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Abstract

In this thesis, we consider camera sensor networks where numbers of sensors are

deployed in order to visually acquire a given scene from different viewing positions.

Each sensor consists of a self-powered wireless device containing a digital camera,

a processing unit with memory and some communication capabilities. The main

task for the sensors is to acquire and process their observations of the scene, and

then transmit some information to a common receiver in order to guarantee the

best possible reconstruction of the different views by the decoder. Due to the spa-

tial proximity of the different cameras, acquired images can be highly dependent.

Since the sensors have limited power and communication resources, the inter-sensor

dependencies have to be exploited in order to reduce the transmission of redundant

information.

Our work addresses the problem of distributed compression of multi-view im-

ages. The main challenge in such a compression scheme is that the different encoders

have to exploit the correlation in the visual information without being allowed to

communicate between themselves. This problem, known as Distributed Source Cod-

ing, requires that the encoders have some knowledge about the correlation structure

of the visual information acquired from the different cameras. This correlation,

which is related to the structure of the plenoptic function, can be estimated using

geometrical information such as the position of the cameras and some bounds on

the location of the objects.
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We first propose a lossless distributed compression scheme for simple scenes

that takes advantage of this geometrical information in order to reduce the overall

transmission rate from the sensors to a common central receiver. Our approach

allows for a flexible allocation of the bit-rates amongst the encoders (i.e., it can cover

the entire Slepian-Wolf achievable rate region) and can be made resilient to a fixed

number of occlusions. Then, the fundamental trade-offs between the reconstruction

fidelity, the number and location of the cameras and the overall compression rate are

analysed. A practical algorithm based on quadtree decomposition for distributed

lossy compression of real multi-view images is then proposed. Finally, we also show

that our approach can be extended to provide a general solution to the problem of

distributed compression of correlated binary sources.
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Statement of Originality

As far as the author is aware, the following aspects of the thesis are believed to be

original contributions:

• We propose a distributed source coding approach for simple multi-view images

that uses some information about the epipolar geometry to efficiently encode

the position of objects on the different views. We show how the correlation be-

tween the different images can be estimated and then exploited in a distributed

manner. The proposed approach can be made resilient to visual occlusions and

allows for a flexible allocation of the transmission rates amongst the encoders.

• We study some fundamental trade-offs in camera sensor networks for ideal

scenarios. In particular, we show that if the observed scene is of finite rate of

innovation (FRI) and can be parameterized with a set of polygons of polyno-

mial intensities, then we can highlight an exact bit-conservation principle for

the rate-distortion behaviour at the decoder. In other words, we show that

the reconstruction quality does not depend on the number of sensors used for

the transmission but only on the total bit-rate transmitted to the receiver.

• We present a practical distributed compression approach for real multi-view

images. We show that an existing tree-based compression scheme can be

used at each encoder and propose a coding approach to efficiently exploit the

remaining multi-view correlation before transmitting the data to the receiver.



0. Statement of Originality 20

We use a piecewise polynomial model to represent the images and show that

our approach still outperforms an independent encoding when the images do

not fully satisfy the correlation model.

• We show that our distributed coding strategy using epipolar geometry can be

intuitively extended to provide a flexible distributed source coding scheme for

correlated binary sources. In particular, we demonstrate that this approach

can be used to achieve any point on the Slepian-Wolf achievable rate region.
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(s, t) : Coordinates of the focal plane

(u, v) : Coordinates of the retinal plane

α : Distance between two cameras

N : Number of sources (cameras, sensors, . . . )

z : Depth of an object

(zmin, zmax) : Minimum and maximum depths

f : focal length

∆ : Disparity

(∆min, ∆max) : Minimum and maximum disparities

δ : Length of disparity range

Rmin : Number of least significant bits

S(·) : A subset

S̄(·) : The complementary subset

r : constant rate

Θ(·) : Order operator

{f1(t), f2(t)} : Pair of correlated 1-D signals

T : Support of a signal

A : Maximum amplitude

L : Number of pieces
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Q : Maximum degree of polynomial

tn,i : ith discontinuity of the nth view

Nmin : Minimum number of views

Omax : Maximum number of occlusions

Rt : Rate to encode discontinuities

Rp : Rate to encode polynomials

RtSW
: Rate to encode at minimum S-W rate

γs, G : Constants

Rtot : Total rate to encode all the sources

{c0, c1, c2, c3} : Constants

{DA, DB, DC} : Distortion values

Jmax : Maximum tree depth

λ : Operating slope

RTree : Rate to encode pruned tree

RLeafJointCoding : Rate to encode the joining info

RLeaves : Rate to encode the set of polynomials

J∆ : Constant tree depth

R∆ : Number of nodes with depth smaller than J∆

{V1(x, y), V2(x, y)} : Pair of correlated 2-D signals

{Li(x, y)} : 2-D orthonormal Legendre basis

li : Set of Legendre coefficients

l̂i : Set of quantized Legendre coefficients

C : Linear code of length n and rank k

H : Parity check matrix for C
G : Generator matrix for C
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C : Channel capacity

⊕ : Binary addition operator

dH(·, ·) : Hamming distance operator

sx : Syndrome of x

Ik : Identity matrix of size k × k

(·)T : Transpose operator

ek
d : The k first bits of difference pattern ed
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Chapter 1

Introduction

1.1 Motivations

RECENT advances in sensor network technology [4] are radically changing the

way in which we sense, process and transport signals of interest. The usual

one-to-one scenario where information acquired from a unique source is encoded and

then transmitted through a communication channel to a unique receiver is today well

understood, but cannot provide satisfactory answers for the many-to-many scenario

that sensor networks bring on the table. Phenomena of interests that are acquired

by sensor networks are distributed in space and may exhibit very peculiar structures.

The acquisition of a given phenomenon is done by fusing all the local measurements

of each sensor. These observations can be highly correlated and depend on the

structure of the phenomenon and the actual spatial deployment of the sensors.

A wireless sensor network consists of numbers of small self-powered devices

that have embedded sensing, processing and communication capabilities. The size,

the limitation of power resources and the necessity to maintain cheap prices are

usually the main constraints with such systems. This obliges the developers to

consider several trade-offs when designing sensor network systems. These trade-offs
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typically involves acquisition accuracy, computational power, capacity of memory,

transmission power, delay and battery life duration.

In our work, we focus our attention on camera sensor networks (CSN) where

each sensor is equipped with a digital camera and acquires images of a scene of

interest from a certain viewing position. The phenomenon observed by the different

sensors corresponds therefore to the visual information emanating from the scene

and can be represented with the Plenoptic Function [3]. The study of the structure

of this function has already led to the development of sampling strategies [9], and

can also be used to understand the geometrical relationships between the different

views. Thanks to the recent technological advances in cameras and networked sensor

platforms, the variety of available CSN equipments is becoming wider and wider and

constantly improves the opportunities for new applications and set-ups. In [32], the

latest technology trends in cameras and sensor platforms are presented.

In any sensor network, as the density of sensors increases, the different obser-

vations of the phenomenon may become more correlated. If we assume that each

sensor has to send independently its measurements to a common central receiver, the

amount of redundant information transmitted may become very important. This

waste of communication and power resources could typically be unacceptable in

most sensor network applications. The correlation, which is directly related to the

physical properties of the phenomenon, should therefore be exploited at each sensor

to compress the data before transmitting it to the receiver. A first solution could be

to let the sensors perform a joint compression of their observations in a collaborative

way. However, this solution would require a complex inter-sensor communication

system that would consume most of the sensors resources and could even simply not

be available in many cases. We therefore need to find a way to exploit the correlation

at the encoders without allowing them to communicate between themselves.

In 1973, Slepian and Wolf [72] showed that independent encoding of correlated
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sources can be, in theory, as efficient as joint encoding, as long as the encoders know

the correlation structure between the sources. In other words, if the sensors have

some information about the properties of the phenomenon they observe, they can

estimate the correlation and use it to perform a local compression that could reach

the same global rate-distortion performance as a joint encoding. This surprising

result is at the root of the theoretical foundation of Distributed Source Coding

(DSC) that has recently led to practical coding approaches for correlated sources [52].

However, these practical coding approaches are based on channel coding principles

and are only suitable for certain correlation models.

