as illustrated in Figure 3.1(c).

As described in the previous chapter, FRI theory shows that for a properly chosen filter
h(t), the signal x(t) can be perfectly reconstructed from the samples y[n]. We restrict our
setup to exponential reproducing kernels which are functions that are able to reproduce
exponentials: ∑

n∈Z
cm,n ϕ(t− n) = eαmt, m = 0, 1, . . . , P, (3.3)

where cm,n ∈ C. The αm are design parameters and are chosen to be purely imaginary and
in complex conjugate pairs in order to have a real valued kernel ϕ(t), that is, αm = iωm with
ωm ∈ R. More specifically, we consider equispaced frequencies ωm that can be expressed
as

ωm = ω0 +mλ. (3.4)

Note that we require equispaced frequencies in order to apply Prony’s method to the
sequence s[m] introduced in the previous chapter and described in the next paragraph.
Since the αm parameters appear in complex conjugate pairs, we have that

ωm = −ωP−m, (3.5)

and it follows that
ωm = λ

(
m− P

2

)
. (3.6)

Note that if P is even we have that αP/2 = iωP/2 = 0. There exist many functions
of compact support in time that satisfy the exponential reproducing property (3.3), for
instance, E-splines [24] and the modified E-splines introduced in [61]. The latter are the
exponential reproducing kernels that are most resilient to noise [27, 61] and are the kernels
of choice for our simulations. They are called eMOMS. Note that these kernels have support
P + 1. See Appendix D for details about how to construct these kernels and their relation
with the Dirichlet kernel.
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In order to recover the parameters {(ak, tk)}Kk=1, we follow the procedure described in
the previous chapter. First, the samples y[n] are linearly combined with coefficients cm,n
from (3.3). This leads to a new set of measurements

s[m] =
∑
n∈Z

cm,n y[n], m = 0, 1, . . . , P. (3.7)

Combining (3.1) and (3.3) it follows that s[m] can be expressed as a power sum series [24]:

s[m] =
K∑
k=1

bk u
m
k , (3.8)

where bk = ak eiω0tk/T and uk = eiλtk/T . The unknown parameters are then estimated
applying Prony’s or matrix pencil methods. The critical number of measurements s[m]

required to recover the 2K parameters {(ak, tk)}Kk=1 is exactly 2K [24]. It thus follows
that the number of exponentials reproduced by the sampling kernel has to be P + 1 ≥ 2K.

3.3. Sampling an infinite stream of Diracs

We now consider the case of an infinite train of Diracs

x(t) =
∑
k∈Z

ak δ (t− tk) . (3.9)

The signal x(t) is assumed to satisfy

ρmax(τ) = max
t∈R

ρτ (t) =
2K

τ
, (3.10)

where ρmax(τ) is the the maximum local rate of innovation defined as in (2.23) and τ > 0.
This means that, if we consider a sliding window of size τ , the number of Diracs that we
see inside the window is always at most K. If we further assume that consecutive spikes
have a minimum distance of τ0, that is, τ0 = mink tk+1 − tk, it is easy to verify that

ρmax(τ) ≤ 4

τ0
, if τ ≥ τ0. (3.11)

We propose a sequential algorithm that estimates the locations of the Diracs of (3.9) by
using a sliding window that sequentially covers the interval of time

t ∈ [ni T, ni T + τ ] , (3.12)

for ni = 1, 2, . . .. The sliding window step is of T seconds, which equals the sampling
period. We assume that τ is an integer multiple of T , specifically, τ = NT . In what
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Figure 3.2.: Border effects. (a) A nearby Dirac located before the observation window τ influences the
samples y[n] of the window. (b) A Dirac inside the window but close to the right border
generates non-zero samples outside the window.

follows, we first establish some conditions on the number of samples N , the sampling
period T and the order of the E-splines necessary to achieve perfect reconstruction of the
infinite stream (3.9). Second, we present a novel approach that is able to recover Diracs in
high noise scenarios processing the stream (3.9) sequentially.

3.3.1. Noiseless case

We analyse the ideal scenario in the first place to determine the conditions on the number
of samples of the sliding window N , the sampling period T and the support P + 1 of
the sampling kernel that allows our algorithm to be able to provide perfect reconstruction
of (3.9). In our approach, we analyse sequentially sets of N samples y[n] that cover the
temporal interval (3.12). This corresponds to samples with indices n = ni + 1, . . . , ni +N ,
since we assume that the support of the sampling kernel ϕ(t/T − n) is given by

supp

(
ϕ

(
t

T
− n

))
= [nT − (P + 1)T , n T ]. (3.13)

Note that due to the continuity of the sampling kernel ϕ(t), at the extremal left point of the
temporal interval t = ni T , the sampling kernel with index ni satisfies ϕ(t/T −ni)|t=ni T =

0. Therefore, there is no need to consider the sample y[n]|n=ni since this sample does not
capture any information of the interval [ni T, ni T + τ ]. This is why we consider samples
starting at index n = ni + 1.

Since we consider a finite number of samples, there exist border effects that may stop us
from achieving perfect reconstruction. The sampling kernel ϕ(t/T ) has compact support
(P + 1)T . Consequently, a Dirac influences P + 1 samples. This means that a Dirac
located just before the window of interest will generate non-zero samples that will leak
inside the window. Moreover, a Dirac located at the end of the window of interest will
generate non-zero samples beyond the N samples we are considering, and therefore, cannot
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Figure 3.3.: Perfect reconstruction interval. If all the Diracs are located in the temporal interval of size
(N − P )T perfect reconstruction is achieved.

be reconstructed. This is illustrated in Figure 3.2.
We assume that the system is under the condition of initial rest. That is, x(t) = 0 and

y[n] = 0 for t ≤ t0 and n ≤ n0 respectively for some t0 and n0 = bt0/T c. It follows that
there is no left border effect for the first temporal window that includes the first non-zero
sample y[n]. This border effect can be overcome in subsequent windows with the following
reasoning. Since the algorithm operates sequentially, we can assume that when operating
on the window t ∈ [ni T, ni T + τ ] we have already recovered Diracs up to the time instant
ni T . Therefore, their contributions can be removed which avoids the border effect on the
left of the window.

To overcome the border effect of the right side we determine appropriate conditions on
the number of samples N , the order P of the kernel and the sampling period T . The
exact recovery of K Diracs requires P + 1 ≥ 2K. Now, let us put ourselves in the worst
case scenario, where we have K Diracs evenly spaced with constant separation τ/K. As
previously mentioned, when a Dirac is near the end of the interval, we are not able to
perfectly reconstruct it. The size of this interval is PT . Therefore, we can only perfectly
recover K Diracs when all of them are in a region of size (N−P )T which we refer to as the
perfect reconstruction interval illustrated in Figure 3.3. In the case of constant separation
τ/K, we have to guarantee that there will be a position of the sliding window such that
the K Diracs are in this perfect reconstruction interval. Since they can occupy an interval
of maximum size (K − 1) τK and to make sure they are within the perfect reconstruction
interval for a certain window it follows that

(K − 1) τK ≤ (N − P − 1)T. (3.14)

In order to maximise the perfect reconstruction interval we chose the smallest possible
order for the sampling kernel, that is

P + 1 = 2K. (3.15)
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Replacing τ by NT in (3.14) and imposing P + 1 = 2K we obtain

N ≥ 2K2. (3.16)

It follows that
T ≤ τ

2K2
, (3.17)

since T = τ/N and N ≥ 2K2.

The reconstruction algorithm processes the stream of samples sequentially, retrieving the
locations of each set of maximum K Diracs from N samples by applying the annihilating
filter method. Provided we satisfy the previously described conditions, all Diracs will be
located in the perfect reconstruction interval of a certain position of the sliding window,
and thus recovered. From the recovered Diracs of the current window, we recalculate the
N samples that correspond to this window, and only if the reconstructed samples are
identical to the original ones, the Diracs are stored. The maximum number of Diracs K
within a window has to be estimated. This is done by trying for all possible values of K,
and only when the correct value is estimated the reconstructed samples will coincide with
the original ones.

In the worst case scenario, Prony’s method is applied K times to the N samples of the
observed window. The overall cost of processing N samples to recover K Diracs is O(K4)

as it is shown next. First, the sequence s[m] has to be built from the samples y[n], which
involves N products and additions. Then, an SVD is applied to the Toeplitz matrix of size
K×(K+1) built from the sequence s[m] to obtain the coefficients of the annihilating filter.
The complexity of this step is O(K3) [53]. The last step is to compute the roots of the
annihilating filter to estimate the locations of the Diracs, which has as well a complexity of
O(K3) (note that the roots are obtained from the eigenvalues of the companion matrix).
If we assume that N = αK2 with α > 2 and that this procedure is repeated at most K
times, we obtain an overall complexity of O(K4).

An additional point that has to be considered is that the Diracs are recovered from
the measurements s[m] =

∑K
k=1 ak eiω0tk/T (eiλtk/T )m. Since the locations are retrieved

from the phase of the complex numbers eiλtk/T and the phase has a periodicity 2π, we
have to make sure that for Diracs located in the perfect reconstruction interval, that is
tk ∈ [0, (N − P )T ), we have λtk/T ∈ [0, 2π). Which is satisfied when

λ =
2π

(N − P )
, (3.18)

and determines the frequencies of the exponentials that are reproduced by the sampling
kernel:

ωm =
2π

N − P

(
m− P

2

)
. (3.19)
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Figure 3.4.: Noisy scenario with SNR=15dB, N = 50 and T = 1/16. The maximum rate of innovation of
the streaming signal is 2K/τ = 3.2 (K = 5). (a) Plot of the sequentially estimated locations,
the horizontal axis indicates the index of the sliding window and the vertical axis the location
in time. (b) Histogram of the locations shown in (a). Horizontally aligned dots in (a) lead
to peaks in the histogram in (b).

3.3.2. Noisy scenario

In the presence of noise, perfect reconstruction is not possible and the algorithm previously
described becomes unstable. Moreover, the strict conditions on N and P come from
imposing a critical sampling rate, since we have exactly 2K values of the s[m] measurements
to retrieve K Diracs. In the noisy case we relax this condition and allow larger values of
P . This makes the denoising algorithms presented in the previous chapter more effective.

We thus develop a new strategy that is also based on using a sliding window and process-
ing sets of N samples in sequential order. For each window and each group of N samples,
we retrieve K Diracs using the algorithm in Section 3.2 coupled with matrix pencil and
store all the locations and amplitudes retrieved in that window. We then slide the window
by T and repeat the process. In other words, the ith window processes the noisy sam-
ples (ỹ[n])ni+Nn=ni+1 and leads to the estimated locations {t̂(i)k }. When the found locations
correspond to real Diracs, they will be consistent among different positions of the sliding
window that capture these Diracs. Otherwise, locations that are not correct and corre-
spond to noise will normally be not consistent. Figure 3.4(a) shows the retrieved locations
for different positions of the sliding window, where the horizontal axis corresponds to the
window index, ni, and the vertical axis to the locations in time, that is, for a given window
index, each dot corresponds to an estimate of the set {t̂(i)k }. Consistent locations among
different windows appear as horizontally aligned dots. The shaded area represents the
evolution in time of the observation window: for a given index ni, the vertical cross-section
of the shaded area represents the time interval τ that is seen by this window. Consis-
tent alignments of dots overlap with the horizontal straight lines that represent the true
locations of the Diracs.

In order to detect which locations are consistent, a second step is to construct a histogram
of detected locations. Only the peaks of the histogram are assumed to correspond to
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Figure 3.5.: Sequential perfect reconstruction of a noiseless stream of 1000 Diracs with 10220 y[n] samples.
Only a small section of the stream is shown. Rate K = 5 Diracs per τ = 3.125 s. N = 50,
T = 1/16 and P = 9.

real Diracs. For a peak in the histogram above a certain threshold, the location of the
corresponding Dirac is estimated averaging all the retrieved locations that contribute to
this peak. This is illustrated in Figure 3.4(b).

Note that the robustness and accuracy of this algorithm depends as well on the min-
imum separation between consecutive spikes. More precisely, on the ratio between the
minimum separation and the sampling rate. In the last part of Appendix C we analyse
how the uncertainty of the retrieved locations for two Diracs changes with their separation.
A theoretical uncertainty is derived from the Cramér-Rao lower bound and the actual per-
formance of the noisy recovery algorithms is measured empirically. Note that a breakdown
occurs when the separation goes below the sampling rate.

Algorithm 1 Sequential FRI retrieval of Diracs
Input: (y[n])NTOT

n=1 : stream of samples.
Output: {(ak, tk)}: Dirac locations and amplitudes.
1: for ni = 0 to NTOT −N do
2: Retrieve

{(
â
(i)
k , t̂

(i)
k

)}
from (y[n])ni+N

n=ni+1.
3: end for
4: Construct histogram from retrieved locations

{
t̂
(i)
k

}
.

5: Estimate Diracs from peaks of the histogram.

3.4. Simulation results

Both versions of the algorithm have been tested: the noiseless case for which perfect
reconstruction is possible; and the noisy scenario, where locations are estimated from the
histogram of the retrieved locations. In the noiseless case we always perfectly reconstruct
the streams of Diracs with randomly generated locations and amplitudes. This is illustrated
in Figure 3.5. The stream of Diracs is generated to satisfy the maximum rate of K Diracs
per τ interval.
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Chapter 3. Sampling infinite streams of Diracs

In the noisy scenario not all the Diracs are always retrieved, and false positives may
also happen. Note also that there is an uncertainty in the retrieved location. A retrieved
Dirac is considered to correspond to a true Dirac if the difference between the real location
and the estimated location is smaller than a threshold. Here we have set this threshold
to T/2. We randomly generate the locations of a stream of 1000 Diracs for which we
impose a minimal distance of 2T between consecutive Diracs. Note that the uncertainty
in the locations and the way we decide if a true Dirac has been detected would lead to
distorted performance measurements if no minimal distance was imposed. The amplitudes
of the Diracs are positive and are drawn from N (1, 0.15). We then take samples at regular
intervals of time t = nT of the signal that results from convolving the stream of Diracs
with the impulse response of the acquisition device, that is, y[n] = x(t) ∗ h(t)|t=nT . The
samples y[n] are contaminated with additive white Gaussian noise where the amplitude
of the noise is adjusted to satisfy a given SNR. The Diracs are recovered from the peaks
of the histogram of the sequential algorithm described in the previous section. A peak is
detected when the histogram goes beyond a threshold which has been set empirically to
N/4. In theory, a Dirac leads to a peak in the histogram of height N since it is captured
for N different locations of the sliding window. Due to noise and the border effects of
the sliding window these peaks are lower. A threshold of N/4 results in a good trade-off
between detection rate and false positives. Figure 3.6 shows one realisation of the procedure
explained before.

To further analyse the performance variation for different levels of noise we run the
algorithm over 100 different realisations of noise for various levels of SNR. Table 3.1 sum-
marises the obtained performances. The detection rate improves and the false positives
are reduced when the SNR is increased (higher SNR implies lower noise). The results in
Table 3.1 also show an increase in the accuracy of the retrieved locations. The algorithm
has been implemented in MATLAB and tested using a commercial laptop (2.5 GHz Intel
Core i5 CPU). The average time required to process 10220 samples corresponding to a
stream of 630 seconds containing 1000 Diracs is about 105 seconds.

Table 3.1.: Noisy algorithm’s performance. Stream of 1000 Diracs (630 seconds) and 10220 samples,
T = 1/16 s, N = 50, P + 1 = 23. The experiment is repeated 100 for each SNR. The
detection rate is given in percentage of detected true Diracs. The false positives are the
average number of detected Diracs that do not correspond to true Diracs. The precision is
the standard deviation of the retrieved locations with respect to the true locations averaged
over the different realisations. The MSE corresponds to error in retrieving the amplitudes of
the Diracs.

SNR [dB] 5 10 15 20
Detection rate 97.69 % 99.97 % 100.00 % 100.00 %
False positives 351.7 37.8 0.5 0.3
Precision [s] 0.0086± 0.0002 0.0049± 0.0001 0.0029± 0.0001 0.0018± 0.0001

MSE 0.0325± 0.0038 0.0172± 0.0013 0.0129± 0.0028 0.0126± 0.0069
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Figure 3.6.: Noisy samples with a SNR = 10 dB and reconstructed stream from the peaks of the histogram
of the retrieved locations. The temporal locations are very accurately estimated.

3.5. A note on periodicity and reducing the number of
temporal samples

So far, the critical sampling condition has been imposed for the number of measurements
s[m] =

∑
n cm,n y[n], with m = 0, 1, . . . , P . The number of measurements s[m] has to be

at least equal to the number of degrees of freedom, and therefore, in order to estimate the
amplitudes and locations of K Diracs we have the following condition: P + 1 ≥ 2K. How-
ever, this condition does not take into account the minimum number of temporal samples
y[n] that are required and, in general, this number is larger than 2K. Moreover, in the
sequential reconstruction scheme presented in the previous sections perfect reconstruction
is achieved when N ≥ 2K2 (see Equation (3.16)). In this section, we present an alterna-
tive acquisition device that allows reducing the number of temporal samples to N = 2K

by taking advantage of the underlying periodicity of the exponential functions that are
reproduced by the sampling kernel.

We assume that we want to reconstruct a stream of K Diracs, x(t) =
∑K

k=1 ak δ(t− tk),
that are located on a temporal interval of τ seconds, that is, tk ∈ [0, τ), for k = 1, . . . ,K.
Moreover, we acquire the signal with an exponential reproducing kernel ϕ(t) that is able
to reproduce P + 1 exponential functions, and therefore, the causal filter h(t) = ϕ(−t/T )

is assumed to have support [0, (P + 1)T ] as illustrated in Figure 3.1(b).

The locations of the Diracs are estimated from the phase of the parameters
{
uk = eiλtk/T

}
which are obtained from the measurements s[m] =

∑K
k=1 bk u

m
k . The range of the phase

of a complex number is [0, 2π) (or any other interval of size 2π). Therefore, in order to
maximise the precision of the reconstruction process and avoid ambiguities we establish
the following condition

0 ≤ tk < τ ⇔ 0 ≤ λtk/T < 2π, (3.20)
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Chapter 3. Sampling infinite streams of Diracs

which in turn leads to λ = 2πT/τ . Since we want to establish conditions for the critical
sampling rate, we require the order of the sampling kernel to be P + 1 = 2K. Moreover,
we want the temporal interval τ to be covered by exactly the same number of temporal
samples, that is, N = 2K = P + 1. We thus have that

λ =
2π

P + 1
and ωm =

π

P + 1
(2m− P ). (3.21)

The samples y[n] can be written as follows

y[n] = 〈x(t), ϕ(t/T − n)〉 =
K∑
k=1

ak ϕ

(
tk
T
− n

)
, (3.22)

and since the support of ϕ(t/T − n) is given by (3.13), the non-zero samples correspond
to indices

n = 1, . . . , 2(P + 1)︸ ︷︷ ︸
=2N=4K

. (3.23)

This is exactly twice as many samples as the critical sampling rate of 2K. Normally,
in order to achieve perfect reconstruction, all 2N samples have to be considered when
computing the measurements s[m], that is,

s[m] =

2(P+1)∑
n=1

cm,n y[n]. (3.24)

An important aspect of the reconstruction scheme is that it is based on the fact that
ϕ(t) is able to reproduce exponentials. Moreover, these exponentials are purely imaginary,
which leads to periodic functions. This periodicity is also reflected in the cm,n coefficients:

cm,n−(P+1) = eiωm(n−(P+1)) cm,0 = eiπP cm,n = (−1)P cm,n. (3.25)

Samples y[n] for n = 1, . . . , (P + 1) can also be written in terms of index n going from
(P + 1) + 1 to 2(P + 1) as follows

y[n− (P + 1)] =

〈
x(t), ϕ

(
t

T
− n+ (P + 1)

)〉
(3.26)

=

K∑
k=1

ak ϕ

(
tk
T
− n+ (P + 1)

)
(3.27)

=
K∑
k=1

ak ϕ

 tk +

=τ︷ ︸︸ ︷
(P + 1)T

T
− n

 . (3.28)

This expression is equivalent to sampling at instants of time t = nT , for n = (P + 1) +
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x(t) + h(t) = ϕ(−t/T )

t=nT

yp[n]

(−1)P δ(t− τ)

xp(t)

Figure 3.7.: Critical sampling device. A replica of the signal x(t) is delayed by τ seconds and multiplied
by (−1)P where P is the order of the sampling kernel. This replica, added to the original
signal form xp(t). This new signal is then filtered and sampled with the traditional FRI
acquisition device.

1, . . . , 2(P + 1), a stream of Diracs located at tk + τ ∈ [τ, 2τ), that is, the original stream
x(t) delayed by τ seconds. Let

y′[n] = y[n− (P + 1)] = 〈x(t− τ), ϕ(t/T − n)〉 , n = (P + 1) + 1, . . . , 2(P + 1). (3.29)

From (3.25) and (3.29) it follows that

s[m] =

2(P+1)∑
n=1

cm,n y[n] =

2(P+1)∑
n=P+2

cm,n ((−1)P y′[n] + y[n]) (3.30)

=

2(P+1)∑
n=P+2

cm,n

〈
(−1)P x(t− τ) + x(t), ϕ

(
t

T
− n

)〉
. (3.31)

We denote by xp(t)
def
= (−1)P x(t−τ)+x(t) the analogue signal that results from adding

to the original signal x(t) a delayed and weighted version of it. By considering that we
have imposed P + 1 = 2K, we can rewrite the previous expression as follows

s[m] =

n0+2K∑
n=n0+1

cm,n

〈
xp(t), ϕ

(
t

T
− n

)〉
︸ ︷︷ ︸

def
= yp[n]

=

n0+2K∑
n=n0+1

cm,n yp[n], m = 0, 1, . . . , P, (3.32)

where n0 = P + 1. Note that we only require N = 2K temporal samples yp[n] that result
from sampling the signal xp(t). The measurements s[m] in (3.32) are identical to the s[m]

values in (3.8) obtained from 4K samples y[n] after filtering and sampling x(t). We can
thus conclude that perfect reconstruction of K Diracs is achievable from only 2K temporal
samples given by the acquisition device illustrated in Figure 3.7.