In this thesis, our aim is to show that the correlation in the visual data acquired

by a camera sensor network can be estimated using some limited geometrical infor-

mation about the scene and the position of the cameras. This correlation is related

to the structure of the plenoptic function and cannot be correctly exploited with

existing DSC approaches based on channel codes. We therefore propose a specific

distributed coding strategy for simple synthetic scenes that can take advantage of

this estimated correlation to reduce the amount of data to be transmitted from the

sensors to the receiver. We show that our approach allows for a flexible allocation

of the transmission bit-rates amongst the encoders and can be made resilient to the

problem of visual occlusions. Then, we study the fundamental trade-offs between

the number of sensors and the reconstruction fidelity at the decoder and highlight

a bit-conservation principle. We propose then a practical distributed compression

algorithm based on quadtree decomposition for real multi-view images. Finally, we

show that our coding approach can be intuitively extended to perform distributed

compression of correlated binary sources.
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1.2 Related Work

The representation and compression of 3D scenes have been widely studied in the last

decade. The usual model-based approaches used in standards such as VRML [76] are

slowly being replaced by new image-based representation techniques [71], where the

3D information of a scene is simply represented by a collection of 2D images obtained

from different viewing positions. The relationship between these different views is

governed by the laws of projective geometry [16, 27] and can be used to develop

efficient rendering techniques [25, 34]. On the compression side, significant efforts

have been put on the development of stereo image coders [6,8,51], that mainly rely

on block-based disparity compensation techniques. These approaches have recently

led to the development of more advanced multi-view image and video encoders [7,

42, 48]. All these compression techniques rely on a joint encoding of the different

views to exploit the correlation in the data acquired by the different cameras. In

order to exploit this correlation without allowing the cameras to collaborate, specific

distributed source coding techniques should be developed.

Inspired by the theoretical results obtained by Slepian and Wolf for the lossless

case [72] and by Wyner and Ziv for the lossy case [85], Pradhan and Ramchandran

proposed a first constructive coding approach based on channel coding principles

for distributed source coding of correlated sources [52]. Practical designs based

on advanced channel codes such as Turbo [1, 19, 20, 33, 35, 40] and LDPC [11, 37,

38, 62, 63, 74, 90] codes have since been proposed in the last few years. All these

coding approaches can closely approach the theoretical bounds for different binary

correlation models, but cannot be efficiently used to exploit the correlation structure

of the visual information obtained from a multi-camera system. Nevertheless, several

researchers have recently used these approaches with correlated visual information

to develop distributed video coding algorithms [24, 57, 66, 89] (see Section 2.3.2 for
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details), and distributed multi-view image coding schemes [2, 30,36,77–79,94].

Our main contribution in this thesis is to propose a distributed compression

approach for multi-view images that can truly exploit the correlation in the visual

information which is related to the structure of the plenoptic function [3], without

requiring the use of complex channel coding techniques. An outline of the thesis is

proposed in the next section.

1.3 Thesis Outline

The thesis is organized as follows:

• In Chapter 2, we present a review of distributed source coding (DSC). We

first introduce the theoretical foundations derived from information theory

principles in the early 70’s. Then, we present the design of practical coders

based on existing channel coding techniques. Finally we highlight some recent

applications of distributed source coding, such as distributed compression in

wireless sensor networks, distributed video and multi-view coding, and joint

source-channel coding.

• In Chapter 3, we propose a distributed compression strategy for simple syn-

thetic scenes that can truly exploit the geometrical correlation available in

multi-view images. We first introduce the plenoptic function which can be

used to represent the geometrical dependencies between the different views.

Then, we propose a coding scheme that can be used to efficiently encode the

positions of the objects on the different views in a fully distributed manner.

Finally, we show that our approach can be robust to the problem of visual

occlusions and present simulation results. Notice that the preliminary results

we present in this chapter will be used in the following chapters to study some
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fundamental trade-offs in camera sensor networks (Chapter 4), develop a dis-

tributed compression algorithm for real multi-view images (Chapter 5), and

propose a distributed source coding approach for correlated binary sources

(Chapter 6).

• In Chapter 4, we study some fundamental trade-offs in camera sensor net-

works. In particular, we show that if the observed scene is of finite rate of

innovation (FRI) and can be represented exactly with polygons of polynomial

intensities, an exact sampling strategy can be proposed. Moreover, we derive

rate-distortion bounds for the reconstructions of the views at the decoder and

show that an exact bit-conservation principle exists. In other words, the qual-

ity of the reconstructed views only depends on the total transmission bit-rate

and not on the number of sensors involved.

• In Chapter 5, we propose a practical algorithm for distributed compression of

real multi-view images. We use a piecewise polynomial model to represent the

different views and show that a tree-based coding approach recently proposed

in the literature can be extended to take advantage of our distributed scheme

presented in Chapter 3. We first give a detailed description of our distributed

algorithm for the 1-D case using binary tree segmentation, and then show how

it can be extended to the 2-D case using a quadtree approach. Finally, we

present some simulation results obtained on real multi-view images.

• In Chapter 6, we propose a distributed source coding approach for correlated

binary sources directly inspired by the scheme presented in Chapter 3. In

particular, we show that this intuitive approach can cover the entire Slepian-

Wolf achievable rate region, and present a simple example to give the correct

intuition.

• In Chapter 7, we give a summary of the thesis and highlight a selection of
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interesting research directions that should be investigated in future works.
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Chapter 2

Distributed Source Coding

2.1 Theoretical Background

Consider a communication system where two discrete memoryless random sources

X and Y must be encoded and transmitted to a common receiver. Assume that

X and Y are encoded at rates Rx and Ry respectively. We know from Shannon’s

information theory principles that these rates are sufficient to perform noiseless

coding if they are equal or greater than the entropy of the sources (i.e. Rx ≥ H(X)

and Ry ≥ H(Y )), where the entropy of a discrete memoryless source X with n

possible outcomes (x1, . . . , xn) is defined as:

H(X) = −
n∑

i=1

pX(xi) log2 pX(xi) , (2.1)

where pX(xi) is the probability of the ith possible outcome for X, and thus satisfies

the following equality:
∑n

i=1 pX(xi) = 1.

Assume now that the sources X and Y are correlated and have a joint proba-

bility distribution given by pX,Y (x, y). We know that if they can be jointly encoded,

a total rate corresponding to the joint entropy of the sources is sufficient to perform
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noiseless coding (i.e. Rx + Ry ≥ H(X,Y )), where the joint entropy of X and Y is

defined as:

H(X,Y ) = −
n∑

i=1

m∑
j=1

pX,Y (xi, yj) log2 pX,Y (xi, yj) . (2.2)

Now assume that these two sources are physically separated and cannot com-

municate with each other. A joint encoding of the sources is therefore not possible

in this case. Nevertheless, Slepian and Wolf [72] showed in 1973 that noiseless en-

coding of X and Y is still achievable in this context if Rx ≥ H(X|Y ), Ry ≥ H(Y |X)

and Rx + Ry ≥ H(X,Y ), where H(X|Y ) corresponds to the conditional entropy of

X given Y and is defined as:

H(X|Y ) = H(X,Y ) − H(Y ) . (2.3)

This surprising result gives the theoretical foundation of Distributed Source Coding

(DSC). It shows that there is in theory no loss in terms of overall rate even though

the encoders are separated (see Figure 2.1).

Encoder
R ≥ H(X,Y)

DecoderX

Y

X

Y

Encoder 1
Rx

Decoder

X

Y

X

Y
Ry

Encoder 2

Rx

Ry

Slepian-Wolf
achievable
rate region

H(X)

H(Y)

H(X|Y)

H(Y|X)

H(X,Y)

H(X,Y)

a)

b)

c)

Figure 2.1: (a) Joint source coding. (b) Distributed source coding. The
Slepian-Wolf theorem (1973) states that a combined rate of H(X, Y ) remains
sufficient even if the correlated sources are encoded separately. (c) The achiev-
able rate region is given by: Rx ≥ H(X|Y ), Ry ≥ H(Y |X) and Rx +Ry ≥ H(X, Y ).

The proof of the achievability of the Slepian-Wolf theorem is asymptotical,

non-constructive, and is based on random binning [13]. Binning, which refers to the

partitioning of the space of all possible outcomes of a random source into different
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subsets, is a key concept in DSC. The basic idea of the proof is to partition the space

of all length-n sequences by randomly assigning every xn ∈ X n and yn ∈ Yn to one

of 2nRx and 2nRy bins respectively. These assignments (fx : X n → {1, . . . , 2nRx} and

fy : Yn → {1, . . . , 2nRy}) are known by both the encoders and the decoder. The

encoding process at each source consists then in sending only the index of the bin

to which the current sequence belongs. At the decoder, given the pair of indices

(ix, iy), the original pair of sequences can be retrieved if there is one and only one

pair (xn, yn) such that fx(x
n) = ix, fy(y

n) = iy, and (xn, yn) ∈ A
(n)
ε , where A

(n)
ε is the

set of all jointly typical pairs of sequences [13]. Otherwise, an error is declared. The

rest of the proof shows that the probability of decoding error can be made arbitrarily

small by increasing the sequence length n when Rx ≥ H(X|Y ), Ry ≥ H(Y |X) and

Rx + Ry ≥ H(X,Y ).