Figure 3.8 depicts the signals involved in the sampling process of a stream of K = 4

Diracs. Here (a) and (b) illustrate the original signal x(t) and the samples y[n] that are
used in the traditional FRI setup. In order to achieve perfect reconstruction the samples
y[n] have to capture the region where y(t) is non-zero and lead to 4K = 16 non-zero
samples. The critical sampling scheme presented in this section is based on constructing
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Figure 3.8.: (a) Stream of K = 4 Diracs located in a temporal interval τ = 4 s. The traditional sampling
scheme illustrated in (b) requires N = 4K = 16 temporal samples y[n]. (c) intermediate
signal xp(t) of the critical sampling device illustrated in Figure 3.7. (d) Perfect reconstruction
is achieved from only 2K = 8 temporal samples.

first the signal xp(t) in the continuous-time domain, which is illustrated in (c). In this case
perfect reconstruction is achieved with only the 2K samples that are depicted in (d).

3.6. Summary

In this chapter we have presented a fast sequential algorithm to retrieve infinite streams of
Diracs in noiseless and noisy environments. In the noiseless case, perfect reconstruction is
achieved. In the noisy scenario we propose to retrieve sequentially groups of K Diracs and
to retain only those Diracs whose locations have been consistently estimated in overlapping
sliding windows. We have showed that the algorithm is able to process 10K samples in
about 100 seconds and can retrieve with high accuracy 1000 Diracs even in very low SNR
regimes.

We have also presented an alternative acquisition device that is able to achieve perfect
reconstruction of bursts of K Diracs from only 2K temporal samples. This corresponds to
the critical sampling rate since 2K parameters have to be estimated: K amplitudes and
K delays. This approach takes advantage of the fact that the exponential functions that
are reproduced by the sampling kernel are periodic.
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Chapter 4.

Neural activity monitoring from two-photon
calcium imaging

Inferring the times of sequences of action potentials (spike trains) from neurophysiological
data is a key problem in computational neuroscience. The detection of action potentials
(APs) from two-photon imaging of calcium ion concentration offers certain advantages over
traditional electrophysiological approaches, as up to thousands of spatially and immunohis-
tochemically defined neurones can be recorded simultaneously. However, due to noise, dye
buffering and the limited sampling rates in common microscopy configurations, accurate
detection of APs from calcium time series has proved to be a difficult problem. Here we
present a novel approach to the problem making use of FRI theory.

A calcium transient is a rapid increase of calcium ion concentration in a cell which peaks
and gradually decreases during action potentials. For calcium transients well fit by a single
exponential, the problem is reduced to reconstructing a stream of decaying exponentials.
Signals made of a combination of exponentially decaying functions with different onset
times are a subclass of FRI signals, for which much theory has recently been developed by
the signal processing community. In this chapter we develop an algorithm based on the
use of FRI theory to retrieve the timing of APs from calcium transient time series. The
final algorithm is fast, non-iterative and parallelisable. Spike inference can be performed in
real-time for a population of neurones and does not require any training phase or learning
to initialise parameters. The algorithm has been tested with both real data (obtained by
simultaneous electrophysiology and multiphoton imaging of calcium signals in cerebellar
Purkinje cell dendrites), and surrogate data, and outperforms several recently proposed
methods for spike train inference from calcium imaging data.

0This chapter includes research conducted jointly with Prof Dragotti, Dr Schultz and Dr Urigüen and
lead to the following publications [3, 12]. All the real data that has been used in this work was
acquired by Dr Schultz and his team. The extension of the FRI framework to decaying exponentials
was derived by Dr Urigüen. The code to reproduce the results presented in this chapter is available
online: https://github.com/jonativia/thesis.
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Chapter 4. Neural activity monitoring

4.1. Introduction

Understanding how information processing occurs in neural circuits is one of the principal
problems of systems neuroscience. Information is encoded in the firing of action potentials
(APs, or spikes) by individual neurones, and information processing involves the coordi-
nation of action potential firing by large populations of neurones organised into neural
circuits. Key processing steps are thought to occur on the level of local microcircuits that
contain on the order of 1,000−10,000 cells. These local circuits form highly connected
three-dimensional networks [64]. To understand neural information processing, we thus
must monitor the activity of neural circuits at a spatial resolution sufficient to resolve
many individual neurones, and a temporal resolution sufficient to resolve individual action
potentials on individual experimental trials. Of the currently available techniques for con-
ducting neurophysiological experiments, only multiphoton calcium imaging [65–68] and
multielectrode array electrophysiology [69–71] offer this capability. Of these, only mul-
tiphoton calcium imaging currently allows precise three-dimensional localisation of each
individual monitored neurone within the region of tissue studied, in the intact brain.

During an action potential, the difference in electric potential between the interior and
the exterior of a neurone rapidly rises and falls. These electric potential differences are
induced by ion concentration gradients that are controlled by ion channels present in the
membrane of the neurones. The occurrence of action potentials can therefore be inferred
by measuring changes in intracellular concentration of calcium ion [72]. In order to monitor
cellular activity, neurones must be labelled with a fluorescent Ca2+ indicator, and a number
of approaches have been used to do this. Single cells can be labelled by filling the cell with
dye during a whole-cell or intracellular recording [73, 74]. Alternatively, populations of
neurones can be simultaneously labelled with acetoxy-methyl (AM) ester calcium dyes
[68], allowing simultaneous monitoring of action-potential induced calcium signals in a
plane [75] or volume [64] of tissue. To investigate information processing in neural circuits,
it is necessary to relate these calcium signals to the properties of the spike trains fired by the
neurones, ideally by detecting the times of occurrence of spikes with single action potential
resolution. A number of methods have previously been used to detect spike trains from
calcium imaging data, including thresholding the first derivative of the calcium signal [72],
and the application of template-matching algorithms based on either fixed exponential [76–
78] or data-derived [79, 80] templates. Machine learning techniques [81] and probabilistic
methods based on sequential Monte Carlo framework [82] or fast deconvolution [83] have
also been proposed.

Some broadly used methods such as template matching or derivative-thresholding have
the disadvantage that they do not deal well with multiple events occurring within a time
period comparable to the sampling interval. Unfortunately, given that laser-scanning two-
photon imaging systems are largely limited to scan rates of 8-30 Hz when frame-scanning
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with sufficient spatial resolution to capture many neurones, and that neurones in many
brain areas have a propensity to fire spikes in bursts, this is a relatively common occur-
rence in neurophysiological calcium signals. Bursts of spikes have been found to convey
information with high reliability in some sensory systems [84, 85], and have been suggested
to carry distinct sensory signals [86]. It is thus desirable to develop calcium transient detec-
tion algorithms that accurately detect multiple spike calcium events. As there is a trade-off
between the area of tissue imaged and signal-to-noise ratio (zooming in on a region of tissue
allows the collection of more photons per neurone, thus offering better signal-to-noise ratio,
but limits the number of neurones that can be studied) and similarly between sampling
rate and the area of tissue that can be imaged, it is desirable to improve algorithms for
the detection of action potentials from calcium fluorescence time series.

In this chapter we present an extension to the FRI theory to sample and reconstruct
streams of decaying exponentials. Since APs in calcium imaging data are well modelled
by decaying exponentials, in the absence of noise, the proposed FRI algorithm perfectly
retrieves the locations of APs using Prony’s method. We then combine this approach
with a double consistency sliding window technique that improves performances in noisy
scenarios. To reconstruct the time series we construct a Toeplitz matrix from the samples.
The key characteristic of this matrix is that, in the noiseless case, it is rank deficient,
and its rank is always equal to the number of APs in the observation window. We run
the algorithm twice, firstly with a large time window to estimate the number of spikes by
SVD, and secondly, with a time window containing only a small number of samples where
we assume that a single spike is observed. In both cases, the sliding window approach is
based on the theory presented in the previous chapter. We construct a joint histogram of
the retrieved locations with the two different window sizes. The final spike time estimates
are obtained from histogram peaks, corresponding to consistent positions among different
windows.

The proposed algorithm is robust in high noise scenarios, and fast enough to allow real-
time spike train inference for tens of neurones. We show that for surrogate data with a
temporal resolution of 27 Hz and a SNR of 10 dB the algorithm presents a spike detection
rate above 95 % with a false-positive rate below 0.02 Hz. Moreover, this algorithm is able
to retrieve the spike locations with a precision higher than the temporal resolution of the
acquired data.

4.2. Methods

4.2.1. Experimental methods

The data used in this study, and the experimental methods used to collect them, have
been described in [79]. The data was provided by Professor Simon R. Schultz and his team
from the Bioengineering Department at Imperial College London. Briefly, Sprague-Dawley
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rats (P18-P29) were anaesthetised with urethane (1.2 g/kg) or with ketamine (50 mg/kg)
/ xylazine (5 mg/kg). A craniotomy was made over area Crus IIa of the cerebellum,
filled with 1.5-2 % agarose in Ringer’s solution, and a coverslip clamped above the agarose
to suppress brain movement, while leaving a window open for microelectrode access. A
micropipette was inserted to a depth of around 100-200 µm below the pia mater, and AM-
ester calcium dye (Oregon Green BAPTA-1 AM) pressure-ejected. Imaging was performed
from 30 minutes following dye ejection, using a two-photon laser scanning microscope
(Prairie Technologies). A pulsed Titanium:Sapphire laser was used for excitation, operating
at 810 nm (MaiTai, SpectraPhysics) with < 100 fs pulse width and 80 MHz repetition rate,
and focused using a 40x, 0.8 Numerical Aperture objective lens (Olympus).

Image frames were acquired using ScanImage software [87] for MATLAB (MathWorks).
Raster lines making up each frame were of 2 or 2.3 ms duration, resulting in frame rates
of 7-16 Hz. For each region imaged, a high resolution reference image was first acquired
(512x512 pixels, average of five frames), followed by movies at 256x64 or 256x32 pixel
resolution. Fluorescence time series for each neurone were obtained by defining regions of
interest (ROIs) using a combination of human operator and spatial independent component
analysis [79, 88], and for each time bin, averaging the values of each pixel within the ROI.

To validate our event detection algorithms, targeted extracellular recordings from im-
aged neurones were simultaneously performed. Patch micropipettes (∼4 MΩ) were filled
with artificial cerebrospinal fluid (ACSF), together with Alexa 594 to aid visualisation of
the pipette. The pipette was navigated until the tip was adjacent to a Purkinje cell soma
or dendrites and complex spikes could be observed with high signal-to-noise ratio (SNR).
We emphasise that we are using two-photon targeted (visualised) juxtacellular recording,
using a patch-pipette filled with dye. Using this technique, we can observe that the pipette
is attached to a cell in which fluorescence changes are observed for each action potential,
meaning that there is no ambiguity concerning which cell is being recorded from. Electro-
physiological and imaging data were then simultaneously acquired from the same neurone
(Figure 4.1).

4.2.2. Mathematical model

At time t we consider the fluorescence measurement for a given ROI to be proportional to
the calcium concentration plus additive Gaussian noise [82]:

F (t) = α[Ca2+](t) + β + ε(t), (4.1)

where [Ca2+](t) is the intracellular calcium concentration at time t, constant β represents
the baseline calcium concentration of a particular cell and ε(t) the noise at time t. The
noise is independently and identically distributed according to a normal distribution with
zero mean and σ2 variance.
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(a) (b) (c)

(d)

0.1 ΔF/F
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40 µm

40 µm

Figure 4.1.: Simultaneous multiphoton calcium imaging with electrophysiology. (a) Maximum intensity
projection showing juxtacellular recording from a Purkinje cell dendrite. The tissue was
loaded with Oregon Green BAPTA-1 AM calcium indicator dye (green), and the pipette
filled with Alex 594 (red) to aid visualisation during targeted recording. (b) Imaged loca-
tion, corresponding to grey horizontal line in (a). (c) Mask showing region of interest for
the recorded Purkinje cell. (d) Simultaneous acquisition of fluorescence time series (shown
unfiltered) and dendritically recorded complex spikes (CS), showing CS-driven calcium tran-
sients.

The signal that we consider is the normalised fluorescence

∆F (t)/F0 =
F (t)− F0

F0
, (4.2)

where F0 is the average background pre-stimulus fluorescence.

To model mathematically the calcium dynamics [Ca2+](t), some assumptions have to be
made [82]. We assume that when a neurone is activated, the calcium concentration jumps
instantaneously, and each jump has the same amplitude A. This is justified by the fact that
the amount of calcium influx per spike is constant [72]. The concentration then decays
exponentially with time constant τ , to a baseline concentration. The one-dimensional
fluorescence signal can therefore be characterised by convolving the spike train with a
decaying exponential and adding noise:

∆F (t)/F0 = A
∑
k

e−(t−tk)/τ 1t≥tk + ε(t) (4.3)

= A
∑
k

δ(t− tk) ∗ e−t/τ 1t≥0 + ε(t), (4.4)

where the index k represents different spikes and the different tk their occurrence times.
Hence, the goal of the spike detection algorithm is to obtain the values tk.
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4.2.3. Spike detection

Our spike detection algorithm is based on connecting the calcium transient estimation
problem to the theory of FRI signals. Streams of Diracs are an idealization of streams of
pulses. Although this example may seem limited, the framework presented in the previous
chapters can be extended to a variety of signals. For instance, to calcium concentration
measurements obtained from two-photon imaging to track the activity of individual neu-
rones. In this model, the time delays correspond to the activation time of the tracked
neurone, that is, the action potentials (AP).

Extension of FRI theory to streams of decaying exponentials

Based on the traditional FRI framework presented in Chapter 2, we now develop a method
to sample and reconstruct streams of decaying exponentials. We assume that there is a
finite unknown number K of spikes within the observation period. Therefore the noiseless
calcium concentration variation, denoted c(t), can be expressed as

c(t) =

K∑
k=1

ak e−(t−tk)/τ 1t≥tk =

K∑
k=1

ak δ(t− tk)︸ ︷︷ ︸
def
= x(t)

∗ e−αt 1t≥0︸ ︷︷ ︸
def
= pα(t)

= x(t) ∗ pα(t), (4.5)

where α def
= 1/τ . The function c(t) is also an FRI signal since it is perfectly determined

by a finite number of parameters: {(ak, tk)}Kk=1. Let us assume that c(t) is sampled with
the acquisition device described in Section 2.4, that is, an exponential reproducing kernel
h(t) = ϕ(−t/T ), followed by a sampling stage. The resulting samples y[n] can be expressed
as the inner product between c(t) and ϕ(t/T − n):

y[n] =

〈
c(t), ϕ

(
t

T
− n

)〉
. (4.6)

It is easy to verify that these samples are equivalent to sampling the stream of Diracs x(t)

with the filter pα(−t) ∗ ϕ(t/T − n):

y[n] =

∫ +∞

−∞

[∫ +∞

−∞
x(τ) pα(t− τ) dτ

]
ϕ(t/T − n) dt (4.7)

=

∫ +∞

−∞
x(τ)

∫ +∞

−∞
pα(t− τ)ϕ(t/T − n)︸ ︷︷ ︸

=pα(−t)∗ϕ(t/T−n)

dtdτ (4.8)

=

〈
x(t), pα(−t) ∗ ϕ

(
t

T
− n

)〉
. (4.9)

Note that since pα(t) is of infinite support, the equivalent filter pα(−t) ∗ϕ(t/T −n) is also
of infinite support. This leads to an infinite number of non-zero samples y[n] even if the
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ϕ(−t/T )

t=nT

G(z) z[n]
c(t) y(t) y[n]

ψ(−t/T )

t=nT

z[n]
x(t)

Figure 4.2.: Sampling stream of decaying exponentials and equivalent problem. The first row represents
the sampling scheme for a stream of decaying exponentials, the block G(z) represents the
discrete-time filter 1 − e−αT z−1 which leads to samples z[n] = y[n] − eαT y[n − 1]. The
second row represents the equivalent problem that leads to the same samples z[n] when the
signal x(t) is a stream of Diracs with the same locations and amplitudes as the decaying
exponentials in c(t).

spikes are localised in time.

Let us also assume that the exponentials reproduced by the sampling kernel eiωmt can
be expressed as ei(ω0+λm)t, with m = 0, 1, . . . , P . Next, we show that sampling the signal
in (4.5) with ϕ(−t/T ) and computing the following finite differences

z[n] = y[n]− e−αT y[n− 1], (4.10)

is equivalent to the sequence that would result from sampling the stream of Diracs x(t) =∑K
k=1 ak δ(t− tk) with the following kernel

ψ(t)
def
= β−αT

(
− t

T

)
∗ ϕ(t) (4.11)

where β−αT (−t/T ) is an E-spline with parameter −αT [3]. The parameter α is the constant
of the exponential in (4.5). The sampling scheme for the stream of decaying exponentials
and the equivalent problem of sampling a stream of Diracs are illustrated in Figure 4.2.

The weighted differences can be written as

z[n] =

〈
x(t), pα(−t) ∗ ϕ

(
t

T
− n

)
− e−αT pα(−t) ∗ ϕ

(
t

T
− (n− 1)

)〉
(4.12)

since the inner product is linear. Applying Parseval’s relation we can also write

z[n] =
1

2π

〈
x̂(ω),F

{
pα(−t) ∗ ϕ

(
t

T
− n

)
− e−αT pα(−t) ∗ ϕ

(
t

T
− (n− 1)

)}〉
. (4.13)

By noting that F {pα(−t)} = 1
α−iω and that F {ϕ(t/T − n)} = |T | ϕ̂(ωT ) e−iωnT , the
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second term of this inner product can be expanded as follows:

F
{
pα(−t) ∗ ϕ

(
t

T
− n

)
− e−αT pα(−t) ∗ ϕ

(
t

T
− (n− 1)

)}
(4.14)

= F {pα(−t)} F
{
ϕ

(
t

T
− n

)
− e−αT pα(−t) ∗ ϕ

(
t

T
− (n− 1)

)}
(4.15)

=
1

α+ iω
T ϕ̂(ωT ) e−iωnT

[
1− e−αT eiωT

]
. (4.16)

Note that the absolute value of T has been replaced by T , this is justified by the fact that
this value is always real and positive in our context. We thus have that

z[n] =
1

2π

〈
x̂(ω),

1− e−(α−iω)T

α− iω
T ϕ̂(ωT ) e−iωnT

〉
. (4.17)

In the second part of the inner product we can recognise an expression which is similar to
the Fourier transform of an E-Spline with parameter α, β̂α(ω) = 1−eα−iω

iω−α (see (2.41)). We
have that

β−αT

(
− t

T

)
=

eαt, −T < t ≤ 0,

0, otherwise,

F−→
∫ 0

−T
e(α−iω)t dt =

1− e−(α−iω)T

α− iω
. (4.18)

Therefore, applying Parseval’s theorem again yields

z[n] =

〈
x(t), β−αT

(
− t

T

)
∗ ϕ
(
t

T
− n

)〉
. (4.19)

We thus have that
z[n] =

〈
x(t), ψ

(
t

T
− n

)〉
, (4.20)

where ψ(t) is defined as in (4.11). This new kernel, ψ(t), is still able to reproduce expo-
nentials [41]. That is, there exists coefficients dm,n such that∑

n

dm,n ψ(t− n) = eiωm t. (4.21)

Note that these coefficients dm,n are in general different to the cm,n coefficients that corre-
spond to the exponential reproducing kernel ϕ(t) of the actual acquisition device.

The problem of estimating the calcium transients and the problem of reconstruct-
ing an FRI signal are now equivalent. In fact, we now have a set of samples z[n] =

〈x(t), ψ(t/T − n)〉 which are equivalent to those that we would obtain if we were sampling
the stream of Diracs x(t) with the exponential reproducing kernel ψ(t). We can therefore
apply the FRI techniques described in the previous chapters to retrieve the parameters
of these Diracs which correspond exactly to the locations and amplitudes of the decaying
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(c) Reconstructed signal

Figure 4.3.: Sampling of a stream of decaying exponentials and perfect reconstruction. Since x(t) is an
infinite duration signal, samples y[n] are non-zero for n ≥ n0, for some n0 that depends on the
location of the first decaying exponential. However, if the number of decaying exponentials
is finite, the number of non-zero samples z[n] = y[n]− e−αT y[n− 1] is also finite since they
are equivalent to sampling a stream of Diracs with a compact support kernel.

exponentials in c(t). Specifically, we compute the new measurements s[m]

s[m] =
∑
n∈Z

dm,n z[n]. (4.22)

Note that the stream of decaying exponentials is acquired with the sampling kernel ϕ(t).
However, the coefficients dm,n that are applied to the samples z[n] correspond to the
coefficients in (4.21) of the equivalent sampling kernel ψ(t) that is defined in (4.11). From
s[m] we build the Toeplitz matrix S as discussed in Section 2.4 and then apply Prony’s
method to retrieve the spikes. Figure 4.3 illustrates the perfect reconstruction of a stream
of K = 4 decaying exponentials. We summarise this inference method in Algorithm 2.

An important aspect of this approach is that the number of non-zero samples z[n] is
finite when the sampling kernel ϕ(t) is of compact support. This is not the case for the
samples y[n] as can be observed in Figure 4.3. This aspect allows the algorithm to perform
the computation of the spike locations in real-time since the summation in Equation (4.22)
is limited to a finite number of indices n.

Another relevant feature of this algorithm is that, in the noiseless scenario, we do not
need to know the number of spikes. The number of spikes K can be obtained from the
rank of the Toeplitz matrix built from the measurements s[m] as has been described in
Chapter 2.

Spike inference in practice

Due to the presence of noise, real data leads to Toeplitz matrices S which are not rank
deficient (see Algorithm 2 for details about how build S). Moreover, the number of spikes
K within a time interval is unknown and cannot be estimated from the rank of matrix S.
Here, we describe a robust spike detection algorithm that is based on Algorithm 2 and the
principles to sample infinite streams presented in the previous chapter.