An extension of the Slepian-Wolf result to the lossy case (with continuous

sources) was proposed by Wyner and Ziv in [85]. They addressed a particular case of

Slepian-Wolf coding corresponding to the rate point (Rx, Ry) = (H(X|Y ), H(Y )),

also known as source coding with side information at the receiver [84] (see Fig-

ure 2.2). Namely, they gave a rate-distortion function R∗
WZ(D) for the problem of

encoding one source X, guaranteeing an average fidelity of E{d(X, X̂)} ≤ D, assum-

ing that the other source Y (playing the role of side information) is available losslessly

at the decoder, but not at the encoder. In particular, they showed that, although

Wyner-Ziv coding usually suffers rate loss compared to the case where the side in-

formation is available at both the encoder and decoder, there is no performance loss

if the two correlated sources X and Y are jointly Gaussian and a mean-squared error

(MSE) is used as the distortion metric (i.e., d(X, X̂) = 1
n

∑n
i=1(xi − x̂i)

2).

In the late 1990s, Zamir [92] showed that the rate loss in the general Wyner-

Ziv problem is smaller than 0.5 bit/source symbol compared to the joint encoding

and decoding scenario when a squared-error distortion metric is used at the decoder.
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Encoder
R ≥ H(X|Y)

DecoderX

Y

X

Figure 2.2: Lossy compression of X with side information Y . Wyner and Ziv
showed that if X and Y are jointly Gaussian and MSE is used as the distortion
metric, there is no performance loss whether the side information Y is available
at the encoder or not, as long as it is available at the decoder.

Zamir and Shamai [93] also showed the theoretical feasibility of a lattice code frame-

work for Wyner-Ziv encoding. For Gaussian sources, a Wyner-Ziv encoder can be

seen as a quantizer followed by a Slepian-Wolf encoder. Therefore, the design of

specific quantizers for encoding with side information available at the decoder has

attracted a significant interest [87,90,93].

Slepian-Wolf and Wyner-Ziv coding are source coding problems. However, a

strong link to channel coding exists, since the practical binning schemes used at the

encoders are usually based on a partitioning of the space using linear channel codes.

This relationship between distributed source coding and channel coding was first

studied by Wyner in [83]. Further, Csiszár [14] showed that the Slepian-Wolf bound

is universally achievable by linear codes using random coding arguments. The next

section presents the general idea behind the design of practical coders based on

channel coding principles.

2.2 Practical Coders

In DISCUS [52], Pradhan and Ramchandran proposed for the first time a practical

coding technique for DSC inspired by channel coding techniques. In order to give the

correct intuition behind the DISCUS approach, we first present a simple example:

Assume x and y are two uniformly distributed 3-bit sequences that are correlated
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such that their Hamming distance (dH(x, y)) is at most one (i.e., for any realization

of x, y is either equal to x or only differs at one bit’s position). Therefore, given

a certain x, we know that the corresponding y belongs to an equiprobable set of

four codewords. The following entropies can thus be given: H(x) = H(y) = 3 bits,

H(x|y) = H(y|x) = 2 bits and H(x, y) = H(x) + H(y|x) = 5 bits. We know that

only 5 bits are therefore necessary to jointly encode x and y losslessly. For instance,

one can code x and y jointly by sending one of them completely (3 bits) along with

the information representing their difference (2 bits).

Is it now possible to achieve the same coding efficiency when using two indepen-

dent encoders as in Figure 2.1(b) ? As proven by Slepian-Wolf, the answer is indeed

yes! The solution consists in grouping the different codewords into bins. Assume

that y is transmitted completely to the decoder (using 3 bits), and consider the

following set of bins containing all the possible outcomes for x: bin0 = {000, 111},
bin1 = {001, 110}, bin2 = {010, 101} and bin3 = {100, 011}. Note that the code-

words have been placed into the bins such that the Hamming distance between the

members of a given bin is maximal (3 in this case). Now, instead of transmitting

x perfectly to the decoder (3 bits), only the index of the bin that x belongs to is

transmitted (2 bits). On receiving this information, the decoder can retrieve the two

possible candidates for x. Finally, since their distance to each other is three, only

one of them can satisfy the correlation with y given by: dH(x, y) ≤ 1. By observing

y, the decoder can therefore retrieve the original x. This is like saying that there is

only one x in each bin that is jointly typical with y. Therefore, exact reconstruction

of x and y is in this case always possible.

This intuitive example can be generalized using linear channel codes. Assume

that x and y are two uniformly distributed n-bit sequences that are correlated such

that their Hamming distance is at most m, i.e. dH(x, y) ≤ m. Consider an (n, k)

binary linear code C, given by its parity check matrix H, that can correct up to
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M ≥ m errors per n-bit codeword [59]. We call coset number i the set {xj}2k

j=1 of

all n-bit codewords that have a syndrome equal to i, that is, such that HxT
j = i.

Therefore, the code C generates 2n−k cosets having 2k members each. Moreover, any

pair of codewords belonging to the same coset have a Hamming distance larger than

2M . Similarly to our previous example, the distributed coding strategy operates as

follows: y is sent perfectly from the second encoder (n bits). The first encoder only

transmit the index of the coset given by the syndrome sx = HxT (n−k bits). At the

decoder, the original x can be recovered as the only member of coset sx satisfying the

correlation (dH(x, y) ≤ m) with the received y. This distributed encoding approach

thus requires that a total of only 2n− k bits be transmitted in order to reconstruct

x and y losslessly.

The link between distributed source coding and channel coding (error-correcting

coding [59]) is highlighted in Figure 2.3. In channel coding, a redundant codeword

x is generated by adding parity bits to the original information block c to be trans-

mitted, such that, after x is sent through the noisy channel, the corrupted output y

still contains enough information to perfectly recover c. In other terms, the idea is

to determine a set of codewords (i.e., a code C), such that, when any of them is sent

through the noisy channel, the corrupted version received y remains closer to the

original x than to any other member of this set with high probability. An appropri-

ate code is therefore chosen based on the joint distribution p(x, y). In distributed

source coding, x and y represent the two correlated sources to be transmitted. As-

suming that y has been transmitted to the decoder, only the syndrome sx of x needs

to be transmitted from the first source. At the decoder, the set of all n-bit sequences

having syndrome sx is retrieved and the only one satisfying the correlation with y

is retrieved as the original x.

The correlation between the sources can be seen as a “virtual” dependence

channel between the sequences x and y. The problem of finding a good code for
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Figure 2.3: Channel coding vs. Distributed source coding. In channel coding,
the syndrome of y is used at the decoder to determine the error pattern. Then
the original x is recovered by correcting y. In distributed source coding, the
syndrome of x is transmitted to the decoder. Knowing y and the syndrome of
x, the decoder can thus retrieve the difference pattern between x and y and
then reconstruct the original x.
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distributed source coding is therefore similar to the problem of finding a good channel

code for this “virtual” channel.

Practical designs based on advanced channel codes such as Turbo codes [1, 19,

20, 33, 35, 40] and LDPC codes [11, 37, 38, 63, 74, 90] have been proposed in the last

few years. All these coding approaches can closely approach the theoretical bounds

for different correlation models. However, most of them focus on the asymmetric

scenario (corner points of the Slepian-Wolf achievable rate region), also known as

compression with side information at the decoder.

For some applications, it may be necessary to have more flexibility in the

choice of the rates at which each source should be encoded, rather than being

restricted to the corner points. In particular, operating at the mid-point of the

Slepian-Wolf rate region (where all the sources are compressed at the same rate)

may be desirable in sensor network applications where each sensor node has similar

power/communication resources at its disposal (see Section 2.3.1). The most intu-

itive solution to achieve other operating points than the corners is time-sharing [12].

However, this approach might not be practical as it requires synchronization be-

tween the encoders and the decoder, and offers asymptotic disadvantages. Another

possible solution is to use source splitting [11, 12, 61], but it has the problem of

increasing the complexity and requires a deeper knowledge of the statistics of the

“new” subsources.

Pradhan and Ramchandran studied the problem of distributed symmetric en-

coding of two sources using linear channel codes in [53, 54]. In particular, they

showed that the symmetric approaches can achieve exactly the same performance

as the asymmetric ones. Practical designs allowing to cover the entire Slepian-Wolf

achievable rate region have recently been proposed in [11,20,23,62,64,74].
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2.3 Recent Applications of DSC

2.3.1 Wireless Sensor Networks

Sensor networks [4] have been attracting a significant interest in recent years. Ad-

vances in wireless communication technologies and hardware have enabled the de-

sign of these cheap low-power miniature devices that make up sensor networks. The

truly distributed (or decentralized) nature of sensor networks is radically changing

the way in which we sense, process and transport signals of interest. In the classical

“many-to-one” scenario, many sensors are spatially deployed to monitor some phys-

ical phenomenon of interest, and transmit independently their measurements to a

common central receiver. The main task of the receiver is then to reproduce the

best possible estimation of the observed phenomenon, according to some distortion

metric. The sensors can typically be temperature, pressure or humidity sensors, but

also microphones or cameras.

Due to the spatial proximity of the sensors and the physical properties of the

observed phenomenon, the data acquired among the sensors can be highly correlated.

Transmitting this data directly from each sensor to the common receiver could thus

imply the communication of a large amount of redundant information. Since the

sensors have limited power resources, efficient data transmission is therefore crucial

to guarantee the survival of such systems. This particular constraint makes DSC of

great interest for wireless sensor network applications.

A first theoretical extension of DSC in a sensor network setting was proposed

by Flynn and Gray in [18], where they derived achievable rate-distortion bounds for

the case of two sensors transmitting their encoded observations of the phenomenon

to a common receiver, and discussed practical ways of designing quantizers to reach

good coding performances.
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More recently, several studies on decentralized detection and estimation prob-

lems have been proposed [5, 50, 86]. The CEO problem [50] provides an interesting

theoretical framework for distributed sensing systems in multiuser communications.

In this scenario, a hidden data sequence {X(t)}∞t=1 is of interest to a central unit

or the CEO (Chief Executive Officer). Since the CEO cannot observe this process

directly, he (or she) employs L agents (or sensors) to observe independently cor-

rupted versions of the source sequence. The agents then encode independently their

observations and transmit the data to the CEO through rate-constrained noiseless

channels.

A recent comprehensive coverage of distributed compression-estimation in wire-

less sensor networks was proposed in [86]. In many of these sensor network appli-

cations, the aim of the central receiver is not to fully reconstruct the observed

phenomenon, but only to infer some underlying hypotheses [5]. In this context, an

interesting question is to determine whether it is more efficient to let the sensors first

run a local estimation/detection process and then transmit their results to the main

receiver for fusion, or simply let the sensors transmit their acquired data and have

the receiver run a joint estimation/detection process. The answer to this question

directly depends on the physical properties of the observed phenomenon and the

constraints considered (e.g. power constraints, processing capabilities, bandwidth

efficiency, scalability, robustness to changes in network or environment).

DSC plays a particularly important role in dense wireless sensor networks where

the number of sensors can be very large. Several works focusing on the scalability

properties of sensor networks have appeared recently [28, 31, 45, 46, 49]. The main

issue is to understand if the use of DSC can be sufficient to compensate for the

increase of data transmission as the number of sensors grows. Several authors have

presented negative results [45, 46] arguing that if the total amount of data that

can be received by the central decoder is limited, then the global performance of the
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network goes to zero as the number of sensors grows to infinity. More positive results

were then proposed in [31, 49] where an upper bound for the global rate-distortion

behaviour was given.

A particularly interesting scenario arises when the observed phenomenon can

be represented using a parametric model with a finite number of parameters, or

has a finite rate of innovation (FRI [80]). This property means that it is possible to

reconstruct perfectly the phenomenon using a finite number of sensors that spatially

sample it. In this case, it was shown [31] that it is possible to efficiently trade-off the

density of sensors with the sensing resolution at each sensor, when the number of

sensors increases beyond the critical sampling, thanks to distributed source coding

approaches.

2.3.2 Distributed Video Coding

In video coding standards such as MPEG-x or H.26x [47], the encoder usually tries

to exploit the statistics of the source signal in order to remove, not only spatial, but

also temporal redundancies. This is usually achieved by using motion-compensated

predictive encoding, where each video frame is encoded using a prediction, based on

previously encoded frames, as side information. This side information (the predictor)

must therefore be available at both the encoder and the decoder in this case.

The idea of distributed video coding is to employ DSC approaches in order to

allow for an independent encoding of the different frames at the encoder, while letting

to the decoder the burden of exploiting the temporal dependencies. In other terms,

each video frame is encoded independently knowing that some side information will

be available at the decoder (the side information can typically be a prediction based

on previously decoded frames).

The first very interesting aspect of distributed video coding is that it con-
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siderably reduces the complexity of the video encoder by shifting all the complex

interframe processing tasks to the decoder. This property can be of great interest

for power/processing limited systems such as wireless camera sensors that have to

compress and send video to a fixed base station in a power-efficient way. Here, it is

assumed that the receiver has the ability to run a more complex decoder. In the case

where the receiver of the compressed video signal is another complexity-constrained

device, a solution using a more powerful video transcoder somewhere on the network

can be used (see Figure 2.4).

Figure 2.4: Transcoding architecture for wireless video. This method allows
for low-complexity encoder (Wyner-Ziv encoder) and decoder (MPEG-like
decoder) at both wireless devices. However, this architecture relies on the use
of a complex transcoder somewhere on the network.

Another strong advantage of distributed video coding is that it is naturally

robust to the problem of drift between encoder and decoder. The drift problem

is due to prediction mismatch that can happen due to channel losses and usually

creates visual artefacts that propagates until the next intra-coded frame is received.

This built-in robustness is due to the fact that the encoding is not based on a specific

prediction, but only assumes that a relatively good predictor will be available at the

decoder. Therefore, slightly different predictors can lead to a correct decoding. This

particular property highlights the fact that Wyner-Ziv coding can actually be seen

as a joint source-channel coding approach (see Section 2.3.4).

The first video coding approach based on distributed compression principles
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was proposed in [57], and is known as PRISM or “Power-efficient, Robust, hIgh-

compression, Syndrome-based Multimedia coding”. We recommend the reader to

refer to this original work to obtain more information about their specific coding

architecture. Other approaches have since been proposed [17, 24, 56, 66, 89] and the

area of distributed video coding is currently gaining a fast growing interest.

Although all these approaches are extremely promising, they are still not as

efficient as standard video coders in terms of rate-distortion performance. The gap

is mainly due to the fact that distributed source coding techniques usually rely on

the fact that the correlation structure is known a-priori. It is therefore only with the

knowledge of this correlation that optimal codes can be designed. The estimation

of this correlation has proven, however, to be extremely difficult.

Another reason for the performance gap between theory and practice is that the

decoder has to search for the best side information (corresponding to the reference

information in predictive coding) in previously decoded data. The side information

extracted and used by the decoder is typically not as good (in the sense of being

as close as possible to the data to be encoded) as the reference information used in

predictive coding systems.

2.3.3 Distributed Multi-View Coding

Compression techniques for multi-view images have attracted a deep interest during

the last decade. This is partly due to the introduction of several new 3D render-

ing techniques such as image-based rendering (IBR) [71] and lightfield rendering

(LFR) [34] that represent real-world 3D scenes using a set of images obtained from

fixed viewpoint cameras. The amount of raw data acquired by practical systems can

be extraordinary large and typically consists of hundreds of different views. Due to

the spatial proximity of the different cameras, an extremely large amount of redun-
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dant information is present in the acquired data. Compression is therefore highly

needed.

In order to exploit the correlation between the different views, a joint encoder

could be employed. However, this would require that all the cameras first transmit

their data to a common receiver that would have to store it and then perform the

joint compression. This would clearly use a tremendous amount of communication

resources and storage space, and might not be feasible in some practical settings.

For these reasons, it would be preferable to compress the images directly at the

cameras using distributed compression techniques. The main advantages of such an

approach is that it would only require a low-complexity encoder at each camera, and

would considerably reduce the overall amount of transmission necessary from the

cameras to the central decoder. Moreover, the compressed data could be directly

stored at the receiver using optimal memory space. Nevertheless, in this case the

decoder is assumed to be more sophisticated in order to handle the high-complexity

joint decoding of the views.

Several approaches for distributed multi-view image coding directly inspired

from distributed video coding techniques have been proposed [2, 30, 36, 77–79, 94].

The basic idea is to see each different view as a frame of a video sequence and apply

a Wyner-Ziv video coding approach to them. Nevertheless, these approaches suffer

from several drawbacks: First, they require that some cameras transmit their full

information (to provide side information to the receiver) while others only transmit

partial information. This makes them clearly asymmetric, which can be a problem

for some practical applications. Second, while the correlation between successive

video frames can be difficult to estimate, basic multi-view geometry could be used

when dealing with multi-camera systems. However, most of these approaches do

not take advantage of this information so as to improve the performance of their

encoders. In [43], Maitre et al. propose to exploit the scene geometry to design
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enhanced interpolation approaches for the problem of side information generation

for distributed video coding of static scenes. Their results show substantial perfor-

mance gains over classical approaches using block-based motion-compensated frame

interpolation.