In the noiseless case, the matrix S has rank K. The SVD of this matrix has therefore
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Algorithm 2 FRI spike train inference (noiseless scenario)

Input: c(t): calcium concentration.
Output: {tk}Kk=1: spike locations.
1: Filter with exponential reproducing kernel: y[n] = 〈c(t), ϕ(t/T − n)〉.
2: Compute weighted finite differences: z[n] = y[n]− e−αT y[n− 1].
3: Obtain new measurements to build Toeplitz matrix: s[m] =

∑
n dm,n z[n].

4: Estimate number of spikes K from Toeplitz matrix S.
5: Compute the annihilating filter: S h = 0.
6: Retrieve locations from roots of the annihilating filter: H(z) =

∑K
m=0 h[m] z−m =∏K

k=1

(
1− uk z−1

)
, where uk = eiλtk/T .

only K non-zero singular values. When noise is added to the input signal, the matrix
S becomes full rank and if we do not have prior knowledge of K, estimating its value
becomes part of the problem. In a low noise scenario and when K is not zero, K can be
estimated from the singular values of S. In this case, the contribution of the signal in
the singular value of S is more important than the contribution of the noise, and a clear
separation can be established to estimate the number of singular values that are due to the
signal. Figure 4.4 illustrates the empirical estimation of the threshold that has been used
to calculate the number of spikes from the singular values of the Toeplitz matrix S. This
threshold has been set to 0.3. Specifically, we keep the nth singular value if its normalised
value with respect to the largest singular value is bigger than 0.3. For low levels of noise,
the number of singular values above this threshold is a good estimate of the rank of the
corresponding noiseless matrix. Another effect of the noise is that Prony’s or matrix pencil
methods do not lead to the exact solutions. These solutions can be made more accurate by
applying the two denoising strategies presented in Section 2.5: “Cadzow+Prony” and the
robustified matrix pencil. Both approaches lead to similar performances whilst the second
is computationally more efficient, it is thus the method we have applied in our simulations.

Correct estimation of the number of spikes within the time window where we are search-
ing for spikes is crucial to obtain good performances. The previously described approach,
where K is estimated from the singular values of the matrix S, has two main issues:
firstly, we never detect the K = 0 case, and secondly, in very noisy scenarios (low SNR),
the estimation is not very accurate. To overcome these inaccuracies we perform a double
consistency analysis. In order to extract the spikes from a long data stream, the signal
is sequentially analysed with a sliding window. For each position of the window, we first
estimate the number of spikes within the window, and we then extract the locations of the
corresponding spikes. Figure 4.5 illustrates this procedure. If the window has size ∆t and
the window progresses by steps of tstep, the time interval processed within the ith window
is

[t0 + (i− 1) tstep, t0 + (i− 1) tstep + ∆t), (4.23)
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(a) K = 2 (b) K = 3 (c) K = 5

Figure 4.4.: Singular values with noise, empirical threshold. Normalised singular values of Toeplitz ma-
trices where the elements are given by a sum of exponentials with K = 2 (a), K = 3 (b) and
K = 5 elements (c). The horizontal axes represent different levels of noise and the index of
the singular values. The vertical axis corresponds to the value of the normalised singular val-
ues. For each level of noise, 100 different realisations of noise have been generated. For each
realisation of noise, the singular values of the matrix have been computed and normalised
with respect to the largest one. The surface is obtained by averaging the normalised singular
values over the different realisations for a particular level of noise. The red horizontal plane
illustrates the threshold that has been empirically established at a value of 0.3.

where t0 is the instant of time of the first sample of the data stream. We select tstep to be
equal to the temporal resolution of the data, so the window advances sample by sample.
Consecutive windows overlap to guarantee that a spike is detected among different windows.
Figure 4.6 illustrates this sequential processing of a real fluorescence sequence. In Figures
4.6(a) and 4.6(b) the red dots represent the retrieved locations for different positions of the
sliding windows; the vertical axis represents the index of the window, and the horizontal
axis the time location of the retrieved spikes. Figure 4.6(a) corresponds to a window size
of 32 samples and Figure 4.6(b) to a window size of 8 samples. The blue lines represent the
locations of the real spikes, this is the ground truth data. When a spike is detected among
different windows, we can see that the red dots are aligned vertically because different
windows output the same location.

The double consistency approach consists in running the algorithm twice following two
different strategies in each execution. First, with a sufficiently large time window (32
samples of the input signal) we estimate the number of spikes from the singular values of
the matrix S. Second, with a sufficiently small window (8 samples of the input signal)
we assume that we always have a single spike within this observation window. In both
cases, for each position of the sliding window, the algorithm outputs the locations of the
spikes assumed to be within that window. When the retrieved locations correspond to real
spikes, the locations we retrieve are stable among the different positions of the window
that capture these spikes, but when the locations correspond to noise they are not stable.
We construct a joint histogram of the retrieved locations with the two different window
sizes. This is shown in Figure 4.6(c). The locations of the real spikes are estimated from
the peaks of the histogram. These peaks correspond to positions that are consistent among
different windows. Figure 4.6(d) shows the fluorescence data with the real and the detected
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(i− 1)th window

ith window

(i+ 1)th window

Algorithm 3 {tk}Kk=1

Figure 4.5.: Fluorescence signal processing with a sliding window. For each time interval, the number of
spikes within that interval is first estimated and then the location of each spike is retrieved.

spikes. The algorithm is summarised in Algorithm 3.

The sizes of the two windows of the double consistency approach have been empirically
adjusted in order to maximise the performance of the algorithm. If larger windows are
used more information about each spike is captured, however, the drawback of increasing
the size of the window is that the estimate of the number of spikes that are present within
the window becomes less accurate. It is thus important to keep these numbers within
reasonable values. A window of size 32 resulted in a good detection rate but with a
considerable amount of false positives. A window of size 8 presented a very low number of
false positives but with the disadvantage of reducing the detection rate. The combination
of the two lead to the best performances.

Algorithm 3 FRI spike train inference (noisy scenario)

Input: {c(nTres)}i+Nn=i+1: ith windowed calcium sequence (N = 32 or 8).
Optional parameter K: number of spikes.

Output: {tk}Kk=1: spike locations.
1: Filter with exponential reproducing kernel: y[n] = 〈c(t) , ϕ(t− n)〉.
2: Compute weighted finite differences: z[n] = y[n]− y[n− 1] e−αT .
3: Obtain new measurements: s[m] =

∑
n dm,n z[n].

4: Create Toeplitz matrix S from measurements s[m].
5: if K is not fixed then
6: Compute normalised singular values of S.
7: K is the number of singular values greater than 0.3.
8: end if
9: Create matrix S0 from S by dropping first row.
10: Create matrix S1 from S by dropping last row.
11: Retrieve {uk}Kk=1 from the eigenvalues of the generalized eigenvalue problem S0−µS1.

12: Obtain {tk}Kk=1 from uk = eiλtk .
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Figure 4.6.: Double consistency spike search with real data. In (a) and (b) the dots represent the detected
locations and the gray lines the locations of the original spikes for two different window sizes.
In (a) the algorithm estimates the number of spikes within the sliding window (window size
32 samples). In (b) the algorithm assumes K = 1 for each position of the sliding window
(window size 8 samples). (c) shows the joint histogram of the detected locations. (d) shows
the fluorescence signal with the original and the detected spikes.
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4.2.4. Generating surrogate data

In order to investigate the changes in performance of the spike detection algorithm in
terms of parameters such as the signal-to-noise ratio and the sampling frequency, we have
generated surrogate data with similar properties to the experimental data. We assume
that the spike occurrence follows a Poisson distribution with parameter λ spikes/s. Exper-
imental data presents occurrences between 0.45 and 0.5 spikes per second. The probability
of having k spikes in the interval considered in parameter λ (one second) is given by the
probability mass function of the Poisson distribution:

fλ(k) =
λk e−λ

k!
. (4.24)

To generate a spike train for a time interval L we divide this interval in N slots. Each slot
corresponds to a time interval of ∆t = L

N seconds. The λ′ parameter that corresponds to
this new time interval is λ′ = λ∆t. We then create a vector k = (k1, . . . , kN ) of size 1×N
where each ki is a realisation of the independent random variables Ki ∼ Pois(λ′). The ith
element of this vector, ki, gives the number of spikes that occurred during the ith time
slot. We then have to generate the precise instant of time when the spike occurred. For a
given time slot, we generate the ki spike locations according to a uniform distribution. The
total number of spikes in the time interval L is K =

∑N
i=1 ki. Once we have generated the

locations of the K spikes (tk)
K
k=1 the waveform given by the exponential decaying model

is:

c(t) = A

K∑
k=1

e−α(t−tk) 1t≥tk (4.25)

where α = 1/τ . We then generate the simulated fluorescence sequence sampling Equa-
tion (4.25) at instants t = nTres for a temporal resolution of Tres seconds. The data
sequence is slightly smoothed before sampling in order to have a differentiable function.
We can then add white Gaussian noise to satisfy a certain SNR. The SNR is computed
as the ratio between the power of the signal and the power of the noise, expressed in the
logarithmic decibel scale. Figure 4.7 shows an example of generated data with a SNR of
15 dB.

4.2.5. Real-time processing

The algorithm is fast enough to perform real-time spike inference. The most demanding
stages in terms of computation requirements are the estimation of the number of spikes and
the retrieval of the locations for each position of the sliding windows. The joint histogram’s
peak detection has a negligible complexity when compared to the previous stages. For
each new data sample the algorithm has to perform the number of spikes estimation and
locations retrieval for the 32 samples and 8 samples windows. Since previous locations are
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Figure 4.7.: Surrogate data. Temporal resolution Tres = 147.2 ms and SNR = 15 dB.

stored in memory, the histogram can be computed sequentially.

Performance measurements have been done for the current MATLAB implementation
using a commercial laptop (tested on a 2.5 GHz Intel Core i5 CPU). In our setup, the
32 samples window takes on average (value obtained averaging the execution time of 1000
windows) 1.25 ms to perform the number of spikes estimation and location retrieval, and
the 8 samples window takes 0.49 ms. Therefore, when a new data sample is available
the algorithm takes 1.74 ms to process it. The sampling period is 147.2 ms, the current
implementation can thus process up to 84 data streams in parallel. The algorithm requires
the samples from a whole window before being able to output a location. Therefore the
output has a maximum delay of 32 samples× 147.2 ms/sample = 4.71 s.

4.3. Results

In this section we present the performance of the spike detection algorithm with real and
surrogate data. The electrophysiological measurements give us a ground truth for the
spiking activity of the monitored neurone which allows measuring the performance of the
algorithm with real data. A detected spike is considered to correspond to a real spike if the
difference between the real location and the estimated location is smaller than or equal to
a threshold. We set this threshold to be equal to the temporal resolution of the data, Tres.
If we denote by tk the real location of a spike and t̃j an estimated location, we consider
that the real spike has been detected if t̃j ∈ [tk − Tres, tk + Tres]. When a spike is assumed
to correspond to a real spike, we can measure the error on the estimated location. From
this error measurement we obtain a mean squared error (MSE) of the overall algorithm.

A limitation of the real data is the temporal resolution, which is imposed by the frame
rate of the calcium imaging dataset. With the surrogate data we can control this resolu-
tion when we generate the data stream to measure the impact of this parameter to the
algorithm’s performance.
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Figure 4.8.: Algorithm’s performance measurement with surrogate data. The surrogate data contains
1000 spikes in a time interval of 2000 seconds. For each noise level, the experiment has been
repeated for 100 different realisations of the noise. (a) The success rate is measured as the
percentage of true spikes that have been correctly detected. (b) False positives are given as
number of false positives per second (Hz). (c) Standard deviation of the retrieved locations
with respect to the true locations.

4.3.1. Real data

The real data is a datastream of 133 seconds with a temporal resolution Tres = 0.147 s.
Hence there are 903 samples. This data stream contains 62 spikes at a rate of 0.466 Hz.

The sliding window algorithm is performed twice, first with a big window of 32 samples
estimatingK from the estimated rank of the S matrix (thresholding of the singular values),
and second with a small window of 8 samples and a fixed K = 1. The spikes are detected
from the resulting histogram of the union of the locations retrieved in both iterations. The
algorithm correctly detects 83.9 % of the spikes. The standard deviation of the locations
is 0.0503 s. There are a total of 9 false positives, this corresponds to a false positive rate
of 0.0598 Hz or 1.1 % if measured as the rate between false positives and total negative
samples.

4.3.2. Surrogate data

The real data presents a spike rate of 0.466 spikes per second. We have generated surrogate
data assuming that the spike occurrence follows a Poisson distribution with a parameter
λ = 0.5 spikes/s and a total number of 1000 spikes. The noiseless calcium concentration
signal has been generated once for a given spike distribution and with three different
temporal resolutions. To analyse the performance variation for different levels of noise
we have run the algorithm over 100 different realisations of noise for each level of SNR.
Figure 4.8 summarises the obtained performances.

From Figure 4.8 it can be seen that the success rate of the algorithm depends strongly
on the temporal resolution of the data. The higher the temporal resolution, the better the
spike detection rate. The real data we have analysed presents a low temporal resolution
because of the low frame rate of the calcium images ( 1

0.147s = 6.8 Hz), but recent publica-
tions [89, 90] show that the acquisition techniques are improving, with in some situations
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frame rates up to 125 Hz now available. At these frame rates, our algorithm presents suc-
cess rates above 95 %. The performances of the detection algorithm are not particularly
influenced by the noise for SNRs above 10 dB, and deteriorate slightly for lower SNRs.
Increasing temporal resolution has a minor drawback, the amount of false positives slightly
increases. However, the false positive rate is very low (about 15 false positives for a stream
of 2000 seconds represents a rate of false positives below 0.01 Hz).

4.3.3. Comparison with existing methods

Various methods for spike inference from two-photon imaging have been presented in recent
years, but to the best of our knowledge, none of them achieve these performances for real-
time processing. [78] present a method based on finding a least-square solution to fit the
observed fluorescence signal. With real data similar to ours, temporal resolution of 96
ms and neural activity with firing rate of 0.44 Hz, they obtain higher detection rates, 95
% detection of electrically confirmed AP with a false-positive rate of 0.012 Hz. However,
this method is very slow and is not suitable for real-time processing. It also has to be
noted that this data was acquired from cell bodies and our from dendrites. [81] describe
a new approach that combines principal component analysis and support vector machine.
This method requires a learning phase to tune some parameters. The results show similar
performances in terms of detection rate, with error rates < 10 %, but the precision of this
method is lower as only a fraction of the detected spikes are detected in the correct time
frame. [82] present a sequential Monte Carlo method to infer spike trains. Again, this
method is not suitable for real-time processing due to its high computational complexity.
[83] describe a fast nonnegative deconvolution filter to infer the most likely spike train
given the fluorescence. The code that implements this method in MATLAB is publicly
available and we have tested it with our data. The computational complexity of this
method is comparable to ours. The output of this algorithm is a probability between 0
and 1 of having a spike in a given time frame. Thresholding this probability vector is how
we decide if the neurone has been activated in a given time frame. The lower the threshold,
the higher the detection rate, but this also increases the false positive rate.

Figure 4.9 presents receiver operating characteristic (ROC) curves in order to com-
pare our algorithm (FRI) and the fast nonnegative deconvolution technique with surro-
gate data. We have also included simulation results for two other standard algorithms,
derivative-thresholding and filter and thresholding. The latter method filters the fluores-
cence sequence with a derivative of a Gaussian filter in order to smooth the noise and detect
spikes. All four methods have a thresholding stage to infer the spike train. A lower thresh-
old provides a higher success rate but with the penalty of having more false positives. The
simulations have been performed with the same spike train we generated to obtain the per-
formance measurements in Figure 4.8 and with the same realisation of the noise in all four
methods. We present the results for two different levels of noise. The two axis of the ROC
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Figure 4.9.: Simulations showing FRI algorithm achieving better performances in spike train inference
than the fast deconvolution technique from [83] and different filtering and thresholding ap-
proaches. (a) Surrogate data generated with a temporal resolution Tres = 147.2 ms and
SNR = 10 dB. There are total of 1000 spikes with a rate of 0.5 spikes per second. (b) Re-
ceiver operating characteristic (ROC) curves comparing FRI (solid line), fast deconvolution
(dashed line), derivative and thresholding (dashed-dotted line) and filtering and thresholding
(dotted) techniques. (c) and (d) present the results of the same experiment in a lower noise
scenario (SNR = 15 dB). The x and y axis are unitless as they present a ratio between true
positive or negative samples and obtained positive or negative samples.

curves are unitless as they present a ratio between true positive or negative samples and
obtained positive or negative samples. The surrogate data contains 1000 true spikes and
13587 samples (2000 s / Tres). Thus an operating point with a false positive rate of 0.01
and a true positive rate of 0.9 correctly detects 900 spikes but throws 126 false positives.
It can be observed that the FRI algorithm presents better performances although it has
to be noted that the fast deconvolution algorithm is faster. The time required to process
a 13600 samples stream (which corresponds to the 2000 seconds stream of surrogate data
in Figure 4.9(a)) is around 3.85 seconds for the fast deconvolution algorithm and around
23.64 seconds for the FRI algorithm.

With real data, FRI achieves a success rate of 83.9 % (52 true spikes correctly detected
out of 62) with only 9 false positives. To achieve similar success rates on the same data with
the fast deconvolution method, we obtain more than 100 false positives, this is more false
positives than true spikes. Derivative-thresholding presents more than 200 false positives
for a success rate of 83.9 % and filter and threshold more than 110 false positives.
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4.4. Summary

We have presented a novel spike inference technique based on FRI theory. Spikes are
detected from calcium transients in fluorescence measurements. To do this, the existing
FRI framework has been extended to a new class of signals that is formed by a stream
of decaying exponentials. The data obtained in this type of measurements presents low
temporal resolution and is corrupted with noise. To overcome these limitations we propose
a sequential non-iterative algorithm that is able to detect spikes in real-time. The proposed
algorithm achieves very high success rates with a low number of false positives. These
promising results are a direct consequence of the fact that the fluorescence sequence can
be parametrised as a signal recoverable in the FRI setup. FRI guarantees that the recovered
signal is within a specific model, and this strong prior is what makes this algorithm very
effective.

Techniques for spike train inference from two-photon imaging have begun attracting
substantial attention in recent years due to the promise of being able to monitor spike trains
from large numbers of localised neurones simultaneously. Improvements in acquisition
techniques and increasing temporal resolution demand efficient spike inference algorithms
to process all this information. Our algorithm is fast and parallelisable, and is thus well-
suited to this context.
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Chapter 5.

Sparsity according to Prony: average
performance analysis and phase transition

In the previous chapters we have considered the problem of reconstructing continuous-
time signals from sets of measurements. From now on we focus on reconstructing finite-
dimensional discrete-time signals from a projection on lower dimensional spaces. The
finite-dimensional counterpart of signals with finite rate of innovation are signals that have
a sparse representation in some orthonormal basis or union of bases [91–93].

Finding the sparse representation of a finite-dimensional signal in an overcomplete dic-
tionary has attracted a lot of attention over the past years, since many complex signals are
not well represented in orthonormal bases and larger dictionaries can achieve sparser rep-
resentations. Traditional approaches such as Basis Pursuit are based on relaxing the non-
convex `0-minimisation problem [94]. Recently, a new polynomial complexity algorithm,
ProSparse, has been presented [95]. ProSparse solves the sparse representation problem
when the dictionary is the union of Fourier and canonical bases and is based on Prony’s
method. The original paper presents a bound on the sparsity that guarantees that the
algorithm will find all the sparse representations that match a given observation provided
that the sparsity is below this bound. This is a worst case scenario, and empirical evidence
shows that the algorithm is able to find the correct sparse solutions with high probability
well beyond the deterministic bound. Here, we present a probabilistic average-case analysis
that characterises a sharp phase transition behaviour of the algorithm.

5.1. The sparse representation problem

Consider a matrix D ∈ CN×L with N < L and define the underdetermined linear system
of equations

y = Dx, (5.1)

0This chapter includes research conducted jointly with Prof Dragotti and Prof Lu who are the authors of
the algorithm analysed in this chapter and has lead to the following publications [1, 5].
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where y ∈ CN corresponds to the observed signal, and x ∈ CL to a representation of y
in the dictionary D. The columns of the matrix D are called atoms. The goal is to find
an appropriate representation x that matches the observation y. The system in (5.1) has
more unknowns than equations, and therefore, there exist infinitely many solutions if y
belongs to the span of the columns of D, or there is no solution if y does not belong to
that span. We assume that the matrix D has full rank N which avoids the no solution
problem since then the columns of the matrix span the entire space CN .

We are interested in finding the sparsest solution, that is, a vector x that has the fewest
non-zero elements and satisfies (5.1). This is formalised as follows:

(P0) : arg min
x̃∈CL

‖x̃‖0 s.t. y = D x̃, (5.2)

where ‖x‖0
def
= |{n : |x[n]| 6= 0}| counts the non-zero elements in x denoted by x[n]. Note

that ‖·‖0 is not a norm because it does not satisfy the homogeneity property. Solving (P0)

directly is intractable since the `0-“norm” is nonconvex. Moreover, for general dictionaries,
finding the sparse representation is NP-hard [96].

One way to relax (P0) is by replacing the `0-“norm” with the `1-norm which is convex.
This leads to the following convex optimisation problem:

(P1) : arg min
x̃∈CL

‖x̃‖1 s.t. y = D x̃. (5.3)

This approach is known as Basis Pursuit and was proposed by Chen et al. in 1998 [94].
It is important to note that (P1) can be solved using polynomial complexity algorithms
[97]. The sparsity problem can also be solved with greedy algorithms such as Orthogonal
Matching Pursuit [92, 98, 99] which is based on picking the atoms that are most correlated
with the residue at each iteration. Greedy algorithms present a lower computational cost
but are not designed to solve the optimisation problems mentioned above. However, if x
is sparse and the columns of D are sufficiently incoherent, the OMP finds the sparsest
solution [100] In the next chapter we also present some other algorithms that are better
suited for the noisy case. We refer the reader to Elad’s book [101] for a comprehensive
overview of the sparse representation problem.