Another distributed multi-view compression approach based on correspondence

analysis and super-resolution has been proposed in [81], but it requires that some

information is transmitted between the encoders to perform some coarse registra-

tion of the different views. This approach is therefore not fully distributed and

cannot be used for all the applications where communication between the encoders

is impossible.

Distributed compression approaches focusing on the encoding of multiple

blurred and noisy images of a scene acquired from the same viewing position have

been proposed in [21, 39]. Although their results show performances that are rela-

tively close to the theoretical bounds, their approaches cannot be used for multi-view

images, because of the limitation of their correlation model.

Finally, extensions of distributed video coding to distributed multi-view video

coding have been proposed in [26, 73, 82, 91]. In this scenario, the decoder has to

exploit the redundancy between all the received video signals (temporal and view

correlations) to make the best possible prediction and generate the side information.

In Chapter 3, we propose a distributed coding strategy for camera sensor net-

works that uses some geometrical information about the scene and the position of

the cameras in order to estimate precisely the correlation in the visual information.

2.3.4 Joint Source-Channel Coding

As stated in a comprehensive review on distributed source coding proposed by Xiong

et al. [88] ; “Wyner-Ziv coding is, in a nutshell, a source-channel coding problem”.
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This property of Wyner-Ziv coding was emphasized in Section 2.3.2, where we high-

lighted the fact that distributed video coding presents a natural robustness to the

problem of drift [24, 57, 66, 89]. In fact, Wyner-Ziv coding can be thought of as a

channel coding technique that is used to correct the “errors” between the source

to be coded and the side information available at the decoder. We can thus see

the relationship between the source and the side information as represented by a

“virtual” correlation channel. Then, if a good channel code for this virtual channel

can be found, it would clearly provide us with a good Wyner-Ziv code through the

associated coset codes.

In case of transmission over a non-perfect channel, it seems quite intuitive that

the use of a stronger Wyner-Ziv code could not only compensate for the discrep-

ancies between the source and the side information, but also correct errors due

to the unreliable transmission of the source sequence. Several papers addressing

this particular property of distributed source coding have been published [41, 65].

A recent approach (based on PRISM) that allows for an error-resilient distributed

compression of multi-view video sequences was proposed in [91].

Finally, Wyner-Ziv coding is also strongly related to systematic lossy source-

channel coding [67], where an encoded version of the source signal is sent over a

digital channel to serve as enhancement information to a noisy version of the source

signal received through an analog channel. Here, the noisy (analog) version of the

source signal plays the role of side information for decoding the information received

from the digital channel. A detailed description of video coding based on systematic

lossy source-channel coding can be found in [58].
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2.4 Conclusions

In this chapter, we have presented the theoretical foundations of distributed source

coding and highlighted the practical coders recently proposed in the literature. We

have also discussed some of the recent applications of DSC such as distributed video

coding or wireless sensor networks.
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Chapter 3

The Plenoptic Function and its

Distributed Compression: A

preliminary analysis

3.1 Introduction

The aim of this chapter is to present a set of preliminary results that will then be used

to derive fundamental performance bounds in camera sensor networks (Chapter 4),

to develop a new distributed image compression algorithm (Chapter 5) and for

distributed compression of binary sources (Chapter 6).

Distributed compression schemes usually rely on the assumption that the cor-

relation of the source is known a-priori. In this chapter, we show how it is possible

to estimate the correlation structure in the visual information acquired by a multi-

camera system by using some simple geometrical constraints, and present a coding

approach that can exploit this correlation in order to reduce the total amount of in-

formation to be transmitted from the visual sensors to the common central receiver.

The coding scheme we propose allows for a flexible distribution of the bit-rates
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amongst the encoders and is optimal in many cases. Our technique can also be

made resilient to a fixed number of visual occlusions, when certain objects of the

scene are only visible from a fraction of the camera positions.

3.2 The Plenoptic Function

The plenoptic function was first introduced by Adelson and Bergen in 1991 [3]. It

corresponds to the function representing the intensity and chromaticity of the light

observed from every position and direction in the 3D space, and can therefore be pa-

rameterized as a 7D function: IPF = P (θ, φ, ω, τ, Vx, Vy, Vz). The three coordinates

(Vx, Vy, Vz) correspond to the position of the camera, θ and φ give its orientation,

τ is the time and ω corresponds to the frequency considered. The measured pa-

rameter IPF is simply the intensity of the light observed under these parameters.

The plenoptic function represents thus the visual information available from any

viewing position around a scene of interest. Hence, image-based rendering (IBR)

techniques can be thought of as methods that try to reconstruct the continuous

plenoptic function from a finite set of views [71]. Once the plenoptic function has

been reconstructed, it is then straightforward to generate any view of the scene by

setting the appropriate parameters. The high dimensionality of this function makes

it, however, extremely impractical. By fixing the time τ and the frequency ω (or

integrating over the range of wavelengths considered), and assuming that the whole

scene of interest is contained in a convex hull (and observed from the outside of

this hull), the plenoptic function can be reduced to a 4-D function [25, 34]. The

parameterization of this 4-D function is usually done using two parallel planes: the

focal plane (or camera plane) and the retinal plane (or image plane). A ray of

light is therefore parameterized by its intersection with these two planes as shown

in Figure 3.1(a). The coordinates in the focal plane (s, t) give the position of the
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pinhole camera, while the coordinates in the retinal plane (u, v) give the point in

the corresponding image.

v

us

t

Light ray

Object

Image planeCamera plane

z

v

t

(a) (b)

Figure 3.1: (a) 4-D lightfield parameterization model where each light ray
is characterized by its intersections with the camera and focal planes. (b)
Epipolar (v-t) plane image of a scene with two objects at different depths (the
s and u coordinates are fixed in this case).

An Epipolar Plane Image (EPI) represents a 2-D subspace of the plenoptic

function. It can be used to represent and analyse the redundancy in the multi-

view data. For example, the (v, t) plane is typically used to represent the epipolar

geometry of a scene when the different cameras are placed on a horizontal line (see

Figures 3.1(b) and 3.2).

Acquisition of the plenoptic function: some examples from 2-D to 7-D

• 2-D: The EPI shown in Figure 3.1(b) corresponds to a 2-D slice of the plenop-

tic function (see also Figure 3.2). It is obtained by moving a camera along a

horizontal line and by acquiring a horizontal scan-line from each camera po-

sition. In another scenario, the cameras could be placed on a circle (oriented

towards the outside of the circle and looking perpendicular to it). Notice that

a point of the scene would not follow a straight line any more with this 2-D

representation of the plenoptic function.
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Figure 3.2: 2D plenoptic function of two points of a scene. The t-axis cor-
responds to the camera position and the v-axis corresponds to the relative
positions on the corresponding image. A point of the scene is therefore repre-
sented by a line whose slope is directly related to the point’s depth (z-axis).
The difference between the positions of a given point on two different images
thus satisfies the relation (v− v′) = f(t−t′)

z , where z is the point’s depth and f is
the focal length of the cameras.

• 3-D: We consider now that the cameras are still on a line and that a full 2-D

image is acquired from each camera position. The 3-D data obtained has a

structure that is similar to a video sequence, but the motion of the objects

can be fully characterized by their positions in the scene.

• 4-D: The lightfield [34] and the lumigraph [25] are 4-D representations of the

plenoptic function where the cameras are placed on a 2-D plane and full 2-D

images are acquired for all the camera positions. The cameras could also be

placed on the surface of a sphere, looking towards the centre of the sphere,

assuming that the whole scene of interest is contained in the sphere.

• 5-D: Allowing the cameras to be placed anywhere in the 3-D space, we now

obtain a 5-D representation of the plenoptic function. In a similar manner,

considering the evolution of time with the acquisition of a lightfield, we also

move from a 4-D to a 5-D representation.

• 6-D: If there is no restriction on the position of the cameras and the 2-D

views are acquired over time, the resulting data can be represented as a 6-D
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function.

• 7-D: In the previous examples we assumed that we were restricted to one

(grayscale) or three (RGB) frequencies for the observed light rays. In order to

represent the intensity of the light for any frequency, from any position and

direction, and at any time, the full 7-D plenoptic function is required.