In this chapter we consider the problem of finding theK-sparse representation of a vector
y from the union of two dictionaries Φ and Ψ, that is, D = [Φ,Ψ]. The use of union
of dictionaries is motivated from applications such as image processing where patches of
images can be represented in a more efficient manner if one dictionary accounts for the
discontinuities and edges in the image and the other dictionary for oscillatory components
that might arise in textures. If we express the vector x in terms of the elements of each
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Figure 5.1.: Comparison of bounds for sparse signal representation in union of Fourier and canonical
bases for N = 256.

dictionary we have that

y =
[
Φ Ψ

] [xp
xq

]
= Φxp + Ψxq. (5.4)

Let
Kp = ‖xp‖0 and Kq = ‖xq‖0 (5.5)

be the number of atoms from Φ and Ψ respectively. If we denote by K the overall sparsity
of the vector x, we have that

‖x‖0 = ‖xp‖0 + ‖xq‖0 = Kp +Kq = K. (5.6)

Let µ(D) denote the mutual coherence of a dictionary [100, 102]. This is defined as

µ(D)
def
= max

1≤k,`≤L,k 6=`

∣∣dHk d`∣∣
‖dk‖2 ‖d`‖2

. (5.7)

The mutual coherence characterises the dependency between the atoms of the dictionary
D. For the case of the overcomplete dictionary built from the union of Fourier and identity
bases, it is easy to verify that µ(D) = 1/

√
N . For unitary matrices the mutual coherence is

0, but when the number of columns of D is larger than the number of rows, that is L > N ,
µ(D) is strictly positive. For dictionaries that are the union of two unitary matrices we
have that [103]

1√
N
≤ µ(D) ≤ 1. (5.8)

We desire the smallest possible value to get a behaviour which is close to that exhibited
by unitary matrices.

In 2001, Donoho and Huo analysed the sparse representation problem for the union of
Fourier and canonical bases [102]. They showed that a K-sparse vector x that satisfies the
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observation model (5.1) is the unique solution to (P0) when

K < µ(D) =
1√
N
. (5.9)

They also showed that (P0) and (P1) are equivalent when

K <

√
N

2
. (5.10)

In 2002, these results were extended to generic orthogonal pairs of bases by Elad and
Bruckstein [104]. The bound in (5.10) was improved to

2µ(D)2KpKq + µ(D) max {Kp,Kq} − 1 < 0. (5.11)

The following year, Feuer and Nemirovsky showed that this bound is tight [105]. The
expression in (5.11) is illustrated in red in Figure 5.1 and corresponds to the Basis Pursuit
(BP) bound.

Recently, a new algorithm, ProSparse [95], has been presented for the case where the
dictionary is the union of the Fourier and identity matrices. The ProSparse algorithm is a
polynomial complexity algorithm that can recover x from y = [Φ,Ψ]x, provided that

KpKq <
N

2
, (5.12)

where Kp represents the number of non-zero elements from the Fourier matrix and Kq the
number of atoms from the identity, leading to the overall sparsity level K = Kp +Kq. All
these bounds are illustrated in Figure 5.1. This is a deterministic bound that guarantees
perfect reconstruction when the sparsity constraint is satisfied. In this chapter, we analyse
the probability of success of this approach when this sparsity constraint is relaxed.

ProSparse applies when Φ is a Vandermonde or a variation of a Vandermonde matrix of
size N ×M . When M = N , this matrix models a basis, and a frame when M > N . The
authors in [95] consider variations of Vandermonde matrices that correspond to the more
general family of matrices that are characterised by

Φ = ΛV B, (5.13)

where Λ ∈ CN×N is a diagonal matrix, V ∈ CN×M is a Vandermonde matrix, and B ∈
CM×M is a matrix whose columns have sparse support. The other matrix Ψ models a
localised basis of size N ×N . Two specific instances of D which are of particular interest
to the work presented in this chapter are the case where D is the union of the Fourier and
the canonical bases, and the case where D is the union of a Fourier frame of size N ×M
with M > N and the canonical basis.
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Figure 5.2.: Probability of success of ProSparse and phase transition. The colourmap represents proba-
bilities computed via Monte Carlo simulation for N = 106. For each pair (α, τ), 100 different
spike locations have been generated uniformly at random. The number of spikes is given
by Kq = bαNc. At each point and for each realization of spike locations the existence of a
maximum gap of size at least τ logN is checked. The dashed lines depict the deterministic
bound and the predicted phase transition of ProSparse.

Simulations show that the algorithm is able to reconstruct the sparse vector well beyond
the deterministic bound. Moreover, for high dimension, we observe a sharp phase transition
in the behaviour of the algorithm. The main contribution of the work presented here is the
precise characterisation of this phase transition. This characterisation is tight, that is, the
algorithm succeeds with high probability when the sparsity is below a certain threshold,
but fails with high probability when the sparsity goes beyond this threshold. Specifically,
for large N , if there are Kq = αN spikes, ProSparse can recover

Kp <
− logN

2 log(1− α)
(5.14)

Fourier atoms with high probability and fails to recover

Kp >
− logN

2 log(1− α)
(5.15)

atoms with high probability. A formal statement and proof of this phenomenon is given
in Section 5.4. Figure 5.2 is an illustration of the phase transition phenomenon where the
colourmap shows probabilities measured via Monte Carlo simulations for very large N .
The x-axis represents the number of spikes as a fraction of N , that is, Kq = bαNc, and
the y-axis the number of Fourier atoms as Kp = bτ logNc. If the region is blue it means
that ProSparse is able to reconstruct the sparse vector, if it is yellow, ProSparse fails. The
green line depicts the curve τ = 1/(2α logN), which corresponds to the deterministic
bound given in (5.12) when we replace Kp by τ logN and Kq by αN . The guaranteed
perfect reconstruction region is the area below this curve, which is much more pessimistic
than the actual performance of the algorithm. The red curve depicts the phase transition
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curve −1/2 log (1− α). It is clear that this expression predicts the location of this phase
transition and identifies the region where the algorithm succeeds with high accuracy.

The characterisation of phase transition phenomena is also an active research topic in
areas such as convex optimisation and high dimensional geometry [106–109]. Although
related to the problem studied in this chapter, these results do not apply directly to our
setup since they consider scenarios where the equivalent of the dictionary D presents some
type of randomness.

The rest of the chapter is organised as follows: Section 5.2 presents a brief overview
of ProSparse, in Section 5.3 we present an average performance analysis of ProSparse by
providing an exact formula to compute the probability of existence of gaps of a maximum
size between consecutive spikes. Section 5.4 contains the main result of this work, that is,
a proof of a phase transition behaviour on the probability of success of ProSparse for large
N . Section 5.5 provides a numerical validation and simulation results where ProSparse is
compared to Basis Pursuit. We conclude in Section 5.6.

5.2. Overview of ProSparse

ProSparse can be applied to any pair of bases whenever one of the bases can be expressed in
terms of a Vandermonde matrix (or a variation of a Vandermonde matrix) and the other is
local [95]. A typical example of this type of dictionary is the union of Fourier and identity
matrices. In this section we provide a short overview of the algorithm for this scenario.

Let y ∈ CN be a complex-valued finite-dimensional signal that has a K-sparse repre-
sentation in an overcomplete dictionary formed by Fourier atoms and spikes. In matricial
form this can be written as

y = Dx, (5.16)

whereD = [F , I] and x is K-sparse, that is, it has only K non-zero elements. The matrix
F ∈ CN×M corresponds to a Fourier basis or frame and I ∈ CN×N to the identity matrix.
The number of atoms in the dictionary D is thus L = M + N . We further assume that
Kp non-zero elements are due to Fourier atoms and that Kq = K −Kp elements are due
to spikes. Given the synthesis model in (5.16) the nth entry of y can also be written as
follows:

y[n] =
1√
N

Kp∑
k=1

ak exp (iωk n) +

Kq∑
k=1

bk δ[n− nk], n = 0, 1, . . . , N − 1, (5.17)

where ak, bk ∈ C \ {0}, ωk = 2πmk
M , 0 ≤ m1 < . . . < mKp < M and 0 ≤ n1 < . . . < nKq <

N . If we consider the case where the overcomplete dictionary corresponds to the union of
Fourier and identity bases, then M = N and x ∈ C2N . When the dictionary is given by
the union of a Fourier frame and the identity basis we have that M > N and x ∈ CM+N .
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In the case of the union of bases, it is shown in [95] that there is a polynomial complexity
algorithm, ProSparse, that finds all (Kp,Kq)-sparse signals x such that

y = Dx and KpKq < N/2. (5.18)

This is a deterministic bound that guarantees perfect reconstruction when the sparsity
constraint KpKq < N/2 is satisfied and the observation y is not corrupted with noise.

ProSparse is based on the fact that since one basis is local, many of the entries in y
are affected only by Fourier atoms. Specifically, we can find clean windows of consecutive
entries of y that are only due to Fourier atoms and that can be expressed as

y[n] =
1√
N

Kp∑
k=1

ak exp (iωk n) =

Kp∑
k=1

αk u
n
k , (5.19)

where we restrict the temporal index n to the clean window, αk
def
= ak/

√
N and uk

def
=

exp (iωk). If such a window has at least 2Kp consecutive entries, we can estimate the
Kp pairs of parameters (αk, uk) using Prony’s method. Recall that this method has been
presented in Chapter 2. Once the Fourier atoms are estimated from a clean window, we
can build the residual vector by removing their contribution from the original signal. If
the residual satisfies the sparsity constraint, it directly corresponds to the estimation of
the spikes and therefore the algorithm has succeeded in retrieving the sparse vector.

The overall algorithm operates by performing an exhaustive search over all possible
sliding windows y[`], y[`+ 1], . . . , y[`+ 2Kp − 1] of size 2Kp and for all the sparsity levels
that satisfy the constraint (5.12). Specifically, for each ` and Kp, the following Toeplitz
matrix is built:

TKp,`
def
=


y[`+Kp] y[`+Kp − 1] . . . y[`]

y[`+Kp + 1] y[`+Kp] . . . y[`+ 1]
...

...
. . .

...

y[`+ 2Kp − 1] y[`+ 2Kp − 2] . . . y[`+Kp − 1]

 . (5.20)

The Fourier atoms are then estimated applying Prony’s method to TKp,`. When the dic-
tionary is the union of the Fourier and identity bases, ProSparse further assumes that
Kp ≤ Kq since the cases where Kp > Kq can be obtained from the dual, that is, the sparse
vector can also be reconstructed from FH y = [I,F ]x. In this dual case, the spikes be-
come complex exponentials with amplitude b∗k/

√
N and the Fourier atoms become spikes.

The entire method is described in Algorithm 4.

Remark 1. When dealing with the Fourier basis, the problem becomes circular due to the
periodicity of the exponentials ei2πn/N . This means that the search of the clean windows
can be performed as if the entry n = N − 1 was immediately followed by the entry n = 0.
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Algorithm 4 ProSparse—Prony’s based sparsity for union bases (Fourier-identity) [95]

Input: An observed vector y ∈ CN .
Output: A set S with all (Kp,Kq)-sparse signal x that satisfies (5.12), with Kp ≤ Kq.

Initialize S = {[0T ,yT ]T }. This is a trivial solution, with Kp = 0 and Kq = ‖y‖0.
for Kp = 1, 2, ...,

⌈√
N/2− 1

⌉
do

for ` = 0, 1, ..., N − 1 do
Build the Toeplitz matrix TKp,` as in (5.20).
Apply Prony’s method on TKp,` to find parameters (αk, uk), where 0 ≤ k < Kp.
if {uk} contains Kp distinct values, with each uk ∈ {ei2πm/N : m ∈ Z} then

Compute the estimated Fourier contribution ỹ =
(∑Kp

k=1 αku
n
k

)N−1

n=0
.

Compute the residual r = y − ỹ and let Kq = ‖r‖0.
if Kp ≤ Kq and KpKq < N/2 then

Obtain the sparse signal x from ỹ and r.
S ← S ∪ {x}.

end if
end if

end for
end for

When the sparsity satisfies (5.12), there always exists at least one clean window, and
there might even be a large number of them. This constraint on the sparsity is a worst-
case bound, since we can think of counter examples with KpKq ≥ N/2 where these clean
windows do not exist. However, for sparsity levels which are small but are beyond the
deterministic bound, these counter examples have a negligible probability of occurrence.
The next section provides the exact probability for the existence of these clean gaps.

5.3. Exact probabilistic average-case analysis of ProSparse

ProSparse operates by first recovering Kp Fourier atoms from a clean window of uncor-
rupted samples of y and then retrieving Kq spikes from the residual, that is, the difference
between y and the recovered Fourier atoms. The Kp Fourier atoms are recovered by apply-
ing Prony’s method and this requires a clean window of at least 2Kp consecutive samples.
In this section, we provide an exact formula to compute the probability of finding this
clean window when the sparsity constraint is not satisfied. Note that when the sparsity
constraint KpKq < N/2 is satisfied this probability is equal to one. This expression is
then specialised to determine the probability of success of ProSparse for the Fourier frame
and the Fourier basis cases.
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n1 n2 nKq−1 nKq

d0 d1 dKq
dKq+1

Figure 5.3.: Samples y[n] located between consecutive spikes are only due to the Kp Fourier atoms. The
sum of all the gaps dk, k = 0, 1, . . . ,Kq, is equal to the size of the vector y, N , minus the
number of spikes, Kq. ProSpare is able to recover Kp Fourier atoms if there is a gap of size
at least 2Kp.

5.3.1. Probability model

For given N and Kq, we select Kq distinct spike locations uniformly at random. Let

σ
def
= {n1, n2, . . . , nKq}, (5.21)

be the set of spike locations, where 0 ≤ n1 < n2 < . . . < nKq < N . ProSparse is able to
recover Kp Fourier atoms if there exists a gap between consecutive spikes of at least 2Kp

samples. For any choice σ of Kq distinct locations, we define the Kq + 1 gaps as follows

dk
def
= nk+1 − nk − 1, (5.22)

for k = 0, . . . ,Kq, where we assume n0 = −1 and nKq+1 = N . Note that the sum of all
the dk is equal to N −Kq. These gaps are illustrated in Figure 5.3 where we can observe
that the samples between consecutive spikes are only due to Fourier atoms.

Let
∆

def
= max

0≤k≤Kq
{dk} (5.23)

be the maximum gap between consecutive spikes when circularity is not taken into account,
that is, when we are in the Fourier frame case, and let

Γ
def
= max

{
max

1≤k<Kq
{dk}, d0 + dKq

}
(5.24)

be the maximum gap between consecutive spikes when circularity is considered, which
corresponds to the Fourier basis case.

5.3.2. Exact probability for maximum gap size

The following two propositions provide the exact probability that the maximum gaps ∆

and Γ are smaller than a given value S.

Proposition 4 (Non-circular case). For a given problem of size N , and K distinct loca-
tions drawn uniformly at random, let ∆ be the maximum gap between consecutive locations
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Chapter 5. ProSparse average performance and phase transition

defined as in (5.23). The exact probability that ∆ < S, for some constant S, is given by

FN (K,S)
def
= P {∆ < S} =

(

K+1 times︷ ︸︸ ︷
fS [n] ∗ . . . ∗ fS [n])

∣∣
n=N−K(

N
K

) , (5.25)

where

fS [n] =

1, if 0 ≤ n < S,

0, otherwise.
(5.26)

Proof. If we consider the experiment of drawing K spike locations uniformly at random,
we are interested in the probability that the maximum gap between consecutive spikes is
smaller than S. This probability is given by the ratio between the number of outcomes
with ∆ < S and the total number of possible outcomes. The second number is given by
the binomial coefficient

(
N
K

)
. The number of outcomes with ∆ < S corresponds to the sets

σ defined as in (5.21) that satisfy max0≤k≤K{dk} < S, where the integers dk are defined
as in (5.22). This quantity can also be computed as the cardinality of the following set

{(d0, d1, . . . , dK) ∈ {0, 1, . . . , S − 1}K+1 :
∑K

k=0dk = N −K}. (5.27)

This set provides all possible combinations of gaps such that the maximum gap is always
smaller than S (note that all dk are between 0 and S − 1) and the total sum of the
gaps corresponds to a valid spikes distribution since the sum is equal to N − K. This
counting problem can be solved by constructing i.i.d. discrete uniform random variables
d0, . . . , dK supported on {0, 1, . . . , S − 1}, and by computing the probability that the sum
of these random variables is equal to N −K. The cardinality of this set is then given by
SK+1 P {

∑
k dk = N −K}. Since the dk are uniformly distributed, the probability mass

function (PMF) of the random variables dk is given by P {dk = n} = fS [n]/S. Since the
PMF of the sum of random variables corresponds to the convolution of their PMF, this
cardinality is given by SK+1 (fS [n]/S ∗ . . . ∗ fS [n]/S)

∣∣
n=N−K . This leads to the term in

the numerator:

SK+1 P

{∑
k

dk = N −K

}
= SK+1

K+1 times︷ ︸︸ ︷
fS [n]

S
∗ . . . ∗ fS [n]

S

∣∣∣∣∣
n=N−K

(5.28)

= (

K+1 times︷ ︸︸ ︷
fS [n] ∗ . . . ∗ fS [n])

∣∣
n=N−K . (5.29)

Proposition 5 (Circular case). For a given problem of size N , and K distinct locations
drawn uniformly at random, let Γ be the maximum gap between consecutive locations defined
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5.3. Exact probabilistic average-case analysis of ProSparse

as in (5.24). The exact probability that Γ < S, for some constant S, is given by

GN (K,S)
def
= P {Γ < S} =

(gS [n] ∗
K−1 times︷ ︸︸ ︷

fS [n] ∗ . . . ∗ fS [n])
∣∣
n=N−K(

N
K

) , (5.30)

where

gS [n] =

n+ 1, if 0 ≤ n < S,

0, otherwise,
(5.31)

and fS [n] is defined as in Proposition 4.

Proof. The proof is analogous to the proof for Proposition 4. The term of the numerator
is given by the cardinality of the following set:

{(d0, d1, . . . , dK) ∈ {0, 1, . . . , S − 1}K+1 :
∑K

k=0dk = N −K and d0 + dK ≤ S − 1}.
(5.32)

The additional constraint d0 + dK ≤ S − 1 is required to impose the maximum gap size
restriction when circularity is considered. In order to take this constraint into account in
the cardinality of the set, we consider that the sum of 2 out of the K + 1 i.i.d. discrete
uniform random variables must be strictly smaller than S. This leads to the function gS [n]

which comes from convolving fS [n] with itself and restricting the indices n from 0 to S−1.
The remaining K−1 gaps are considered by convolving K−1 times the function fS [n].

5.3.3. Probability of success of ProSparse

When the Fourier atoms in y come from a Fourier frame, circularity cannot be applied.
The probability of success of ProSparse is therefore given by the probability that there is
at least one gap of size larger than or equal to 2Kp. We thus have the following result:

P {ProSparse (Fourier frame) succeeds} = P {∆ ≥ 2Kp} (5.33)

= 1− FN (Kq, 2Kp), (5.34)

where FN (Kq, 2Kp) is the function defined in Proposition 4 with Kq spikes and a gap
S = 2Kp.

When the Fourier atoms in y come from a Fourier basis, that is, the matrix F in the
dictionary D = [F , I] is a unitary Fourier matrix, the problem becomes circular since the
elements in vector y ∈ CN have an underlying periodicity of period N samples. Moreover,
the problem can also be solved from the dual vector FH y = [I,F ]x. In the dual vector,
spikes lead to complex exponentials and Fourier atoms lead to spikes. Thus, ProSparse
succeeds either if there is a gap of size at least 2Kp samples between the Kq locations of
the spikes or, in the dual domain, if there is a gap of size at least 2Kq samples between the
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Chapter 5. ProSparse average performance and phase transition

Kp locations of the Fourier atoms. Consequently, the probability of success of ProSparse
is given by:

P {ProSparse (Fourier basis) succeeds} = 1−GN (Kq, 2Kp)GN (Kp, 2Kq), (5.35)

where GN (Kq, 2Kp) is the function defined in Proposition 5 with Kq spikes and a gap
S = 2Kp.

5.4. Asymptotic analysis and phase transition

Given the expression in (5.25) for the function FN (K,S), we are now interested in under-
standing the behaviour of the maximum gap ∆ in the asymptotic regime, that is, when
N →∞. The probability given by the function GN (K,S) in (5.30) is slightly smaller than
FN (K,S) because of circularity. However, in the asymptotic regime this difference is negli-
gible and therefore the asymptotic analysis focuses on the more general case of the Fourier
frame. We also assume that Kq = bαNc for fixed α ∈ (0, 1). If we want to reconstruct a
sparse vector with Kp Fourier atoms and Kq spikes, ProSparse presents a phase transition
in the probability of success which is characterised by the following proposition:

Proposition 6. Let y ∈ CN be a mixture of Kp Fourier atoms and Kq spikes. If Kq = αN

and Kp = −(1 − ε) logN
2 log(1−α) , then, for any ε > 0 the probability that ProSparse succeeds

goes to 1 as N → ∞. Similarly, if Kq = αN and Kp = −(1 + ε) logN
2 log(1−α) , then, for any

ε > 0 the probability that ProSparse succeeds goes to 0 as N →∞.

Proof. The proof is structured in two parts. The first part provides a lower bound on the
probability of success. This bound tends to 1 when the number of Fourier atoms is below
a threshold. The second part provides an upper bound that tends to 0 when the number
of Fourier atoms goes beyond the same threshold. We can therefore conclude that there is
a phase transition in the probability of success.
Lower bound: Proposition 4 proves that the probability of success can be obtained

convolving Kq+1 times the function fS [n] defined as in (5.26) and evaluating the resulting
function at n = N −Kq.

Getting a closed-form expression of an entry of a discrete-time sequence that results from
various discrete convolutions is not an easy task. However, we note that the convolution of
two discrete sequences can also be obtained by computing the product of their generating
functions. These generating functions are polynomial representations where the coefficients
of the polynomials correspond to the discrete sequences [110]. Therefore, the probability
we are after is also given by the coefficient of order N −Kq of the polynomial that results
from raising to the Kq + 1 power the polynomial pS(x) = 1 + x+ x2 + . . .+ xS−1, where
pS(x) is the generating function of the discrete sequence fS [n]. To refer to the pth order
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5.4. Asymptotic analysis and phase transition

coefficient of a polynomial of order n, we adopt the notation used in [111]:

coef {(a0 + a1 x+ . . .+ an x
n), xp} = ap, (5.36)

with 0 ≤ p ≤ n. We can therefore write the probability of success in terms of the N −Kq

coefficient of the generating function:

P {∆ ≥ S} = 1− P {∆ < S} (5.37)

= 1−
coef

{(
1 + x+ . . .+ xS−1

)Kq+1
, xN−Kq

}
(
N
Kq

) . (5.38)

Since the polynomial has positive coefficients, it is easy to verify that ([111, Appendix D])

coef
{(

1 + x+ . . .+ xS−1
)Kq+1

, xN−Kq
}
≤
(
1 + x+ . . .+ xS−1

)Kq+1

xN−Kq
, ∀x > 0. (5.39)

The polynomial of order S − 1 is a geometric series, and therefore, can be replaced by
(1− xS)/(1− x), which leads to(

1 + x+ . . .+ xS−1
)Kq+1

xN−Kq
=

(
1− xS

)Kq+1

xN−Kq (1− x)Kq+1
. (5.40)

Setting x = 1− α yields

coef
{(

1 + x+ . . .+ xS−1
)Kq+1

, xN−Kq
}

(5.41)

≤
[
1− (1− α)S

]Kq+1

(1− α)N−Kq αKq+1
(5.42)

= e−(N−Kq) log(1−α)−(Kq+1) logα
[
1− (1− α)S

]Kq+1 (5.43)

=
1

α
eN H(α)

[
1− (1− α)S

]Kq+1
, (5.44)

where H(α)
def
= −α logα− (1− α) log(1− α) is the binary entropy function.

From Stirling’s formula, we have that(
N

Kq

)
=

(
N

αN

)
≥
√

2π

e2
[α(1− α)N ]−1/2 eN H(α). (5.45)

Applying (5.44) and (5.45) to the expression in (5.38) we obtain

P {∆ ≥ S} ≥ 1− e2

√
2π

√
(1− α)N

α

[
1− (1− α)S

]Kq+1
. (5.46)
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If we set again S = τ logN we have that[
1− (1− α)τ logN

]Kq+1
= e(Kq+1) log [1−(1−α)τ logN ] (5.47)

= e(Kq+1) log [1−Nτ log (1−α)] (5.48)

= e−(α+ 1
N )N1+τ log (1−α) (1+o(1)). (5.49)

If τ < −1/ log(1 − α), this last expression tends to 0 as N → ∞. Therefore, we have
proved the following lower bound: For bαNc spikes distributed uniformly at random in
distinct locations over a grid of size N , the probability of having a maximum gap between
consecutive spikes of size at least τ logN satisfies

lim
N→∞

P {∆ ≥ τ logN} = 1, if τ <
−1

log(1− α)
. (5.50)

Upper bound: We have that

P {∆ ≥ S} = P
{
∪Kqk=0{dk ≥ S}

}
(5.51)

≤
Kq∑
k=0

P {dk ≥ S} , (5.52)

where the right hand side in (5.51) represents the probability of the union of sets of events
dk ≥ S, that is, the probability that at least one of the dk is greater than or equal to S,
and (5.52) follows from the union bound. From the symmetry of the problem we have that

Kq∑
k=0

P {dk ≥ S} = (Kq + 1)P {d0 ≥ S} . (5.53)

This last probability is given by
(
N−S
Kq

)
/
(
N
Kq

)
, since the event of having the first gap of at

least size S is equivalent to having the Kq spikes in the last N − S locations. It follows
that

Kq∑
k=0

P {dk ≥ S} = (Kq + 1)
(N −Kq)! (N − S)!

N ! (N −Kq − S)!
(5.54)

= (Kq + 1)
(N −Kq) . . . (N −Kq − S + 1)

N(N − 1) . . . (N − S + 1)
. (5.55)

By defining the following parameter, β def
= 1− Kq

N , we can rewrite the previous expression
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as follows,

Kq∑
k=0

P {dk ≥ S} = (Kq + 1)
(β − 0)(β − 1

N ) . . . (β − S−1
N )

(1− 0)(1− 1
N ) . . . (1− S−1

N )
(5.56)

= elog(Kq+1) e
∑S−1
i=0 f( i

N ), (5.57)

where f(x)
def
= log β−x

1−x . We also have that

Kq∑
k=0

P {dk ≥ S} = elog(Kq+1)+f(0)+[
∑S−1
i=1 f( i

N ) 1
N ]N (5.58)

≤ elog(Kq+1)+f(0)+N
∫ (S−1)/N
0 f(x) dx. (5.59)

Here, we have used the fact that for the values of x we are considering inside the integral
in (5.59) (positive and smaller than β), the ratio β−x

1−x is positive, decreasing with x, and
smaller than 1. Therefore, f(x) = log β−x

1−x is negative and monotically decreasing. It follows
that the summation

∑S−1
i=1 f

(
i
N

)
1
N is upper bounded by the integral

∫ (S−1)/N
0 f(x) dx.

Let
g(x)

def
=

∫ x

0
f(τ) dτ, (5.60)

then g(x) is smooth around x = 0. Moreover, g(0) = 0, g′(0) = f(0) = log β and
g′′(0) = f ′(0) = 1− 1

β . The Taylor expansion at x = S−1
N is given by

g

(
S − 1

N

)
= (log β)

S − 1

N
+

1− 1/β

2

(S − 1)2

N2
(1 + o(1)). (5.61)

Inserting (5.61) in (5.59) and noting that f(0) = log β yields

P {∆ ≥ S} ≤ elog(Kq+1) eS log β+
1−1/β
2N

(S−1)2 (1+o(1)). (5.62)

If we set S = τ logN and replace the values of Kq and β by αN and 1 − α respectively,
we have that

elog(Kq+1)+S log β e
1−1/β
2N

(S−1)2 (1+o(1)) (5.63)

= (αN + 1) eτ logN log(1−α) e
α

2N(α−1)
(τ logN−1)2 (1+o(1)) (5.64)

=

(
α+

1

N

)
N1+τ log(1−α) e

α
2N(α−1)

(τ logN−1)2 (1+o(1))
. (5.65)

If τ > −1/ log(1−α) the above expression tends to 0 as N →∞. We thus have proved the
following upper bound: For bαNc spikes distributed uniformly at random in distinct loca-
tions over a grid of size N , the probability of having a maximum gap between consecutive
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(a) N = 128, α = 0.3
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Figure 5.4.: P {∆ ≥ S}, exact probability vs Monte Carlo simulation for different sizes of the problem.
The exact probability (red continuous line) is computed using the expression in Proposition 4.
The Monte Carlo approximation (blue dashed line) is obtained by randomly generating 50
realisations of the spike locations for each pair (Kq = bαNc, S) and checking the existence
of a maximum gap of size at least S.

spikes of size at least τ logN satisfies

lim
N→∞

P {∆ ≥ τ logN} = 0, if τ >
−1

log(1− α)
. (5.66)

The threshold of the lower bound in (5.50) and the upper bound in (5.66) coincide and
are equal to −1/ log (1− α). Since ProSparse requires a gap ∆ of size at least 2Kp to
succeed, the phase transition characterised in Proposition 6 has been proved.

5.5. Numerical validation and simulations

Proposition 4 provides an expression to compute the probability of failure or success of
the ProSparse algorithm. This expression is exact, and for a given problem of size N ,
and sparsity levels (Kp,Kq) we can compute this probability by making use of the dis-
crete convolution formula. However, this expression does not give an insight into how the
performance of the algorithm evolves for different values of these parameters. Moreover,
when N gets large, this computation becomes very slow making an exhaustive analysis of
the type presented in Figure 5.2, where N = 106, intractable.

Monte Carlo simulations provide a reliable alternative that allow us to compute these
probabilities in an efficient manner. Figure 5.4 compares the exact and Monte Carlo ap-
proaches for N = 128, 256 and 512. The red continuous line depicts the exact probabilities
and the blue dashed line the probabilities computed via the Monte Carlo method with 100
realisations per point. It is clear that the approximated probabilities provide a faithful pic-
ture of the evolution of the true probability. Moreover, we can observe that for a number
of spikes fixed to be a fraction of N , that is, Kq = bαNc, the transition from the region of
high probability of success to the region of low probability of success becomes sharper as
N increases and this behaviour is well characterised in both, the exact and approximated
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5.6. Summary

curves. This phenomenon is the phase transition of the asymptotic regime that is given in
Proposition 6. The curves in Figure 5.4 can also be seen as vertical cuts of the probabilities
that are represented in Figure 5.2.

5.5.1. Simulation results

Figure 5.5 presents simulation results where ProSparse is compared to Basis Pursuit for
the union of Fourier frame and identity case. The frame has a size of N = 128 times
M = 2048 and the identity matrix is square with size N ×N . Thus, the sparse vector x
has a dimension of L = M + N = 2176 and the observation y is of size N = 128. The
vertical and horizontal axes correspond to the sparsity of the vector x in each dictionary.
Performances of both algorithms are compared by generating 50 different realisations of
the sparse vector x for each sparsity combination (Kp,Kq). The locations of the non-zero
elements in x are obtained by drawing random permutations from the sets {1, 2, . . . ,M}
and {1, 2, . . . , N} and keeping the first Kp and Kq elements respectively for the location of
the Fourier atoms and spikes. The amplitudes of these elements are complex-valued and
the real and imaginary parts are drawn from N (0, 1).

The ProSparse results in Figure 5.5(a) are obtained by checking that the maximum gap
between consecutive spikes is at least equal to 2Kp. When this is the case, the Fourier
atoms can be recovered and therefore perfect reconstruction of the vector x is achieved.
The Basis Pursuit results in Figure 5.5(b) are obtained by solving the `1-minimisation
problem (P1) in (5.3) with CVX, a MATLAB package for specifying and solving convex
programs [112]. The success of the algorithm is measured by computing ‖x̃− x‖22 / ‖x‖

2
2,

where x̃ is the reconstructed sparse vector, and checking that this value is below a negligible
value of 10−5.

Both algorithms present a phase transition behaviour since the 2D plane is clearly split
in two regions, one where the algorithms achieve perfect reconstruction with very high
probability, and the other where the algorithms fail almost surely. It is also clear that in
this scenario, ProSparse outperforms Basis Pursuit since it is able to recover the sparse
vectors in a larger region of the (Kp,Kq) plane. This is confirmed in Figure 5.5(c) where
we can see that the probability that ProSparse succeeds is always larger than or equal to
the probability that Basis Pursuit succeeds.

5.6. Summary

We considered the problem of finding the sparse representation of a signal in the union
of two dictionaries. A recently proposed polynomial complexity algorithm, ProSparse, is
guaranteed to find all the sparse representations for the union of Fourier and identity matri-
ces when the constraint KpKq < N/2 is satisfied. Here, we have presented a probabilistic
analysis of the probability of success of this algorithm when the sparsity constraint is not
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Kq

20 40 60 80

K
p

5

10

15

20

25

0

0.2

0.4

0.6

0.8

1

(c) P {PS} ≥ P {BP} > 0

Figure 5.5.: Comparison between ProSparse and Basis Pursuit. Union of Fourier frame of size 128×2048
and identity 128 × 128. Probabilities obtained via Monte Carlo simulation. For each pair
(Kp,Kq) 50 different realisations of the locations of the atoms have been generated. The
amplitudes of the atoms are complex-valued and the real and imaginary parts are drawn
from N (0, 1). (c) presents the comparison between the two algorithms for the region where
the probabilities are non-zero.

satisfied. We have provided an expression for the exact probability and showed that there
is a phase transition in the asymptotic regime.
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Chapter 6.

Sparse pattern recovery in the presence of
noise

The previous chapter presents an average performance analysis of ProSparse, an algorithm
to solve the sparsity recovery problem using Prony’s method. In this chapter, we present a
variation of this algorithm to solve the sparsity problem when noise is present. ProSparse
is based on finding a clean window between consecutive spikes where Prony’s method
is applied to estimate first the Fourier atoms. Then, the spikes are retrieved from the
difference between the observation and the estimated Fourier atoms. This approach is not
well suited for the noisy case since the search of these clean windows becomes unreliable
when the samples are corrupted with noise.

Inspired by the Cadzow denoising algorithm that was introduced in Chapter 2, we present
here a novel algorithm that is able to solve the sparsity problem in the presence of noise.
Our approach outperforms state of the art algorithms such as Basis Pursuit Denoise [94] and
Subspace Pursuit [113] when the dictionary is the union of Fourier and identity matrices.
The algorithm is based on the fact that the Cadzow denoising algorithm is well suited
to remove noise from a sequence that is given by a sum of exponentials. Moreover, this
algorithm is also capable of removing spikes from the observed sequence. We take advantage
of this feature to design an algorithm that removes the spikes iteratively to obtain a robust
estimate of the Fourier atoms. The spikes can be estimated in the same way from the
Fourier transform of the observed signal. The algorithm has low complexity compared to
state of the art algorithms for sparse recovery since it relies on the Fast Fourier Transform
(FFT) algorithm.

6.1. Introduction

In this chapter we consider the same problem of the previous chapter, that is, finding the
sparse representation of a given signal. However, we now consider the scenario where the
observation has been corrupted with additive noise.
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Let the noiseless observed signal be given by

y[n] =
1√
M

Kp∑
k=1

ak exp

(
i
2π

M
mkn

)
+

Kq∑
k=1

bk δ[n− nk], 0 ≤ n < N, (6.1)

where 0 ≤ m1 < . . . < mKp < M and 0 ≤ n1 < . . . < nKq < N are integers that
correspond to the indices of the atoms that form the observed signal and ak, bk ∈ C \ {0}
their amplitudes. When noise is present, the observed signal is given by

ỹ[n] = y[n] + ε[n], 0 ≤ n < N, (6.2)

where ε[n] = εR[n] + i εI [n] models complex-valued noise. We assume that εR[n] and εI [n]

are i.i.d. random variables for 0 ≤ n < N . We also assume that the noise is Gaussian with
the real and imaginary parts drawn from N (0, σ2

ε).
The case where M = N corresponds to the union of bases, and the case M > N

corresponds to the union of a Fourier frame and the identity matrix. In both cases, the
observed signal can be written in matricial form as follows:

y = Dx+ ε =
[
F I

] [xp
xq

]
+ ε (6.3)

where y, ε ∈ CN , xp ∈ CM , xq ∈ CN and x ∈ CL, where L = M +N .
The Compressed Sensing framework [114–116] presents a wide range of algorithms to

solve the noisy sparsity recovery problem. Here, we briefly present the traditional methods
that are still in use nowadays and some of the more recent algorithms that are well suited
for our context. We refer the interested reader to the books by Foucart and Rauhut [117]
or by Eldar and Kutyniok [118] for comprehensive descriptions and recent applications of
such techniques.

In [94], where Basis Pursuit was first presented, the noisy scenario was also analysed
and an extension named Basis Pursuit Denoise (BPDN) was described. BPDN relaxes the
constraint of the (P1) problem defined in (5.3) as follows

(BPDN) : arg min
x̃∈CL

‖x̃‖1 s.t. ‖y −D x̃‖22 < η, (6.4)

where η is an error tolerance that depends on the power of the noise. In [119], Tibshirani
et al. presented the Least Absolute Shrinkage and Selection Operator (LASSO) method
that minimises the residual sum of squares subject to the sum of the absolute value of the
coefficients being less than a constant. For a particular regularisation parameter λ > 0,
the LASSO estimate is equivalent to the unconstrained version given by

min
x̃

1

2
‖y −D x̃‖22 + λ ‖x̃‖1 . (6.5)
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A more recent approach named Gradient Projection for Sparse Recovery (GPSR) [120]
is based on formulating the sparse recovery problem as a quadratic program by splitting
vector x into its positive and negative parts: x = u − v, where u = (u[n])L−1

n=0 , u[n] ≥ 0

and v = (v[n])L−1
n=0 , v[n] ≥ 0. The resulting quadratic program is given by

min
z
cT z +

1

2
zT B z

def
= F (z) s.t. z ≥ 0, (6.6)

where z = [uT ,vT ]T , c = τ12N + [−yT D,yT D], with 12N = [1, . . . , 1]T , and

B =

[
DT D −DT D

−DT D DT D

]
. (6.7)

In this formulation all the vectors and matrices are assumed to be real. This approach can
be easily extended to the complex case by splitting the atoms of the dictionary D and the
elements in vectors x and y into their real and complex parts. The basic idea of GPSR is
to iterate z(i) along the negative gradient −∇F (z(i)).

The Orthogonal Matching Pursuit (OMP) algorithm [92, 100, 121], briefly mentioned
in the previous chapter, naturally extends to the noisy case by modifying the tolerance
parameter that is used as a stopping condition (see Algorithm 5 for a full description of
OMP). If we denote byDS(k) and x̃S(k) the matrix and vector that result from respectively
selecting the columns and elements in D ∈ CN×L and in x̃ ∈ CL given by the indices
S(k) ⊆ {1, . . . , L}, the step in OMP at the kth iteration where the new solution is updated
can be written as

x(k) = arg min
x̃∈CL

‖DS(k) x̃S(k) − y‖
2
2 . (6.8)

This is a least squares problem, and the solution is obtained by solving the following system
of normal equations:

DH
S(k)DS(k) x̃S(k) = DH

S(k) y ⇔ DH
S(k) (DS(k) x̃S(k) − y)︸ ︷︷ ︸

=−r(k)

= 0. (6.9)

We thus have that the residual at iteration k is orthogonal to the elements of the dictionary
that have been selected up to this iteration, that is, the elements inDS(k) . This is the reason
why the OMP algorithm has the word orthogonal in its name. The tolerance parameter
imposes a maximum to the norm of this residual. More recently, a new set of greedy
algorithms have been developed that present lower complexity than OMP with similar
performance guarantees: Compressive Sampling Matching Pursuit (CoSaMP) [122] and
Subspace Pursuit [113]. Both algorithms are also based on updating iteratively the support
of the sparse vector from the residual. However, in each iteration the candidate locations
that are added to the support is larger than in OMP, where only one location is added at
each iteration. The reconstruction complexity of OMP is O(KLN) while the complexity

109



Chapter 6. Sparse pattern recovery in the presence of noise

Algorithm 5 OMP—Orthogonal Matching Pursuit [92, 98, 99]

Input: Dictionary D = [d1, . . . ,dL] ∈ CN×L, observation y ∈ CN and error threshold η
[optional argument, maximum number of iterations Kmax].

Output: Sparse vector x ∈ CL.
1: Initialise index k = 0.
2: Initialise solution x(0) = 0.
3: Initialise residual r(0) = y −Dx(0) = y.
4: Initialise support S(0) = ∅.
5: while

∥∥r(k)
∥∥2

2
> η [optional: k < Kmax] do

6: k ← k + 1

7: Compute e[i] =
∥∥z[i]di − r(k−1)

∥∥2

2
for i ∈ {1, . . . , L}\S(k−1), where z[i] =

dHi r
(k−1)

‖di‖22
.

8: Find index i0 = arg mini∈{1,...,L}\S(k−1){e[i]}.
9: Update support S(k) = S(k−1) ∪ {i0}.
10: Compute solution x(k) = arg minx̃∈CL ‖D x̃− y‖

2
2 subject to supp{x̃} = S(k).

11: Update residual r(k) = y −Dx(k).
12: end while

of CoSaMP and Subspace Pursuit are O(L log2 L) and O(NL logK) respectively. There
also exist other families of algorithms based on iterative thresholding methods such as the
Normalized Iterative Hard Thresholding (NIHT) [123, 124].

Inspired by the denoising strategies that are applied in the Finite Rate of Innovation
framework, here we present an extension of the sparse recovery algorithm that has been
analysed in detail in the previous chapter for the noisy case. The Cadzow signal enhance-
ment algorithm [55] is a generic strategy that seeks to denoise a signal before applying an
actual signal recovery algorithm. The approach is based on imposing sequentially, at each
iteration, a set of properties that the signal is hypothesised to possess. For the observed
signal given as in (6.1) and (6.2), if we assume that the spikes are also part of the noise,
we can apply Cadzow’s algorithm to try to recover the original Fourier atoms. This is the
principle that is applied in the algorithm that is presented in this chapter.

The rest of the chapter is organised as follows: Section 6.2 presents the Cadzow denoising
algorithm particularised to our setup. Section 6.3 describes the novel noisy sparse recovery
algorithm. Section 6.4 is an analysis of the algorithm from a probabilistic point of view
to establish a guaranteed performance condition for the simple case where there is one
Fourier atom and one spike. Section 6.5 presents simulation results where the algorithm
is compared against state of the art algorithms for sparse recovery. We then conclude in
Section 6.6.
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Figure 6.1.: Cadzow denoise for spike removal. The thin lines in (a) and (b) depict the the real and imag-
inary parts respectively of the observed signal y that is made of two complex exponentials
and two complex-valued spikes. The dotted lines illustrate the denoised signal where we can
appreciate that the spikes have been successfully removed.

6.2. Finite-dimensional Cadzow and circulant matrices

In our context, the Cadzow algorithm is used to denoise samples that are given by a sum
of exponentials corrupted with additive noise. If we consider that the spikes are also part
of the noise, the noisy samples ỹ[n] can be written as follows:

ỹ[n] =

Kp∑
k=1

αk u
n
k + η[n], (6.10)

where the signal of interest corresponds to the sum of Kp exponentials and the term η[n]

includes the spikes and the actual Gaussian noise. The Cadzow algorithm is based on
building the following Toeplitz matrix:

Ỹ toe =


ỹ[M ] ỹ[M − 1] . . . ỹ[0]

ỹ[M + 1] ỹ[M ] . . . ỹ[1]
...

...
. . .

...