3.3 The Linear Camera Sensor Network Configu-

ration

A camera sensor network is able to acquire a finite number of different views of a

scene at any given time and can thus be seen as a sampling device for the plenoptic

function. We choose the following scenario for our work: Assume that we have N

cameras placed on a horizontal line. Let α be the distance between two consecutive

cameras, and assume that they are all looking in the same direction (perpendicular to

the line of cameras). Assume that the observed scene is composed of simple objects

such as uniformly colored polygons parallel to the image plane and with depths

bounded between the two values zmin and zmax as shown in Figure 3.3. According

to the epipolar geometry principles, which are directly related to the structure of

the plenoptic function (see Figure 3.2), we know that the difference between the

positions of a specific object on the images obtained from two consecutive cameras

will be equal to ∆ = αf
z

, where z is the depth of the object and f is the focal length

of the cameras. This disparity ∆ depends only on the distance z of the point from

the focal plane. If we know a-priori that there is a finite depth of field, that is

z ∈ [zmin, zmax], then there is a finite range of disparities to be coded, irrespective

of how complicated the scene is. This key insight can be used to develop new

distributed compression algorithms as we show in the next section.
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Figure 3.3: Our camera sensor network configuration.

Notice that a similar insight has been previously used by Chai et al. to develop

new schemes to sample the plenoptic function [9].

3.4 A Novel Distributed Coding Approach for

Simple Scenes

In this section, we propose a lossless distributed coding scheme for the configuration

presented in Figure 3.3 in the case where there are only two cameras. Since both

encoders have some knowledge about the geometry of the scene, the correlation

structure of the two sources can be easily retrieved. We then show that our coding

technique can be used with any pair of bit-rates contained in the achievable rate

region defined by Slepian and Wolf [72], and can therefore be optimal.
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3.4.1 Distributed stereo coding

Let X and Y be the horizontal discrete positions (at unit pixel precision) of a

specific object on the images obtained from two consecutive cameras. Assume that

the images are squared images with 22R pixels each (The width and height of an

image is 2R pixels long). Due to the epipolar geometry and the information we have

about the scene, that is (α, f, zmin, zmax), we know that Y ∈ [X+ αf
zmax

, X+ αf
zmin

] for a

specific X. Encoding X and Y independently would require a total of H(X)+H(Y )

bits. However, using a coset approach, we can transmit X losslessly and modulo

encode Y as Y ′ = Y mod �αf( 1
zmin

− 1
zmax

)�. Here, the modulo of Y can be seen as the

syndrome of Y as it corresponds to the minimum information required in order to

perfectly reconstruct Y , knowing X and the correlation structure. In binary linear

codes, a coset is constructed by gathering codewords such that a maximum Hamming

distance is kept between any pair of codewords in the coset. In our case, we consider

Euclidean distance and we want to make sure that the difference between any pair

of values in a given coset is not smaller than �αf( 1
zmin

− 1
zmax

)�. Therefore, all the

values contained in any range of size �αf( 1
zmin

− 1
zmax

)� must belong to different

cosets, which can be done by using the modulo operator.

By observing X and Y ′, the receiver will then retrieve the correct Y such that

Y ∈ [X + αf
zmax

, X + αf
zmin

]. The overall transmission rate is therefore decreased to

H(X)+H(Y ′) bits. If we assume that the difference between X and Y is uniformly

distributed in [ αf
zmax

, αf
zmin

], we can claim that H(Y ′) = H(Y |X) (we know that Y ′ is

uniformly distributed over a set of values of the same size as the number of possible

disparities between X and Y ). We can therefore see that our coding scheme using

H(X) + H(Y ′) = H(X) + H(Y |X) = H(X,Y ) bits is optimal.

This simple distributed coding technique is powerful since it takes full advan-

tage of the geometrical information to minimize the global transmission bit-rate.
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However, its asymmetric repartition of the bit-rates may be problematic in some

practical applications. In the following, we will show that this coding approach can

be extended in a way such that any pair of bit-rates satisfying the Slepian and Wolf

conditions can be used.

Looking at the following relation: H(X,Y ) = H(X|Y ) + H(Y |X) + I(X,Y ),

we can see that the minimum information that must be sent from the source X

corresponds to the conditional entropy H(X|Y ). Similarly, the information corre-

sponding to H(Y |X) must be sent from the source Y . The remaining information

required at the receiver in order to recover the values of X and Y perfectly is related

to the mutual information I(X,Y ) and is by definition available at both sources.

This information can therefore be obtained partially from both sources in order to

balance the transmission rates.

We know that the correlation structure between the two sources is such that Y

belongs to [X + αf
zmax

, X + αf
zmin

] for a given X. Let Ỹ be defined as Ỹ = Y −� αf
zmax

�.
This implies that the difference (Ỹ − X) is contained in {0, 1, . . . , δ}, where δ =

�αf( 1
zmin

− 1
zmax

)�. Looking at the binary representations of X and Ỹ , we can say

that the difference between them can be computed using only their last Rmin bits

where Rmin = �log2(δ + 1)�. Let X1 and Ỹ1 correspond to the last Rmin bits of X

and Ỹ respectively. Let X2 = (X � Rmin) and Ỹ2 = (Ỹ � Rmin), where the “�”

operator corresponds to a binary shift to the right. We can thus say that Ỹ2 = X2

if Ỹ1 ≥ X1 and that Ỹ2 = X2 + 1 if Ỹ1 < X1. As presented in Figure 3.4, our coding

strategy consists in sending X1 and Ỹ1 from the sources X and Y respectively and

then, sending only a subset of the bits for X2 and only the complementary one for

Ỹ2. At the receiver, X1 and Ỹ1 are then compared to determine if Ỹ2 = X2 or if

Ỹ2 = X2 + 1. Knowing this relation and their partial binary representations, the

decoder can now perfectly recover the values of X and Ỹ .

Assume that zmin and zmax are such that (δ + 1) is a power of 2. If we
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Figure 3.4: Binary representation of the two correlated sources. The last Rmin

bits are sent from the two sources but only complementary subsets of the first
(R − Rmin) bits are necessary at the receiver for a perfect reconstruction of X
and Y .

assume that (Ỹ − X) is uniformly distributed, we can state that H(Ỹ − X) =

H(X|Y ) = H(Y |X) = Rmin. Let S(X2) be a subset of the R − Rmin bits

of X2 and let S̄(Ỹ2) corresponds to the complementary subset of Ỹ2. If we as-

sume now that X is uniformly distributed in {0, 1, . . . , 2R − 1}, we have that

H(S(X2)) + H(S̄(Ỹ2)) = H(S(X2), S̄(Ỹ2)) = I(X,Y ). The total rate necessary

for our scheme corresponds to I(X,Y )+2Rmin = H(X,Y ) and is therefore optimal.

We can now summarize our results into the following proposition:

Proposition 3.1. Consider the configuration presented in Figure 3.3 with two cam-

eras, and assume that no occlusion occurs in the two corresponding views. The

following distributed coding strategy is sufficient to allow for a perfect reconstruction

of these two views at the decoder. For each object’s position:

• Send the last Rmin bits from both sources, with Rmin = �log2(δ + 1)� and

δ = �αf( 1
zmin

− 1
zmax

)�.

• Send complementary subsets for the first (R − Rmin) bits.

If we assume that X and (Y −X) are uniformly distributed and that δ = 2Rmin − 1,

this coding strategy achieves the Slepian-Wolf bounds and is therefore optimal.



3.4 A Novel Distributed Coding Approach for Simple Scenes 59

3.4.2 The problem of occlusions

In order to reconstruct the position of an object on an image obtained from any

virtual camera position, we need to know its correct position in at least two differ-

ent views. Using the epipolar geometry principles, we can then easily retrieve its

absolute position and depth. Unfortunately, a specific object may not be visible

from certain viewing positions since it might be hidden behind another object or

might be out of field. Nevertheless, using a configuration with more cameras will

make it more likely for any object to be visible in at least two views.

Assume we have three cameras in a configuration similar to the one presented

in Figure 3.3 and that each object of the scene can be occluded in at most one

of these three views. Our goal is to design a distributed coding scheme for these

three correlated sources such that the information provided by any pair of these

sources about the position of any object of the scene is sufficient to allow for a

perfect reconstruction at the receiver. Let X, Y and Z be the horizontal positions

of a specific object on the images obtained from camera 1, 2 and 3 respectively. We

know that Y belongs to [X + αf
zmax

, X + αf
zmin

] and Z belongs to [X +2 αf
zmax

, X +2 αf
zmin

]

for a given X. Moreover, we know that any of these variables is deterministic given

the two others and follows the relation Z = 2Y − X. Let X̃ and Z̃ be defined as

X̃ = X + αf
zmean

and Z̃ = Z − αf
zmean

where zmean is given by 1
zmean

= 1
2
( 1

zmin
+ 1

zmax
).