ỹ[P ] ỹ[P − 1] . . . ỹ[P −M ]

 , (6.11)

where the matrix is built with a number of rows and columns which are larger than the
number of exponentials Kp, and is made as square as possible. Then, the following two
properties are imposed sequentially at each iteration:

1. Find the closest matrix of rank Kp (in the Frobenius norm sense) by computing the
SVD of Ỹ toe and setting to zero the smallest singular values.

2. Impose a Toeplitz structure by averaging the diagonal elements.

These two properties are applied until a stopping condition is reached. This condition
can be a maximum number of iterations or the difference between the singular values of
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Chapter 6. Sparse pattern recovery in the presence of noise

different iterations being below a threshold. An interesting property of this algorithm is
that it can also be used to remove the spikes of a signal that is made of Fourier atoms
and spikes. Figure 6.1 illustrates the removal of the spikes by applying Cadzow to a signal
that is made of two Fourier atoms and two spikes. The dotted line depicts the resulting
denoised signal which still represents faithfully the Fourier atoms and where we can see
that the spikes have been removed.

6.2.1. The union of bases case, fast circulant Cadzow algorithm

In our particular case, the parameters uk are complex-valued and lie on a grid of size M
on the unit circle:

uk = exp

(
i
2π

M
mk

)
, k = 1, . . . ,Kp, (6.12)

with 0 ≤ m1 < . . . < mKp < M . Moreover, when the Fourier atoms in y ∈ CN come from
the Fourier basis we have that M = N . In this case, since we have access to N samples
ỹ[n], and due to the periodicity of the Fourier atoms, the Toeplitz matrix can be extended
to the following noisy circulant matrix of size N ×N :

Ỹ circ =


ỹ[0] ỹ[N − 1] . . . ỹ[1]

ỹ[1] ỹ[0] . . . ỹ[2]
...

...
. . .

...

ỹ[N − 1] ỹ[N − 2] . . . ỹ[0]

 . (6.13)

This matrix is of full rank N due to the presence of noise. The noiseless matrix Y circ with
samples y[n] that are only due to the complex exponentials, satisfies the rank deficiency and
the Toeplitz structure properties that are required to apply Cadzow denoising algorithm.
Therefore, we can also apply the Cadzow strategy to denoise the circulant matrix Ỹ circ.
It is easy to verify that the noiseless matrix is of rank Kp since it can be diagonalised as
follows:

Y circ = F ΛFH , (6.14)

where Λ = diag (ŷ[m])N−1
m=0 and ŷ[m] = DFTN {y[n]} =

∑N−1
n=0 y[n] exp (i2πmn/N) has

exactly Kp non-zero elements at m = mk. Due to the circulant structure of this matrix, it
follows that imposing the first property to Ỹ circ (rank deficiency) yields a circulant matrix,
and therefore the resulting algorithm is not iterative. That is, we do not need to impose
the second property since it is already satisfied and the Cadzow denoising algorithm stops
after imposing the first property in the first iteration. The resulting denoising algorithm
is described in Algorithm 6. This algorithm is fast since it only needs to compute one
DFT and one inverse DFT which are performed using the Fast Fourier Transform (FFT)
algorithm. The complexity of this algorithm is O(N logN). This is considerably better
than the complexity of the original Cadzow approach since it requires computing an SVD
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6.3. Noisy sparse recovery based on Cadzow and Prony

at each iteration which, in general, has a complexity of O(N3) [53]. Note that O(N3)

corresponds to the complexity of deterministic algorithms that compute the full SVD.
However, in our context we are interested in a partial SVD that comprises the largest
singular values. There exist modern randomised algorithms that are able to compute an
approximated SVD for the K dominant components with complexity O(MN logK) for
matrices of size M ×N [125, 126].

Algorithm 6 Fast Cadzow—Denoising algorithm for circulant matrices
Input: N noisy samples ỹ[n] and number of complex exponentials K.
Output: Denoised samples y′[n].
1: ŷ[m] = DFTN {ỹ[n]}.
2: Set to zero N −K samples ŷ[m] that correspond to the smallest values of |ŷ[m]|.
3: y′[n] = IDFTN {ŷ[m]}

6.3. Noisy sparse recovery based on Cadzow and Prony

The strategy to remove spikes that has been presented in the previous section is of partic-
ular interest to recover sparse vectors in the scenario where the dictionary is the union of
Fourier and identity matrices. Note that when the spikes are removed, part of the energy,
and therefore of the amplitudes, of the Fourier atoms is also removed. Therefore, instead of
removing all the spikes at once and getting an estimate of the Fourier atoms, we can follow
a different strategy where only one spike is removed at each iteration. The general idea of
the algorithm is that if we compute the difference between the original observation y and
the Cadzow denoised vector y′, this residual will mainly contain the spikes and the noise.
We also assume that the power of the noise is small compared to the spikes. We estimate
one spike at each iteration, remove the contribution of this spike, and iterate again until
all the spikes have been removed. Once the spikes have been removed, the Fourier atoms
are estimated from this cleaned vector y′ by applying Prony’s method. Note that Prony’s
method finds continuous frequencies that might not correspond exactly to the frequencies
of the atoms that form the vector y. These frequencies are rounded to the nearest multiple
of 2π/M in order to be able to represent the observation with the dictionary D. The
algorithm to estimate the sparse vector based on this approach and that we have named
ProSparse Denoise is described step by step in Algorithm 7.

This approach can be applied regardless of the fact that the Fourier atoms come from a
Fourier basis (M = N) or from a Fourier frame (M > N). The advantage of the Fourier
basis case, is that we can apply the fast version of the Cadzow algorithm that has been
presented in Algorithm 6. Algorithm 7 provides an estimate for the entire vector x, that
is, it estimates both, the Fourier atoms and the spikes. However, in practice, we use this
algorithm only to estimate the Fourier atoms. A more robust estimate of the spikes is
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Algorithm 7 ProSparse Denoise—Union of Fourier and identity matrices
Input: Noisy vector y = [F , I]x+ ε and sparsity levels (Kp,Kq).

Output: (Kp,Kq)-sparse vector x̃ =

[
xp
xq

]
.

1: Initialise spikes xq = 0.
2: Initialise spikes locations Ω = {0, 1, . . . , N − 1}.
3: Denoise y′ = Cadzow(y,Kp).
4: for i = 1 to Kq do
5: Compute residual r = y − y′.
6: Estimate spike location from residual n0 = arg maxn∈Ω{|r[n]|}.
7: Store spike xq[n0] = r[n0].
8: Add spike location to support Ω← Ω \ {n0}.
9: Remove spikes to the observation y′ = y − xq.
10: Denoise y′ ← Cadzow(y′,Kp).
11: end for
12: Estimate Fourier atoms xp = Prony(y′,Kp).

obtained with the approach that is described next.
In the case of the Fourier basis, Algorithm 7 is applied together with the circulant

Cadzow denoising approach described in Algorithm 6 to estimate the Fourier atoms from
y. The same approach is applied to F y to estimate the spikes since, in F y, the spikes
correspond to complex exponentials. Note that both computations can be performed in
parallel.

In the case of the Fourier frame, Algorithm 7 is first applied to y with the traditional
Cadzow approach. This provides an estimate of the Fourier atoms xp. Then, Algorithm 7
is applied again to the Fourier transform of the residual, which ideally only contains the
spikes. That is, we compute r = y − FN,M xp to estimate the spikes from FN r. To avoid
ambiguities we have added subscripts to the Fourier matrices. We denote by FN the square
Fourier matrix of size N×N and FN,M the rectangular Fourier frame of size N×M (which
is given by the first N rows of a square Fourier matrix of size M ×M).

6.3.1. Complexity analysis of ProSparse Denoise

The key parts of the ProSparse Denoise algorithm rely on two algorithms of known com-
plexity, Cadzow denoising and Prony’s method. For the case where the Fourier atoms
correspond to the Fourier basis, the complexity of the denoising step is O(N logN). It
follows that the complexity of the loop that iterates Kq times is O(KqN logN). The next
step of the algorithm is to apply Prony’s method to retrieve the Kp Fourier atoms, which
has a complexity of O(K3

p) (see Section 3.3). In practice the algorithm is applied to y
to estimate the Kp Fourier atoms and to F y to estimate the Kq spikes. Since we have
that K = Kp + Kq, the overall complexity of the algorithm for the union of bases case is
O(K3 + KN logN). For the case of the union of Fourier frame and identity matrix, the
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Cadzow algorithm has a higher complexity since the fast version based on the FFT cannot
be applied. Making use of the modern randomised algorithms that we have mentioned in
the previous section that compute a partial SVD for the K dominant components with
complexity O(N2 logK), the complexity of the algorithm becomes O(K3 + KN2 logN).
Note that the complexity of this algorithm does not depend on the dimension of the sparse
vector x ∈ CL. This is a great gain in performance if compared to the complexity of the
algorithms described in the introduction of this chapter.

6.4. Guaranteed performance analysis

The signal model presented in (6.1) and (6.2) allows us to perform some probabilistic
analysis of the performance of the algorithm from a worst case scenario point of view. In
this section, first, we present an analysis of the SNR of the signal in terms of the amplitudes
of the atoms and the power of the noise. Then, we establish a sufficient condition for the
algorithm to succeed for the simple case where there is only one Fourier atom and one spike.
This condition is then validated with numerical simulations. We restrict the analysis to
the case where the Fourier atom is drawn from a Fourier basis.

6.4.1. Signal-to-noise ratio of the signal

The power of the signal is given by

Py =
1

N

N−1∑
n=0

|y[n]|2 =
1

N

N−1∑
n=0

y[n] y∗[n]. (6.15)

If we denote by ωk = 2π
N mk the frequencies of the Fourier atoms, it follows that

|y[n]|2 =

 1√
N

Kp∑
k=1

ak eiωkn +

Kq∑
k=1

bk δ[n− nk]

 1√
N

Kp∑
`=1

a∗` e−iω`n +

Kq∑
`=1

b∗` δ[n− n`]

 .

(6.16)
If we expand this product we obtain

|y[n]|2 =
1

N

Kp∑
k=1

Kp∑
`=1

ak a
∗
` ei(ωk−ω`)n +

1√
N

Kp∑
k=1

Kq∑
`=1

ak b
∗
` eiωkn δ[n− n`]

+
1√
N

Kq∑
k=1

Kp∑
`=1

bk a
∗
` e−iω`n δ[n− nk] +

Kq∑
k=1

Kq∑
`=1

bk b
∗
`δ[n− nk] δ[n− n`].

(6.17)
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Summing over n yields

Py =
1

N

Kp∑
k=1

|ak|2 +
1√
N

Kp∑
k=1

Kq∑
`=1

ak b
∗
` eiωkn` +

1√
N

Kq∑
k=1

Kp∑
`=1

ak b
∗
` e−iω`nk +

Kq∑
k=1

|bk|2
 .

(6.18)
Applying the fact that for z ∈ C we have z z∗ = 2Re {z}, we have that

Py =
1

N

Kp∑
k=1

|ak|2 +

Kq∑
k=1

|bk|2 +
2√
N

Kp∑
k=1

Kq∑
`=1

Re
{
ak b

∗
` eiωkn`

} . (6.19)

In order to analyse the power of the noise we have to take into account that this term
corresponds to a stochastic process. Therefore, a meaningful measure of the noise power
is given by its expected value:

Pn = E

{
1

N

N−1∑
n=0

|ε[n]|2
}
. (6.20)

Due to the independence of the noise samples, it follows that

Pn =
1

N

N−1∑
n=0

E
{
εR[n]2 + εI [n]2

}
=

1

N

N−1∑
n=0

(
E
{
εR[n]2

}
+ E

{
εI [n]2

})
= 2σ2

ε . (6.21)

The resulting SNR is given by

SNR =
Py
Pn

=

∑Kp
k=1 |ak|

2 +
∑Kq

k=1 |bk|
2 + 2√

N

∑Kp
k=1

∑Kq
l=1 Re

{
ak b

∗
l eiωknl

}
2N σ2

ε

. (6.22)

This expression is going to be useful to assess what is the actual SNR of the signal when
we establish some conditions on N and σε.

6.4.2. Sufficient condition for sparse recovery with Kp = Kq = 1

ProSparse Denoise depends on estimating spikes and Fourier atoms from the maximum of
the absolute value of the signal y and its Fourier transform. For this reason, it is important
to understand how the maximum of the absolute value of the noise behaves. Since our
noise model is based on complex-valued i.i.d. Gaussian random variables, the absolute
value of the noise term, that is |ε[n]| =

∣∣εR[n] + i εI [n]
∣∣, follows a Rayleigh distribution. In

Appendix E it is shown that for large N , the maximum value of a collection of N random
variables that follow a Rayleigh distribution with parameter σε is equal to σε

√
2 logN with

high probability. However, it has to be noted that this convergence is extremely slow [127].
Note that in the case of the Fourier basis, we consider unitary Fourier transforms, and
therefore, the noise terms in the Fourier transform of y follow the same distribution as in
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the temporal domain.

The first step of the denoising algorithm operates in the Fourier domain and selects
the Fourier atoms by picking the samples with the largest amplitudes. When there is one
Fourier atom and one spike, the worst case scenario corresponds to the case where the
noise and the Fourier transform of the spike sum destructively with the Fourier atom, the
amplitude of the noise at this location is maximum, and there is another location where
the noise also reaches the maximum amplitude of σε

√
2 logN .

Let us assume that the Fourier atom and the spike have the same amplitude:

aR1 = aI1 = bR1 = bI1 = 1/
√

2. (6.23)

If the Fourier atom is located at m = m1, the noiseless sample of the Fourier transform at
m = m1 is given by

ŷ[m1] = (aR1 + i aI1) +
1√
N

(bR1 + i bI1) e−i2πn1m1/N (6.24)

= eiπ/4 +
1√
N

ei(π/4−2πn1m1/N). (6.25)

The Fourier atom and the spike sum destructively when the phase of the second complex
exponential in the previous equation has a difference of π radians (modulo 2π) with the
phase of the first complex exponential, that is:

π

4
− 2πn1m1

N
=

5π

4
+ 2π` (6.26)

⇔ − n1m1 =
N

2
+ `N (6.27)

⇔ mod (n1m1, N) =
N

2
. (6.28)

This establishes a condition on m1 and n1 to have a destructive interaction between the
Fourier atom and the Fourier transform of the spike. In that case, the resulting amplitude
is given by

|y[m1]| = 1− 1√
N
. (6.29)

In the worst case scenario, we assume that the amplitude of the noise at locationm = m1

is maximum, that is |ε[m1]| = σε
√

2 logN , and sums destructively with the Fourier atom’s
amplitude. Moreover, we assume that another location m 6= m1 also presents a noise
sample with this same amplitude. We can therefore establish the following sufficient success
condition that guarantees that in the worst case scenario we will still be able to detect the
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Figure 6.2.: Guaranteed performance of ProSparse Denoise with 1 Dirac and 1 Fourier atom for different
levels of noise. 50 iterations per noise level. The success is measured by checking that the
support is correctly retrieved at each iteration. The amplitudes of the atoms are fixed and
are equal to 1/

√
2 for the real and imaginary parts. The location of the Fourier atom is

m1 = 1. The location of the Fourier atom is m1 = 1 and the location of the spike, n1,
satisfies (6.28). The red line depicts the equation σ = (1− 1/

√
N)(
√

8 logN) from (6.31).

Fourier atom:

1− 1√
N
− σε

√
2 logN > σε

√
2 logN (6.30)

⇔ σε <
1− 1/

√
N√

8 logN
. (6.31)

Equation (6.31) establishes an upper bound for the standard deviation of the noise in
order to guarantee the success of the algorithm. For a given size of the problem N , if
there are one Fourier atom and one spike, having a noise with a σε which is below this
upper bound guarantees, in theory, that the algorithm will succeed. Figure 6.2 illustrates
an empirical validation of this argument. For different sizes of the problem, and different
levels of noise, the sparse vector is reconstructed applying the algorithm described in the
previous section. The experiment is repeated 50 times for each combination of N and σ
by generating different realisations of the noise vector. We consider that the algorithm has
succeeded if the correct support of the original vector y is recovered. The red line depicts
the bound established in Equation (6.31). We can observe that when the noise has a power
below this bound the algorithm always succeeds, confirming the predicted result.

If we replace the value of σε obtained in (6.31) in the expression of the SNR, with the
constraint on m1 and n1 established in (6.28), it follows that

SNR >
8 logN

N
(

1− 1/
√
N
) . (6.32)
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6.5. Simulation results

ProSparse Denoise has been tested against the following state of the art algorithms: BPDN,
OMP, LASSO and Subspace Pursuit. Figures 6.3 and 6.4 present the results where we have
measured the MSE of the recovered sparse vector and the probability that the algorithms
recover the exact support of the original sparse signal for different sizes of the problem.
Specifically, for a given sparsity level and SNR, 100 different supports of the sparse vector
x ∈ CL are generated uniformly at random; and for each realisation of the support, 10
different realisations of the amplitudes of x and of the the noise vector ε are generated
such that the observation y = Dx+ ε satisfies the specified SNR. For each sparsity level
we thus have 1000 realisations. All the amplitudes are Gaussian distributed and complex-
valued. At each realisation, the five algorithms reconstruct a sparse vector from the noisy
observation y. Simulations have been performed for 8 different scenarios that correspond
to SNR levels of 5 and 10 dB with a bias in the number of atoms from one dictionary with
respect to the other of 25 and 50 % and sizes N = 128 and N = 256. A bias of 25 %

means that there are K/4 spikes and 3K/4 Fourier atoms (the different values of K are
chosen so that these numbers are always integers).

The greedy algorithms, OMP and Subspace Pursuit, and the novel algorithm presented in
this chapter, ProSparse Denoise (denoted by PSDN in the plots), inherently take advantage
of the fact that the sparsity level is known. The other two algorithms that have been tested,
which are based on convex relaxation techniques (BPDN and LASSO), do not make use
of the information of the sparsity level in their execution. However, this information has
also been used in the reconstruction of BPDN and LASSO by applying a final debiasing
phase. The debiasing phase consists of two steps. First, the support of the sparse vector
is estimated from the largest entries of the solution that is estimated by each algorithm,
this is where the information of the sparsity level is exploited. Then, the amplitudes of the
locations that correspond to this support are computed with a least squares approach (all
the other elements are set to zero). This approach improves considerably the MSE that is
measured for these algorithms.

From the results, it is clear that the proposed sparse recovery algorithm consistently
outperforms state of the art algorithms at all noise and sparsity levels. We can also see that,
in this scenario, the greedy algorithms perform better than convex relaxation techniques.
The differences in performance become negligible for large K, where the probability of
retrieving the correct support drops for all the methods. Another algorithm was also
tested before running the extensive simulations, GPSR. The performance of this algorithm
is very sensible to a parameter that has to be tuned (see parameter τ embedded in vector c
in Equation 6.6). Despite the efforts to tune it for this scenario, the obtained results were
considerably worse than the other algorithms and therefore the algorithm was discarded for
these simulations. The code of the algorithm was downloaded from the author’s website
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[120], and approaches that are mentioned in the paper such as ”warm-start“ were also
tested (start with a larger value of τ to obtain a first approximation of the solution and
use this approximation as an initial estimate for a subsequent execution with a smaller τ).

Besides the gain in performance, it is also important to note that this novel algorithm
is faster than the other algorithms in the majority of scenarios. Execution times have
been measured during these simulations and are summarised in Tables 6.1 and 6.2. These
measurements are obtained by averaging over the multiple realisations of each sparsity
level. The experiments have been run using a commercial laptop (tested on a 2.5GHz
Intel Core i5 CPU) and all the algorithms were implemented in MATLAB. We used the
CVX package to implement the BPDN optimisation problem because it was giving the
best performance compared to other optimisation toolboxes [112]. LASSO was tested
using MATLAB’s implementation. OMP has been implemented for the simulations and
the implementation of Subspace Pursuit downloaded from the authors’ website (http:
//www.ee.imperial.ac.uk/wei.dai/Software/SubspacePursuit.zip). Note that only
Subspace Pursuit runs faster than ProSparse Denoise and only for very low sparsity levels.
For sparsity levels that go beyond 12 for N = 128 and 16 for N = 256 ProSparse Denoise
is the fastest of all the algorithms.

Table 6.1.: Average execution time of sparse recovery algorithms, N = 128.

K ProSparse Denoise BPDN OMP LASSO Subspace Pursuit
4 0.0030 3.1480 0.0308 0.0566 0.0024
8 0.0037 2.9903 0.0575 0.0763 0.0035
12 0.0054 3.1420 0.0916 0.1007 0.0059
16 0.0059 2.9097 0.1187 0.1184 0.0081

Table 6.2.: Average execution time of sparse recovery algorithms, N = 256.

K ProSparse Denoise BPDN OMP LASSO Subspace Pursuit
4 0.0098 33.0813 0.2442 0.1503 0.0055
8 0.0112 29.3087 0.4779 0.1565 0.0087
12 0.0136 27.8360 0.7159 0.1722 0.0110
16 0.0151 27.2135 0.9560 0.1921 0.0165
20 0.0171 26.7477 1.1906 0.2038 0.0195
24 0.0202 26.7861 1.4324 0.2183 0.0230
28 0.0216 25.8907 1.6440 0.2318 0.0251
32 0.0203 22.9313 1.6568 0.2218 0.0250
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6.6. Summary

A novel algorithm has been presented to solve the sparse recovery problem in the noisy
scenario. This new approach is based on an extension of the Cadzow denoising algorithm
for the finite-dimensional case. This extension is combined with an iterative spike removal
algorithm to obtain a cleaned signal that only contains Fourier atoms. These atoms are
then estimated using Prony’s method. The overall algorithm is able to solve the sparsity
problem faster, and with higher precision, than state of the art algorithms. We note that
traditional compressed sensing methods are more flexible, in the sense that they can solve
the sparsity problem for generic dictionaries. However, our method outperforms these
algorithms because it fully exploits the particular structure of the dictionary at hand: the
union of Fourier and identity matrices.
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(a) SNR = 10 dB, bias = 50%.
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(b) SNR = 5 dB, bias = 50%.
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(c) SNR = 10 dB, bias = 25%.
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(d) SNR = 5 dB, bias = 25%.

Figure 6.3.: Union of Fourier and identity bases, each of size N × N with N = 128. Simulation results
withKq = bias·K spikes andKp = K−Kq Fourier atoms. 1000 realisations per sparsity level
(100 non-zero locations uniformly drawn at random and for each realisation of the non-zero
locations 10 realisations of the amplitudes drawn from N (0, 1) for the real and imaginary
parts). The results of the novel algorithm presented in this chapter correspond to PSDN
(ProSparse Denoise).
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(a) SNR = 10 dB, bias = 50%.
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(b) SNR = 5 dB, bias = 50%.
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(c) SNR = 10 dB, bias = 25%.
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(d) SNR = 5 dB, bias = 25%.

Figure 6.4.: Union of Fourier and identity bases, each of size N × N with N = 256. Simulation results
with Kq = bias ·K spikes and Kp = K −Kq Fourier atoms. 1000 realisations per sparsity
level (100 non-zero locations uniformly drawn at random and for each realisation of the
non-zero locations 10 realisations of the amplitudes drawn from N (0, 1) for the real and
imaginary parts). The resuts of the novel algorithm presented in this chapter correspond to
PSDN (ProSparse Denoise).
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Chapter 7.

Conclusions

7.1. Summary

In this thesis we have studied sampling and reconstruction methods for signals that present
a finite number of degrees of freedom. These signals are known as signals with finite rate
of innovation (FRI) and the framework that is being developed around this idea during
the last decade has revolutionised the way we acquire and reconstruct some classes of
signals. From the classical sampling theory point of view, band unlimited signals cannot
be sampled and perfectly recovered. However, FRI theory presents a new sampling scheme
that achieves perfect reconstruction for some classes of band unlimited signals. These
ideas can also be applied to recover finite-dimensional signals. First, we have analysed
the sampling process of streaming continuous-time signals. Next, we have presented an
extension of this procedure with an application in neuroscience to monitor the activity
of individual neurones. Last, we have examined the case where the unknown signal is
finite-dimensional.

In Chapter 2, we have revisited the classical theory for sampling bandlimited signals
in order to introduce the FRI theory. FRI theory presents a more general characterisa-
tion of signals, and therefore, bandlimited signals can be seen as a subset of FRI signals.
We have seen how perfect reconstruction of some band unlimited signals can be achieved.
Specifically, we have presented the case where the input is a stream of Diracs and the sam-
pling kernel satisfies the exponential reproducing property. The core of the reconstruction
algorithms is based on Prony’s method. We have also described some state of the art algo-
rithms to make the reconstruction procedure more robust when samples are contaminated
with noise.

The canonical example of FRI signals are streams of Diracs. A Dirac delta is an ideal-
isation of an impulsive signal where we are only interested in its amplitude and location.
A set of K Diracs is thus perfectly recovered if we are able to retrieve the 2K parameters
that correspond to their amplitudes and locations. FRI literature focuses on sampling and
reconstructing bursts of Diracs, but has not analysed streaming signals where no clear
separation between consecutive impulses can be detected. In Chapter 3, we have presented
a novel algorithm that achieves perfect reconstruction for this type of streaming signals.
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First, we have established some conditions on the support of the sampling kernel and the
sampling period in order to achieve perfect reconstruction of noiseless signals. We have
then presented a robust algorithm to reconstruct streaming signals in the presence of noise.
This algorithm is based on sampling and reconstructing sequentially sets of Diracs with
a sliding window. Since each Dirac is captured by several positions of the sliding win-
dow, we can construct a histogram of the retrieved locations. The peaks of this histogram
correspond to real Diracs.

Neuroscientists are trying to identify neural circuits in regions of the brain. In order to
understand the connectivity of individual neurones it is important to infer their activation
times or action potentials. Calcium fluorescence imaging techniques allow the monitoring of
populations of neurones. Action potentials are well characterised by decaying exponentials
in this type of data. In Chapter 4, we have presented an extension of the FRI theory to
sample and reconstruct streams of decaying exponentials. We have combined this extension
with the ideas presented in the previous chapter to infer the times of action potentials from
fluorescence sequences. The algorithm is able to monitor tens of neurones in real time with
a commercial computer and outperforms state of the art algorithms.

The parametrisation of FRI signals is based on defining a continuous-time signal in
terms of the location and amplitude of some known pulses. This idea can also be applied
to the finite-dimensional case to solve the sparse reconstruction problem. In Chapter 5,
we have presented a probabilistic analysis of the performance of an algorithm that recon-
structs finite-dimensional signals based on Prony’s method, ProSparse. These signals have
a sparse representation in a dictionary that is given by sinusoidal atoms and spikes. The
probabilistic analysis shows a phase transition behaviour of the algorithm, that is, the
algorithm succeeds with high probability when some conditions are satisfied, and fails with
high probability when they are not.

In the last technical chapter, Chapter 6, we have proposed an iterative algorithm to solve
the sparse representation problem when the observed signal is corrupted with noise. We
have also considered the context where the observed signal is given by a sum of sinusoidal
elements and spikes. This novel approach is based on applying a denoising algorithm that
reduces noise in signals that are given by sums of exponentials. This denoising method
keeps the sinusoidal part of the observed signal but also removes the spikes. We make
use of this property to iteratively remove the spikes and then estimate the Fourier atoms
from the cleaned signal. The spikes can then be estimated from the residual, or if the
sinusoidal atoms are drawn from a Fourier basis, we can also apply the same approach to
the Fourier transform of the observed signal. In that case, the spikes become sinusoidals
and thus can be estimated with the same approach. This method outperforms state of the
art algorithms for sparse recovery such as Basis Pursuit Denoise or Subspace Pursuit.
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7.2. Future research

To conclude the thesis we propose some future research topics.

• An interesting extension of the FRI theory was proposed in the year 2013 by Urigüen
et al. [27] where the strict conditions on the sampling kernels were relaxed, and still,
very good performances were achieved. This idea can be applied to the problem
we have studied in Chapter 4 to monitor neural activity. This application would
require to estimate the transfer function of the entire acquisition device, but has the
potential of improving the accuracy and performance of the inference algorithm.

• The sparse recovery problem has been analysed for dictionaries that correspond to
the union of Fourier and identity matrices. This problem has very practical appli-
cations in image processing if the algorithms are extended to other pairs of bases
such as wavelet and DCT basis. The joint use of these two bases can lead to better
approximation results when used to approximate images, where wavelet atoms can
represent very accurately edges and discontinuities and DCT atoms can represent
regular patterns in textures.

• In Chapter 6 we have presented a limited guaranteed performance analysis for the
case where the observed signal is made of one Fourier atom and one Dirac. Analysing
from a probabilistic point of view the real performance of the algorithm for general
signals with more atoms would lead to a better understanding of its behaviour.
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Appendix A.

Function reproduction with splines

A.1. Polynomial reproducing kernels and cm,n coefficients

In this section we provide an efficient way of computing the cm,n involved in the reproduc-
tion of polynomial functions. A polynomial reproducing kernel satisfies:∑

n∈Z
cm,n ϕ(t− n) = tm, m = 0, 1, . . . , P. (A.1)

If the set {ϕ(t− n)}n∈Z does not form an orhogonal basis, the cm,n coefficients can be ob-
tained from the quasi-biorthogonal set {ϕ̃(t − n)}n∈Z as cm,n = 〈tm, ϕ̃(t − n)〉 ([128]).
This includes the particular case where ϕ̃(t) is the dual of ϕ(t), that is, they satisfy
〈ϕ(t), ϕ̃(t− n)〉 = δ[n]. The dual is not always easy to obtain, thus, we can try to compute
directly the cm,n coefficients without having knowledge of ϕ̃(t).

cm,n =

∫ ∞
−∞

tm ϕ̃(t− n) dt

=

∫ ∞
−∞

(t+ n)m ϕ̃(t) dt

=
m∑
k=0

(
m

k

)
nm−k

∫ ∞
−∞

tk ϕ̃(t) dt︸ ︷︷ ︸
=ck,0

=

m∑
k=0

(
m

k

)
nm−k ck,0.

(A.2)

This expression provides an easy way to compute the cm,n coefficients for any n from the
ck,0 coefficients. We still need to compute the ck,0 coefficients for k = 0, 1, . . . ,m. If we
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plug this expression for cm,n in the polynomial reproducing formula we obtain:

tm =
∑
n∈Z

(
m∑
k=0

(
m

k

)
nm−k ck,0

)
ϕ(t− n)

=
∑
n∈Z

(
cm,0 +

m−1∑
k=0

(
m

k

)
nm−k ck,0

)
ϕ(t− n)

= cm,0
∑
n∈Z

ϕ(t− n) +
m−1∑
k=0

(
m

k

)
ck,0

∑
n∈Z

nm−k ϕ(t− n),

(A.3)

where we can isolate cm,0 to obtain a recursive formula to compute these coefficients for
any m up to m = P :

cm,0 =
tm −

∑m−1
k=0

(
m
k

)
ck,0

∑
n∈Z n

m−k ϕ(t− n)∑
n∈Z ϕ(t− n)

. (A.4)

This formula is valid for any t. We thus have the freedom to choose, for instance t =

0, which makes computations more stable. Note that we have assumed that ϕ(t) only
reproduces polynomials up to degree m = P and therefore this formula is only valid for
0 ≤ m ≤ P . The first coefficients are given by:

c0,0 =
1∑

n∈Z ϕ(t− n)
, (A.5)

c1,0 =
t− c0,0

∑
n∈Z n ϕ(t− n)∑

n∈Z ϕ(t− n)
, (A.6)

c2,0 =
t2 − c0,0

∑
n∈Z n2 ϕ(t− n)− 2 c1,0

∑
n∈Z n ϕ(t− n)∑

n∈Z ϕ(t− n)
. (A.7)

A.2. Exponential reproducing kernels and cm,n coefficients

In the previous section we have explained how to compute the cm,n coefficients involved in
the reproduction of polynomials. In this section we are interested in the reproduction of
exponential functions and provide a similar explanation about how to compute the cm,n
coefficients to achieve this goal. A kernel that reproduces a set of exponential functions
{eαmt}Pm=0 satisfies: ∑

n∈Z
cm,n ϕ(t− n) = eαmt, m = 0, 1, . . . , P. (A.8)

If the set {ϕ(t − n)}n∈Z does not form an orthogonal basis, the cm,n coefficients can
be obtained from the quasi-biorthogonal set {ϕ̃(t − n)}n∈Z as cm,n = 〈eαmt, ϕ̃(t − n)〉.
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This includes the particular case where ϕ̃(t) is the dual of ϕ(t), that is, they satisfy
〈ϕ(t), ϕ̃(t− n)〉 = δ[n]. In this case, we have that

cm,n =

∫ ∞
−∞

eαmt ϕ̃(t− n) dt

=

∫ ∞
−∞

eαm(t+n) ϕ̃(t) dt

= eαmn
∫ ∞
−∞

eαmt ϕ̃(t) dt︸ ︷︷ ︸
cm,0

= eαmn cm,0.

(A.9)

We can thus compute the coefficients cm,n for any n from the sole knowledge of the coef-
ficients cm,0. In order to compute the set of cm,0 coefficients for m = 0, 1, . . . , P , we can
insert this expression of cm,n in the exponential reproduction formula which yields

cm,0 =
eαmt∑

n∈Z eαmn ϕ(t− n)
=

[∑
n∈Z

e−αm(t−n) ϕ(t− n)

]−1

. (A.10)

Assuming that the parameters αm = iωm are purely imaginary and applying the Poisson
summation formula it follows that

cm,0 =

[∑
k∈Z

ϕ̂ (2πk + ωm) ei2πkt

]−1

. (A.11)

From the generalised Strang-Fix conditions (see Proposition 2) we know that if ϕ(t) is an
exponential reproducing kernel that reproduces the functions eiωmt then ϕ̂(ωm + 2πk) = 0

for k = Z \ {0}. Therefore, we obtain the following compact expressions for the cm,0 and
cm,n coefficients:

cm,0 = [ϕ̂(ωm)]−1 and cm,n = eiωmn [ϕ̂(ωm)]−1 . (A.12)
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Appendix B.

Toeplitz matrices with elements given by
sums of exponentials

B.1. Rank deficiency of Toeplitz matrix

Let S be the following (P −M + 1)× (M + 1) Toeplitz matrix:

S =


s[M ] s[M − 1] . . . s[0]

s[M + 1] s[M ] . . . s[1]
...

...
. . .

...

s[P ] s[P − 1] . . . s[P −M ]

 , (B.1)

where the number of rows and columns are greater than or equal to some nonnegative
integer K, that is, (P −M + 1) ≥ K and (M + 1) ≥ K. We consider the case where each
element s[m] is given by a sum of K exponentials:

s[m] =

K∑
k=1

bk u
m
k , (B.2)

with all bk non-zero and all uk distinct. The matrix S can be decomposed as follows:

S =


1 . . . 1

u1 . . . uK
...

. . .
...

uP−M1 . . . uP−MK


︸ ︷︷ ︸

B


b1 . . . 0
...

. . .
...

0 . . . bK


︸ ︷︷ ︸

A


uM1 uM−1

1 . . . 1
...

...
. . .

...

uMK uM−1
K . . . 1


︸ ︷︷ ︸

C

. (B.3)

Since B and C are Vandermonde matrices with distinct elements, both are of rank K.
A is a K ×K diagonal matrix where the entries of the main diagonal correspond to the
amplitudes b1, b2, . . . , bK . Therefore, if elements b1, b2, . . . , bK are all non-zero, matrix S
has rank K.

Note that this property is also valid when matrix S is built from any P + 1 consecutive
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samples s[m] given as in B.2 and starting from an arbitrary index ` 6= 0, that is, we build
a Toeplitz S from s[`], s[` + 1], . . . , s[` + P ]. In this case, the decomposition in (B.3) is
still valid by just adding a premultiplication by a diagonal matrix with the elements of the
main diagonal given by u`1, u`2, . . . , u`K , which is also of rank K.

B.2. Generalised eigenvalues and rank reducing numbers

Let S be a Toeplitz matrix built as in (B.1) where the elements are given as in (B.2). We
further impose the number of rows to be at least equal to K+1 and the number of columns
to be equal to K. Let S0 be the matrix constructed from S by dropping the first row and
S1 the matrix constructed from S by dropping the last row. From the decomposition
presented in (B.3) we have that S0 and S1 have full column rank K. We now show that
{uk}Kk=1 are the generalised eigenvalues of the following generalised eigenvalue problem:

S0 v = µS1 v ⇔ (S0 − µS1)v = 0. (B.4)

We have that (B.4) has a nontrivial solution v ∈ CK only if S0 − µS1 has rank strictly
smaller than K, that is, we want to find the values of µ that reduce the rank of S0−µS1.
Thus the name of rank reducing numbers. If we decompose matrix S as in (B.3), that is,
S = BAC, we can also express S0 and S1 as

S0 = B0AC and S1 = B1AC, (B.5)

where B0 and B1 are built from B by removing the first and last rows respectively. We
have that

S0 − µS1 = (B0 − µB1)AC. (B.6)

It is easy to verify that µ = uk, k = 1, . . . ,K, are rank reducing numbers since setting
µ = uk introduces a column of zeros at the kth column ofB0−µB1. Hence, the parameters
uk correspond to the generalised eigenvalues of (B.4).
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Appendix C.

Cramér-Rao lower bound and parameter
estimation in the FRI context

C.1. Parameter estimation and Cramér-Rao lower bound

We refer the reader to the Stoica’s book [43, Appendix B] for a comprehensive analysis
of the Cramér-Rao bound tools in the context of spectral estimation. Here, we present a
brief introduction to these statistical tools in order to apply them in the context of FRI.

Let f(n,θ) be a real-valued parametric model that depends on a real-valued vector
θ = [θ1, . . . , θK ]T ∈ RK . Vector θ represents the parameters to be estimated and n

accounts for the temporal variable. Let θ̂ denote the estimated parameters fromN samples.
If the estimate satisfies E

{
θ̂
}
→ θ as N →∞, we say that the estimator is unbiased. For

small errors we can approximate the estimation error f(n, θ̂)− f(n,θ) by

f(n, θ̂)− f(n,θ) ' (θ̂ − θ)T ∇f(n,θ), (C.1)

where ∇f(n,θ) ∈ RK is the gradient of f(n,θ) for a fixed n, that is, each element of
∇f(n,θ) is given by the partial derivative of f(n,θ) with respect to each element in vector
θ. It follows that the mean squared error (MSE) of f(n, θ̂) is approximately given by

MSE
{
f(n, θ̂)

}
= E

{
[f(n, θ̂)− f(n,θ)]T [f(n, θ̂)− f(n,θ)]

}
' E

{
∇f(n,θ)T (θ̂ − θ) (θ̂ − θ)T ∇f(n,θ)

}
= ∇f(n,θ)T E

{
(θ̂ − θ) (θ̂ − θ)T

}
︸ ︷︷ ︸

Cov{θ̂}

∇f(n,θ).
(C.2)

For an unbiased estimator, that is E
{
θ̂
}
→ θ as N →∞, let P denote the covariance

matrix of θ̂:
P

def
= Cov

{
θ̂
}

= E
{

(θ̂ − θ) (θ̂ − θ)T
}
. (C.3)

The Cramér-Rao lower bound (CRB) [129, 130] states that there is a matrix such that
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P is lower bounded, that is, P ≥ Pcr in the sense that that the difference matrix P −Pcr
is positive semidefinite. The matrix Pcr is given by

Pcr = [I(θ)]−1 (C.4)

where I(θ) is the Fisher information matrix which is defined next. The diagonal terms
in the matrix P correspond to the uncertainty of our estimate and therefore the CRB
provides the best achievable performance of an unbiased estimator.

C.1.1. Likelihood function and Fisher information matrix

Let y = (ỹ[n])N−1
n=0 ∈ RN denote the vector of available noisy measurements. Each available

sample has a deterministic part which corresponds to the parametric model f(n,θ) and a
stochastic part that accounts for the noise and uncertainties introduced by the acquisition
device. We thus have

ỹ[n] = f(n,θ) + ε[n], (C.5)

where ε[n], n = 0, 1, . . . , N−1, are random variables. If the parameters and measurements
are complex-valued, y and θ are obtained by concatenating the real and imaginary parts
of the complex data and parameters.

We assume that the probability density function (PDF) of the random variables ε[n] is
known, we can thus also obtain the pdf of y which we denote py(x;θ). It follows that, if
Y is a subset of the possible values that the vector y can take, the probability that the
observation y is in Y is given by

P {y ∈ Y} =

∫
Y
py(x;θ) dx. (C.6)

The function py(x;θ) is called the likelihood function which leads to an important param-
eter estimation method called maximum likelihood (ML) estimator. The ML estimate of θ
is obtained by maximizing the likelihood function as a function of θ for a given observation
x = y:

θ̂ML = arg max
θ

py(y;θ). (C.7)

It is often more practical to maximize the log-likelihood function:

`(y;θ)
def
= log py(y;θ). (C.8)

The Fisher information matrix is defined in terms of the log-likelihood function:

I(θ)
def
= E

{
∇`(y;θ)(∇`(y;θ))T

}
. (C.9)
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Gaussian and i.i.d. noise

Let us assume that the noise terms ε[n], n = 0, 1, . . . , N − 1, are i.i.d. and normaly
distributed, that is, ε[n] ∼ N (0, σ2

ε). The pdf of each observation ỹ[n] is thus given by

pỹ[n](x;θ) =
1√

2πσ2
ε

exp

(
−(x− f(n,θ))2

2σ2
ε

)
. (C.10)

Since the samples are independent, the pdf of y is given by the product of each pdf:

py(x;θ) =

N−1∏
n=0

pỹ[n](xn) =
(√

2πσε

)−N
exp

(
− 1

2σ2
ε

N−1∑
n=0

(xn − f(n,θ))2

)
, (C.11)

where x = [x0, . . . , xN−1]T ∈ RN . The log-likelihood function is therefore given by

`(y;θ) = −N log
(√

2πσε

)
− 1

2σ2
ε

N−1∑
n=0

(ỹ[n]− f(n,θ))2, (C.12)

where x = y. The derivative of `(y;θ) with respect to each parameter θk is given by

∂`(y;θ)

∂θk
=

1

σ2
ε

N−1∑
n=0

(y[n]− f(n,θ))
∂f(n;θ)

∂θk
. (C.13)

Note that the term ỹ[n]− f(n,θ) is equal to ε[n]. The gradient of `(y,θ) is thus given by

∇`(y,θ) =
1

σ2
ε

N−1∑
n=0

ε[n]∇f(n;θ). (C.14)

We can now compute the Fisher information matrix:

I(θ) = E

{
1

σ4
ε

N−1∑
n=0

ε[n]∇f(n,θ)
N−1∑
m=0

ε[m]∇f(m,θ)T

}

=
1

σ4
ε

N−1∑
n=0

N−1∑
m=0

E {ε[n] ε[m]}︸ ︷︷ ︸
=σ2

ε δ[n−m]

∇f(n,θ)∇f(m,θ)T

=
1

σ2
ε

N−1∑
n=0

∇f(n,θ)∇f(n,θ)T .

(C.15)

This gives a closed-form expression to compute the Fisher information matrix.

Correlated noise

We now assume that ε = [ε[0], . . . , ε[N − 1]]T follows a multivariate normal distribution
where samples are correlated. We thus have to take into account the covariance matrix of
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the noise. In what follows we assume that E {ε[n]} = 0 and therefore Σε = E
{
εεT

}
. The

pdf of vector y is given by

py(x;θ) =
1√

(2π)N |Σε|
exp

(
−1

2
(x− u)T Σ−1

ε (x− u)

)
, (C.16)

where u = (f(n,θ))N−1
n=0 and |Σε| is the determinant of the covariance matrix. Note that

this expression also accounts for the case where the ε[n] are i.i.d. random variables. In
that case, the covariance matrix is given by Σε = diag(σ2

ε , . . . , σ
2
ε) and expression (C.16)

is then equal to (C.11).