It implies that the differences (Y − X̃) and (Z̃ − Y ) are equal and are included

in [−δ/2, δ/2] and that the difference (Z̃ − X̃) is included in [−δ, δ], where δ is

defined as in Section 3.4.1.

Looking at the binary representation of X̃, Y and Z̃ (at unit pixel precision),

we can say that the difference between any pair can be retrieved using only their last

Rmin bits, where Rmin = �log2(2δ + 1)�. Let X̃1, Y1 and Z̃1 correspond to the last

Rmin bits of X̃, Y and Z̃ respectively. Using a similar approach to that presented in
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Section 3.4.1, we know that any complementary binary subsets of X̃2, Y2 and Z̃2 are

necessary at the receiver to allow for a perfect reconstruction. Since one occlusion

can happen, we have to choose the binary subsets such that any pair of these subsets

contains at least one value for each of the (R − Rmin) bits. A possible repartition

is shown in Figure 3.5 (symmetric case). A transmission rate of 2
3
r + Rmin for each

source is necessary in this case, where r = R − Rmin.

Figure 3.5: Binary representation of the three correlated sources. The last
Rmin bits are sent from the three sources but only subsets of the first (R−Rmin)
bits are necessary at the receiver for a perfect reconstruction of X, Y and Z
even if one occlusion occurs.

On receiving the last Rmin bits from only two sources, the decoder is able to

retrieve the last Rmin bits of the third one, which may be occluded. Therefore, the

relationship between X̃2, Y2 and Z̃2 can be obtained and only subsets of their binary

representations are necessary for a perfect reconstruction. Since an occlusion may

have occurred, each bit position has been sent from two different sources, which

implies a global transmission of 2r bits for the first (R − Rmin) bits. It is therefore

apparent that our total transmission rate of 2
3
r + Rmin bits per sources is optimal.
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3.4.3 N cameras with M possible occlusions

We can now generalize our result to any number of cameras and occlusions with the

following proposition (see Figure 3.6):

Proposition 3.2. Consider a system with N cameras as depicted in Figure 3.3.

Assume that any object of the scene can be occluded in at most M ≤ N−2 views. The

following distributed coding strategy is sufficient to allow for a perfect reconstruction

of these N views at the decoder and to interpolate any new view:

• Send the last Rmin bits of the objects’ positions from only the first (M + 2)

sources, with Rmin = �log2((M + 1)δ)� and δ = �αf( 1
zmin

− 1
zmax

)�.

• For each of the N sources, send only a subset of its first (R −Rmin) bits such

that each particular bit position is sent from exactly (M + 1) sources.

Figure 3.6: Binary representation of the N correlated sources. The last Rmin

bits are sent only from the (M + 2) first sources. Only subsets of the first
(R − Rmin) bits are sent from each source, such that each bit position is sent
exactly from (M + 1) sources.

Notice that this distributed coding strategy can be extended to the general

problem of DSC of correlated binary sources. A general solution based on linear

channel codes and syndrome encoding is presented in Chapter 6.
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3.4.4 Simulation results

We developed a simulation to illustrate the performance of our distributed com-

pression scheme. We created an artificial scene composed of simple objects such as

polygons of different intensities placed at different depths. Our system could then

generate any view of that scene for any specified camera position. In the example

presented in Figure 3.7, we generated three views of a simple scene composed of

three objects such that one of them is occluded in the second view, and another one

is out of field in the third view. The three generated images have a resolution of

X1 X2 X3

Figure 3.7: Three views of a simple synthetic scene obtained from three aligned
and evenly spaced cameras. Note that an occlusion happens in X2 and that
an object is out of field in X3.

512 × 512 pixels and are used as the inputs for the testing of our distributed com-

pression algorithm. Each encoder applies first a simple corner detection to retrieve

the vertex positions of their visible polygons. Each vertex (xi, yi) is represented

using 2R = 2 log2(512) = 18 bits. Each encoder knows the relative locations of

the two other cameras (α = 100) but does not know the location of the objects on

the other images. It only knows that the depths of the objects are contained in

[zmin, zmax] = [1.95, 5.05] and that f = 1. Depending on its depth, an object will

thus be shifted from 20 to 51 pixels between two consecutive views. This means that

the difference ∆ on two consecutive positions (i.e., the disparity) can be described

using Rmin = log2(51 − 19) = 5 bits.
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In order to be resilient to one occlusion, we applied the approach proposed in

Section 3.4.2. The results showed that only 14 bits per vertex were necessary from

each source (instead of 18) to allow for a perfect reconstruction of the scene at the

receiver. When repeating the operation with three other views and assuming that

no occlusion was possible, only 8 bits per vertex were necessary from each source.

3.5 Conclusions

In this chapter, we have proposed a new lossless distributed compression scheme for

camera sensor networks. In particular, we have shown that our approach can be

used to encode the positions of the objects in a distributed manner. The method

uses some geometrical information about the scene in order to estimate the plenoptic

constraints and retrieve a correlation structure for the sources. The encoding process

is simple yet very powerful since it can mimic the Slepian and Wolf [72] theoretical

performance. A solution to the problem of visual occlusions has also been proposed.

In Chapter 5, we will show how these results can be used to develop a practical

distributed encoder for real multi-view images.
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Chapter 4

Fundamental Trade-offs in Camera

Sensor Networks: An exact

bit-conservation principle

4.1 Introduction

In the previous chapter, we presented a distributed compression strategy for multi-

view images, where the correlation between the objects positions on the different

views can be exploited without requiring any collaboration between the encoders.

Our proposed scheme can be used to compress the visual information acquired by

a camera sensor network, where each sensor independently processes its data before

transmitting the compressed information to a common central receiver. In this

chapter, we consider this “many-to-one” sensor network scenario, and study the

fundamental trade-offs between the number of sensors and the compression rate

used at each encoder in order to guarantee the best global rate-distortion behaviour

for the reconstructed views.

Sampling in space and distributed coding are two critical issues in sensor net-
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works. For example, deploying too few sensors would lead to a highly aliased recon-

struction of the observed phenomenon, while an excessive number of sensors would

use all the communication resources by transmitting highly correlated measurements

to the receiver. This last issue can actually be addressed by means of distributed

source coding techniques (see Chapter 2). The correlated measurements can then

be encoded independently at each sensor with a compression performance similar to

the one that would be achieved by using a joint encoder.

Despite this powerful coding approach, several authors have presented pes-

simistic results regarding the scalability of sensor networks [45, 46]. Their main

argument comes from the fact that, if the total amount of data that can be received

by the central decoder is limited, then the throughput at each sensor scales as Θ
(

1
N

)
with the number of sensors N . The global performance of the network then goes to

zero as N → ∞. More optimistic results were recently proposed in [31, 49], where

it was shown that, for a given distortion, an upper-bound (independent of N) on

the total information rate can be given. Recent works have also shown that if the

observed phenomenon can be represented with a finite number of degrees of free-

dom, it is then possible to efficiently trade-off the density of sensors with the sensing

resolution at each sensor [28,29] (Notice that the approach presented in [29] requires

some communication between neighbouring sensors).

In the context of camera sensor networks, the physical phenomenon that has

to be transmitted to the receiver is the visual information coming from the scene

(or its plenoptic function [3]), and the samples are the different sampled 2-D views

acquired by the sensors. The issues of sampling and communication are particu-

larly interesting in this scenario. Several multi-view sampling theorems have been

proposed to address the question of determining the critical sampling of a visual

scene under different model assumptions, such as bandlimited scenes [9] or scenes

with finite rate of innovation [10]. Starting from this critical sampling, our main
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objective is to show how we can arbitrarily increase the number of sensors, while

maintaining a constant global rate-distortion behaviour for the reconstruction of

the scene at the receiver. This “bit-conservation principle” is achieved by means

of a distributed compression scheme for multi-view images based on the approach

proposed in Chapter 3.

We consider the camera sensor network set-up proposed in Figure 3.3, and

assume that zmax can be equal to infinity. The observed scene is made of L Lamber-

tian planar polygons that can be horizontally tilted and placed at different depths.

Each of these polygons has a certain polynomial intensity (the intensity along the

horizontal and vertical axes varies as a polynomial of maximum degree Q). The

perspective projection observed at each camera is therefore given by a 2-D piece-

wise polynomial function. The difference between the N views is that the pieces

are shifted differently according to their depths. Moreover, pieces can be linearly

contracted or dilated if they correspond to a tilted object, as shown in Figure 4.1.