The log-likelihood function of the multivariate normal distribution is given by

`(y,θ) = −1

2
log
(
(2π)N |Σε|

)
− 1

2
(y − u)T Σ−1

ε (y − u). (C.17)

Therefore, the derivative with respect to θk is given by

∂`(y;θ)

∂θk
=

1

2

(
∂u

∂θk

)T
Σ−1
ε (y − u) +

1

2
(y − u)T Σ−1

ε

(
∂u

∂θk

)
=

(
∂u

∂θk

)T
Σ−1
ε (y − u).

(C.18)

where we have applied the fact that Σε is symmetric. Note that the term (y−u) is equal
to the noise vector ε. If we explicitly write the matrix products we have

∂`(y;θ)

∂θk
=

N−1∑
m=0

∂f(m,θ)

∂θk

N−1∑
n=0

[
Σ−1
ε

]
m,n

ε[n], (C.19)

where [·]m,n represents the (m+ 1, n+ 1) element of a matrix for indices m and n starting
at m = 0 and n = 0. The gradient of the log-likelihood is therefore given by

∇`(y;θ) =

N−1∑
m,n=0

∇f(m,θ)
[
Σ−1
ε

]
m,n

ε[n] = GT Σ−1
ε ε. (C.20)

where matrix G is a N × K matrix where each row is given by vector ∇f(n,θ)T . By
substituting this expression of the gradient of the log-likelihood function in the definition
of the Fisher information matrix (C.9) we obtain the following

I(θ) = E

GT Σ−1
ε ε εT

(
Σ−1
ε

)T︸ ︷︷ ︸
=Σ−1

ε

G

 = GT Σ−1
ε E

{
ε εT

}
Σ−1
ε G. (C.21)

Note that the expection term coincides with the definition of the covariance matrix for

138



C.2. CRB in the FRI setup

random variables with zero mean. We thus have

I(θ) = GT Σ−1
ε G. (C.22)

C.2. CRB in the FRI setup

In the FRI framework, we have access to the following set of noisy samples

ỹ[n] =

K∑
k=1

ak ϕ

(
tk
T
− n

)
+ ε[n], (C.23)

where the parameters to be estimated are the K pairs (ak, tk). The parameters vector is
therefore given by θ = [a1, . . . , aK , t1, . . . , tK ]T ∈ R2K and the parametric model corre-
sponds to

f(n,θ) =

K∑
k=1

ak ϕ(tk/T − n) n = 0, 1, . . . , N − 1. (C.24)

We thus have that

∇f(n,θ) =


ϕ(t1/T−n)

...
ϕ(tK/T−n)
a1
T
ϕ′(t1/T−n)

...
aK
T
ϕ′(tK/T−n)

. (C.25)

By replacing this expression of the gradient in matrix G from Equation (C.22) and in-
verting I(θ) we can compute the CRB in the FRI setup. This is the approach that has
been applied to obtain the CRB plots in Figure 2.10.

C.2.1. CRB of the measurements s[m]

The FRI reconstruction procedures do not operate directly on the samples ỹ[n], but on
the set of complex-valued measurements s̃[m] that are obtained by linearly combining the
real-valued samples ỹ[n] with the complex-valued coefficients cm,n from (2.30). This leads
to the following parametric model:

h(m,θ) =

K∑
k=1

ak eiωmtk/T , m = 0, 1, . . . , P. (C.26)

where ωm is a design parameter. We can therefore compute the CRB for this parametric
model which might provide a more accurate estimate of the uncertainty of the reconstruc-
tion algorithms.

The influence of the noise in the samples ỹ[n] directly affects the measurements s̃[m] as
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follows:

s̃[m] =
K∑
k=1

ak eiωmtk/T +
N−1∑
n=0

cm,n ε[n], m = 0, 1, . . . , P. (C.27)

In matricial form we can write

s = C y = C u+C ε, (C.28)

where y ∈ RN is the column vector of the noisy measurements, u = (f(n,θ))N−1
n=0 is the

parametric model of the real-valued samples, s ∈ C(P+1) is the new sequence expressed in
vectorial form and C ∈ C(P+1)×N is the matrix constructed from coefficients cm,n.

When dealing with complex-valued measurements and parameters, the CRB can be
obtained from the real-valued vectors built by concatenating the real and imaginary parts.
However, in our setup, it can be shown [27, 59] that the Fisher information matrix is given
by the following more compact expression

I(θ) =
1

σ2
ε

GH
(
CCH

)−1
G, (C.29)

where G is the matrix of size (P + 1)× 2K given by

G =


i a1 ω0

T eiω0 t1/T . . . i aK ω0
T eiω0 tK/T eiω0 t1/T . . . eiω0 tK/T

i a1 ω1
T eiω1 t1/T . . . i aK ω1

T eiω1 tK/T eiω1 t1/T . . . eiω1 tK/T

...
. . .

...
...

. . .
...

i a1 ωPT eiωP t1/T . . . i aK ωP
T eiωP tK/T eiωP t1/T . . . eiωP tK/T

. (C.30)

The Fisher information matrix can be computed with the compact form given in Equa-
tion (C.29) only if the coefficients cm,n satisfy cm,n = c∗P−m,n. This is the case in our setup
because we impose that the exponentials that are reproduced appear in complex conjugate
pairs. Again, the CRB is obtained by inverting the Fisher information matrix I(θ).

Uncertainty of the location of two Diracs in terms of their distance

We now focus on the uncertainty of the location estimation, and we assume that the
amplitudes of the Diracs are known and have a constant value equal to unity. In order
to estimate the precision of the estimates of two Diracs that are close to each other, we
restrict K = 2. For a proper choice of the sampling kernel and of the frequencies ωm,
we can impose CCH = I, where I is the identity matrix. If follows that the Fisher
information matrix is a 2× 2 matrix and is given by

I(θ) =
1

T 2 σ2
ε

[ ∑P
m=0 ω

2
m

∑P
m=0 ω

2
m exp(iωm∆t/T )∑P

m=0 ω
2
m exp(−iωm∆t/T )

∑P
m=0 ω

2
m

]
, (C.31)
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where ∆t = t2 − t1. Note that the uncertainty in the locations depends only on the time
difference of the Diracs ∆t = t2 − t1. Moreover, due to the particular symmetry of the
matrix I(θ), the uncertainty in the location of both Diracs are equal. Figure C.1 illustrates
the uncertainty of one of the Diracs in terms of the time difference ∆t/T . We can observe
that there is a breakdown effect when ∆t is of the order of T .
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Figure C.1.: Sampling and reconstruction of two Diracs with an eMOMS kernel (P=16), σ = 0.06 (ap-
prox. SNR = 15dB). Retrieved locations for varying distance between the two Diarcs.
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Appendix D.

Exponential reproducing kernels, eMOMS
and the Dirichlet kernel

We refer the reader to Urigüen’s PhD thesis [59] for a detailed description on using eMOMS
kernels to sample and reconstruct FRI signals. Here, we provide a brief introduction and
their link with the Dirichlet kernel. This kernel is the most resilient to noise and the one
that has been used to obtain the results in Chapters 3 and 4.

As introduced in Chapter 2, an exponential reproducing function is a function, that
together with its shifted versions, is able to reproduce exponential functions:∑

n∈Z
cm,n ϕ(t− n) = eαmt, m = 0, 1, . . . , P and αm ∈ C. (D.1)

All the functions that are considered in this appendix satisfy this propoerty.

D.1. E-splines and eMOMS

E-splines are a family of functions that reproduce exponentials. Moreover, E-splines are
the functions of minimal support that are able to reproduce exponentials. An E-spline of
order P reproduces P + 1 exponentials. Let α = (α0, α1, . . . , αP ) be the vector of the
parameters of the exponential functions to be reproduced. The Fourier transform of an
E-spline of order P is given by:

β̂α(ω) =

P∏
m=0

1− eαm−iω

iω − αm
. (D.2)

An interesting property of E-splines is that they preserve the exponential reproduc-
tion property through convolution. This means that if βα(t) reproduces exponentials{

eαmt
}P
m=0

, any other function ϕ(t) = βα(t) ∗ γ(t) also reproduces the same exponentials
(provided that

∫ +∞
−∞ γ(t) e−αmt dt 6= 0). If we take the Fourier transform of ϕ(t) we have

that
ϕ̂(ω) = β̂α(ω) γ̂(ω). (D.3)
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We have a particular case that leads to a family of functions called MOMS (minimal
support maximal order) [60] when γ̂(ω) is equal to

γ̂(ω) =
P∑
`=0

a` (iω)` , (D.4)

for some coefficients a`. From the Fourier transform properties we can see that γ(t) is a
differential operator since

F
{

dnf(t)

dtn

}
= (iω)n f̂(ω). (D.5)

Therefore, the expression in time of ϕ(t) is given by

ϕ(t) =

P∑
`=0

a`
d`βα(t)

dt`
. (D.6)

Since βα(t) is a function of minimal support that reproduces the exponentials
{

eαmt
}P
m=0

,
and ϕ(t) is constructed from a linear combination of βα(t) and its derivatives, ϕ(t) is also
of minimal support and reproduces the same exponentials. This is why ϕ(t) is called
eMOMS, where the letter “e” stands for exponential.

D.1.1. eMOMS and stability of reconstruction of FRI signals

The extra degree of freedom that is provided by the coefficients a` in (D.4) can be useful
to design sampling kernels that are more resilient to noise. In Chapter 2 we have seen that
the coefficients cm,n of the exponential reproducing formula play a crucial role in the FRI
algorithms. Moreover, when the parameters αm are purely imaginary, that is αm = iωm,
these coefficients cm,n are directly linked to the amplitude of the Fourier transform of the
sampling kernel at the frequencies that are reproduced.

From (A.12) and (D.3) we have that

cm,0 = [ϕ̂(ωm)]−1 =
[
γ̂(ωm) β̂α(ωm)

]−1
. (D.7)

The most resilient to noise sampling scheme is obtained when the noise in the measurements
s̃[m] =

∑
n cm,n (y[n] + ε[n]) is white, and this is achieved when we have

|cm,0| = 1 (D.8)

(see Equation (2.78)). We thus impose

|γ̂(ωm)| =
∣∣∣β̂α(ωm)

∣∣∣−1
. (D.9)

This condition is used to find the values of the coefficients a`. Note that we have an extra
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degree of freedom on the phase of γ̂(ωm). This degree of freedom leads to a variety of
sampling kernels that satisfy the condition |cm,0| = 1.

If we impose the more restrictive condition

cm,0 = 1 ⇒ ϕ̂(ωm) = 1, (D.10)

it follows that γ̂(ωm) =
[
β̂α(ωm)

]−1
, and, under some extra conditions on the frequencies

ωm, the kernel ϕ(t) corresponds to a period of the Dirichlet kernel as it is shown next.
We have that

b−1
m

def
= β̂α(ωm) =

P∏
n=0
n6=m

1− e−i(ωm−ωn)

i(ωm − ωn)
, (D.11)

and considering that iωm = αm, this can also be written as

bm =
P∏
n=0
n6=m

αm − αn
1− eαn−αm

, m = 0, 1, . . . , P. (D.12)

Since γ̂(ω) is a polynomial in iω, it is more convenient to express γ̂(ω) in terms of a
complex variable s that will be evaluated in iω:

Γ(s) =
P∑
`=0

a` s
`. (D.13)

The function Γ(s) is a polynomial of order P in the complex variable s and we have that
γ̂(ω) = Γ(s)|s=iω. Note that Γ(s) corresponds to the bilateral Laplace transform of γ(t).
The polynomial Γ(s) can also be seen as an interpolating polynomial that interpolates the
set of points

{(α0, b0) , (α1, b1) , . . . , (αP , bP )} , (D.14)

that is,
Γ(s)|s=αm = bm, m = 0, 1, . . . , P. (D.15)

We can thus build Γ(s) from the polynomial interpolation formula:

Γ(s) =

P∑
m=0

 P∏
n=0
n6=m

s− αn
αm − αn

 bm. (D.16)

By replacing (D.12) in (D.16) and setting s = iω we obtain

γ̂(ω) = Γ(iω) =
P∑

m=0

P∏
n=0
n 6=m

iω − αn
1− eαn−αm

. (D.17)
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This expression provides a closed-form expression for γ̂(ω). It follows that the closed-form
expression for the Fourier transform of the eMOMS is given by:

ϕ̂(ω) = γ̂(ω) β̂α(ω) =
P∑

m=0

P∏
n=0
n6=m

iω − αn
1− eαn−αm

P∏
`=0

1− eα`−iω

iω − α`
. (D.18)

Next, it is shown that this approach leads to numerical instabilities. Moreover, the resulting
kernel is not continuous. We also show how to overcome these limitations in order to obtain
a stable and continuous eMOMS.

D.1.2. Dirichlet kernel and e-MOMS

The Dirichlet kernel of order N is given by

DN (t)
def
=

N∑
n=−N

eint =
sin ((N + 1/2) t)

sin (t/2)
. (D.19)

The Dirichlet kernel, in its original form, is 2π-periodic. Since the sampling kernel ϕ(t)

has a support of P + 1, we consider the following modified function:

DN

(
2π
P+1 t

)
=

N∑
n=−N

ein 2π
P+1

t, (D.20)

which is (P + 1)-periodic.

Let us consider the (P+1)-periodic repetition of the function ϕ(t) with Fourier transform
given by Equation (D.18). Applying the Poisson summation formula we can obtain an
expression of this periodic function in terms of its Fourier transform:

∑
n∈Z

ϕ(t− n(P + 1)) =
1

P + 1

∑
k∈Z

ϕ̂

(
2πk

P + 1

)
eik 2π

P+1
t. (D.21)

If we choose the parameters αm so that eαm spans the entire unit circle, for instance,

αm = iωm = i
2π

P + 1

(
m− P

2

)
, (D.22)

where m = 0, 1, . . . , P ; and if P is even, we have that

ϕ̂

(
2πk

P + 1

)
=

1 for k = −P/2, . . . , P/2,

0 otherwise.
(D.23)
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Figure D.1.: P = 16, E-spline, eMOMS and Dirichlet kernel. (a) Parameters αm are spread over the
entire unit circle. (b) E-spline that reproduces the exponential functions with parameter
eαm given in (a). (c) eMOMS ϕ(t) of compact support [0, (P + 1)] and scaled Dirichlet
kernel. The resulting kernel ϕ(t) is not continuous at t = 0 and t = P + 1 and presents
some numerical instabilities as can be seen in (d).

We thus have

∑
n∈Z

ϕ(t− n(P + 1)) =
1

P + 1

P/2∑
k=−P/2

eik 2π
P+1

t =
1

P + 1
DP/2

(
2π
P+1 t

)
, (D.24)

where DP/2(t) is the Dirichlet kernel of order P/2. We can thus conclude that the function
ϕ(t), with Fourier transform given in Equation (D.18), corresponds to one period of the
normalised and scaled Dirichlet kernel of order P/2. Figure D.1 illustrates these functions
for P = 16. In (c) and (d) we can see that this approach leads to an unstable reproduction
of the Dirichlet kernel, since the maximum of the scaled version of DN ( 2π

P+1 t) is located at
t = 0 and t = P + 1, however, the B-spline vanishes in this region as can be seen in (b). It
is therefore very unstable to reproduce these maxima with a linear combination of βα(t)

and its derivatives.

Note that this eMOMS has been obtained by imposing the more restrictive constraint
ϕ̂(ωm) = 1. This condition can be relaxed to |ϕ̂(ωm)| = 1 and still the FRI algorithms
benefit from the fact that the noise in the measurements s[m] is white. In order to avoid
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Figure D.2.: Shifted Dirichlet kernel and stable eMOMS. Note that this eMOMS is continuous, which
was not the case in the eMOMS depicted in Figure D.1.

the numerical instabilities, we now reproduce one period of a shifted version of the Dirichlet
kernel so that the maximum is located in the region where βα(t) has its maximum and the
resulting eMOMS is continuous.

Consider the following scaled and shifted by P
2 Dirichlet kernel:

DP/2

(
2π
P+1

(
t− P

2

))
=

P/2∑
n=−P/2

ein 2π
P+1

(t−P/2) =

P/2∑
n=−P/2

e
−ikπ

P
P+1 ein 2π

P+1
t. (D.25)

It is easy to verify that:

• DP/2

(
2π
P+1

(
t− P

2

))∣∣∣
t=0

= 0,

• DP/2

(
2π
P+1

(
t− P

2

))∣∣∣
t=P+1

= 0.

From the expression of the periodised ϕ(t) obtained in (D.25) and the term e
−ikπ

P
P+1 that

appears in (D.25), it follows that the eMOMS will correspond to one period of the shifted
and scaled Dirichlet kernel if we impose

ϕ̂(ωm) = e
−i
(
m−P2

)
π

P
P+1 = e−iωmP/2, (D.26)
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where we have applied the fact that ωm = 2π
P+1

(
m− P

2

)
. It follows that the Fourier

transform of the function γ(t) is given by

ϕ̂(ω) =
P∑

m=0

e−iωmP/2
P∏
n=0
n 6=m

iω − αn
1− eαn−αm

. (D.27)

This leads to the following eMOMS:

ϕ̂(ω) = γ̂(ω) β̂α(ω) =
P∑

m=0

e−iωmP/2
P∏
n=0
n6=m

iω − αn
1− eαn−αm

P∏
`=0

1− eα`−iω

iω − α`
. (D.28)

This eMOMS is illustrated in Figure D.2 where we can appreciate that this function is
continuous and do not present the numerical instabilities of the eMOMS in Figure D.1.
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Appendix E.

Maximum of Rayleigh random variables

Here we analyse the statistics of the maximum of a collection of i.i.d. random variables
which are Rayleigh-distributed. In probability theory and statistics, the study of the
distribution of the maximum (or minimum) of a number of samples is known as extreme
value theory. In 1928, Fisher and Tippett [127] showed that the minimum or the maximum
of a very large collection of i.i.d. random variables have a limiting distribution that can
be categorised into three different classes. These three classes correspond to the Gumbel,
Fréchet and Weibull distributions [131, 132]. In general, this type of analysis can present
considerable difficulties, however, the derivations are hugely simplified when the random
variables are Rayleigh-distributed.

E.1. Maximum of N random variables

Let X1, . . . , XN be N i.i.d. random variables. These random variables are characterised
by the following two functions:

• Probability density function (PDF) of Xn: fX(x).

• Cumulative distribution function (CDF): FX(x) = P {Xn ≤ x} =
∫ x
−∞ fX(t) dt.

Note that the N random variables are characterised by the same fX(x) and FX(x) since
we assume that they are identically distributed. The PDF can also be expressed in terms
of the CDF as follows:

fX(x) = F ′X(x). (E.1)

We define the following new random variable:

AN = max(X1, . . . , XN ). (E.2)

The CDF of AN is given by

FAN (x) = P {X1 ≤ x, . . . ,XN ≤ x}
indep.

= P {X1 ≤ x} . . .P {XN ≤ x} = [FX(x)]N . (E.3)
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It follows that the PDF is given by

fAN (x) = F ′AN (x) = N [FX(x)]N−1 fX(x). (E.4)

E.2. Rayleigh distribution and maximum of random variables

We now assume that the random variables follow a Rayleigh distribution with parameter
σ. We thus have:

fX(x) =
x

σ2
e−

x2

2σ2 , x ≥ 0, (E.5)

FX(x) = 1− e−
x2

2σ2 , x ≥ 0. (E.6)

The PDF of the random variable AN is therefore given by

fAN (x) = N

(
1− e−

x2

2σ2

)N−1 x

σ2
e−

x2

2σ2 , x ≥ 0. (E.7)

If we aplly the following change of variable x = σ
√

2 log y, where we have that, if x ≥ 0

then y ≥ 1, the PDF of AN becomes

fAN (y) =

√
2N

σ

(
1− 1

y

)N−1 √log y

y
, y ≥ 1. (E.8)

Taking the derivative with respect to y we have that

f ′AN (y) =

√
2N (N − 1)

σ

(
1− 1

y

)N−2 √log y

y3

+

√
2N

σ

(
1− 1

y

)N−1 1/2√
log y y2

−
√

2N

σ

(
1− 1

y

)N−1 √log y

y2
,

(E.9)

which in turn leads to

f ′AN (y) =

√
2N

σ

(
1− 1

y

)N−1 √log y

y2

(
N − 1

y − 1
+

1

log y
− 1

)
. (E.10)

Let y = αN , for some α > 0, it follows that

f ′A(αN) =

√
2

σ

(
1− 1

αN

)N−1 √logαN

α2N

(
N − 1

αN − 1
+

1

logαN
− 1

)
. (E.11)

For large N , if α = 1, then

N − 1

αN − 1
+

1

logαN
− 1 → 0. (E.12)
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Moreover, for large N and y

N − 1

y − 1
+

1

log y
− 1 → N − 1

y − 1
− 1 (E.13)

and

y < N ⇒ N − 1

y − 1
− 1 > 0, (E.14)

y > N ⇒ N − 1

y − 1
− 1 < 0. (E.15)

Therefore, for large N , fA(y) presents a maximum at y = N . Which leads to,

lim
N→∞

arg max
x

fA(x) = σ
√

2 logN. (E.16)

Moreover, if we replace this value for x in (E.7) we obtain

fAN (σ
√

2 logN) =

√
2

σ

√
logN

(
1− 1

N

)N−1

. (E.17)

It follows that

lim
N→∞

fAN (σ
√

2 logN) =

√
2 logN

σ e
. (E.18)

Note that
lim
N→∞

fAN (σ
√

2 logN)→∞. (E.19)

However, ∫ +∞

−∞
fAN (t) dt = 1. (E.20)

We can thus conclude that, for large N , the maximum value of a set of N i.i.d. samples
that follow a Rayleigh distribution with parameter σ is equal to σ

√
2 logN with high

probability.
The PDF of the maximum value of a collection of N Rayleigh random variables is

illustrated in Figure E.1 for different values of N . We can observe that, as N increases,
the PDF is more concentrated around the maximum value of σ

√
2 logN . However, the

convergence is extremely slow.
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Figure E.1.: PDF of the random variable defined as the maximum of N Rayleigh distributed random
variables for different values of N with parameter σ = 1.
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