Since the cameras are placed on a horizontal line, only the horizontal parallax

has an effect on the correlation between the N different views. We can therefore

reduce the sampling and compression problems to the 1-D case without loss of

generality. Throughout this chapter, we focus on one particular horizontal scanline

for the different views for the sake of simplicity, but all the results can be easily

extended to the 2-D case. Figure 4.1 shows an example of two correlated 1-D views

with three pieces of constant intensities placed at different depths.

The N cameras then have to communicate their acquired and processed data

to a central station through a multi-access channel with fixed capacity C. The

natural questions we want to address in this chapter are the following: a) Is there

a sampling result that guarantees that perfect reconstruction of the visual scene

is possible from a finite number of blurred and sampled projections? b) Since the

observed projections have to be transmitted through a channel with fixed capacity, is
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View 1 View 2

t1,1 t1,2

t1,3 t1,4 t1,5 t1,6 t2,1 t2,2

t2,3 t2,4

t2,5 t2,6

∆ 1

t2,1

Figure 4.1: Two correlated views of the same scene observed from two differ-
ent viewing positions. Each discontinuity is shifted according to the epipolar
geometry. The set of disparities is given by {∆i}2L

i=1, where ∆i = t1,i − t2,i.

the number of cameras going to influence the reconstruction fidelity at the decoder?

We show in the next sections that an exact sampling theorem for this scenario

exists and, most important, we show that a distributed coding strategy inspired by

our results presented in Chapter 3 allows for a reconstruction of the scene with a

distortion that is independent of the number of sensors and depends only on the

total number of bits that are transmitted through the channel.

4.2 Distributed Acquisition of Scenes with Finite

Rate of Innovation

The signals observed at the sensors are piecewise polynomial signals and can be

classified as signals with Finite Rate of Innovation (FRI). Recently, new sampling

methods for these classes of non-bandlimited signals have been proposed [15, 80].

They allow for a perfect reconstruction using only a finite number of samples. The

sampling can be done using sinc or Gaussian kernels, or any function that can re-

produce polynomials. In other terms, each sensor observes a blurred and sampled

version of the original piecewise polynomial projection, and is able to reconstruct

exactly the original parameters of the view (exact discontinuity locations and poly-

nomial coefficients). Extensions of this sampling approach for 2-D signals with FRI
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have been proposed recently [44,68].

Since each sensor is able to retrieve precisely its original perspective projection,

we can show that a finite number of sensors is sufficient to reconstruct exactly the

original scene using back-projection techniques. The goal of these techniques is

to find all the disparity correspondences between the different views. Once this

disparity matching problem is solved, the exact depth of any object can be retrieved

and the original scene can be reconstructed exactly. We consider here three scene

scenarios leading to three different sampling techniques:

A: We first consider the case where the L planar objects are separated and visible

from all the N cameras without occlusion, and keep the same “left to right” ordering

(that is, the kth piece on the ith view corresponds to the kth piece on the jth view,

for any k ∈ {1; L} and i, j ∈ {1; N}). With this hypothesis, only two of the N views

are necessary in order to reconstruct the original scene (the correspondence problem

between the two views is straightforward in this case).

B: We then consider the case where the L objects are separated and visible from all

the N cameras without occlusion, but where the “left to right” ordering is not guar-

anteed anymore. In order to solve the disparity matching problem at the decoder,

we need to have at least L + 1 views of the scene. This is a sufficient condition to

guarantee a correct matching of the L objects in order to retrieve their real positions

in the scene. It is easy to observe that if all the objects are similar (say black dots),

the matching of less than L + 1 views would lead to an ambiguous reconstruction

where several solutions are possible (back-projection problem) [10]. In our case, the

projections (or views) are made of polynomial pieces and can be correctly matched

using at least L + 1 projections. Practically, we can back-project the L + 1 left

extremities of the pieces and retrieve the L real locations of these extremities. The
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same procedure is then repeated with the L + 1 right extremities. Notice that this

approach only relies on the discontinuity locations and not on the intensity of the

pieces. This general sampling result is therefore sufficient in any case (even if all

the pieces have the same intensity), but is not always necessary (two views are in

theory sufficient if all the pieces have different intensities).

C: Finally, we also assume the following hypothesis regarding possible occlusions:

• each object can be occluded in at most Omax views. (For the sake of simplicity,

we only consider full occlusions here. Any object can thus only either be fully

visible or fully occluded in any given view.)

The number of sensors needed in order to guarantee an exact reconstruction of the

scene is given by Nmin ≥ L + Omax + 1. (Note that in practice, we can expect Omax

to scale linearly with the total number of sensors N .)

For these three scenarios, the minimum number of cameras corresponds to the

critical sampling. In the next section, we show how each sensor can quantize its pa-

rameters and use a distributed compression approach to maintain a constant global

rate-distortion behaviour at the decoder, independent on the number of sensors

involved in the transmission of information to the receiver.

4.3 An Exact Bit-Conservation Principle

The distributed compression algorithm applied at each sensor can be summarized

as follows: First, the original projection is reconstructed from the observed sampled

version using an FRI reconstruction method. The original view parameters retrieved

(which are the 2L discontinuity locations and the Q + 1 coefficients of the L poly-

nomials of maximum degree Q) are then scalar quantized according to some target
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distortion value for the reconstructed view. Finally, each quantized parameter is

S-W encoded according to the known correlation structure between the different

views. Our distributed source coding approach proposed in the previous chapter

can easily be applied in this context of piecewise polynomial signals. Each signal is

represented by its set of discontinuities (corresponding to the objects locations) and

its set of polynomials (corresponding to the objects intensities). These polynomials

are common to all the views (in the case of no occlusion) and the discontinuities can

be S-W encoded as proposed in Chapter 3.

In this section, we first describe the rate-distortion behaviour of our view model

when the view parameters are encoded independently. Then, we introduce in more

details the correlation between the different views and show that our distributed

compression approach guarantees a bit-conservation principle. Notice that for the

sake of simplicity we continue to focus on the 1-D scenario only (correlated horizontal

scanlines).

4.3.1 R-D behaviour of independent encoding

A 1-D view is modelled by a piecewise polynomial function defined on [0; T ] with L

independent pieces of maximum degree Q, bounded in amplitude in [0, A], and 2L

discontinuities. Assume that such a function is quantized using Rt and Rp bits to

represent each discontinuity and polynomial piece respectively (the parameters are

quantized using uniform scalar quantizers). It is possible to show that the distortion

(MSE) of its reconstruction can be bounded with the following expression, using the

results presented in [55]:

D(Rp, Rt) ≤ 1

2
A2LT ((Q + 1)2 2−

2
Q+1

Rp + 2−Rt). (4.1)
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For a total number of R = L(2Rt + Rp) bits, the optimal bit allocation is given by:

Rp = Q+1
Q+5

R
L

+ G and Rt = 2
Q+5

R
L
− 1

2
G, where G = 2Q+1

Q+5
(log(Q + 1) + 2). This

allocation leads to the following optimal rate-distortion behaviour:

D(R) ≤ 1

2
A2LT ((Q + 1)2 2−

2
Q+1

G + 2
1
2
G)︸ ︷︷ ︸

c0

2
−2

L(Q+5)
R. (4.2)

A more detailed derivation of this rate-distortion bound is available in Appendix A.1.

4.3.2 R-D behaviour using our distributed coding approach

Assume f1(t) and f2(t) are two 1-D piecewise polynomial views obtained from two

different cameras that are at a distance α apart. The two signals are defined for

t ∈ [0; T ] and are bounded in amplitude in [0;A]. If there is no occlusion, the

two views are exactly represented by L polynomials of maximum degree Q, and 2L

discontinuities (the signals are equal to zero between the pieces). The shift of a

discontinuity from one view to the other (its disparity) is given by the epipolar ge-

ometry and can be defined as: ∆i = αf
zi

, where zi is the depth of the ith discontinuity

(the depth of the object at its extremity). The range of possible disparities for a

scene is therefore given by: ∆ ∈ [0; αf
zmin

] (see Figures 3.3 and 4.1).

We assume Lambertian surfaces for all the planar objects that make up the scene

(i.e., the intensity of any point on the surface remains the same when observed from

different viewing positions). A polynomial piece corresponding to a tilted planar

object can be linearly contracted or dilated in the different views. However, its

representation using Legendre polynomials is the same for any view, because of the

support normalization on [−1; 1] that we use with this basis.

The correlation between the two views is therefore such that, knowing all the

parameters of the first view, the only missing information necessary to reconstruct
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perfectly the parameters of the second view is the set of disparities {∆i}2L
i=1. The

information about these disparities can be encoded in a distributed manner using

an approach similar to the one presented in Chapter 3.

Each sensor has to quantize and transmit its parameters to the central receiver.

In the case where there is no occlusion, this information corresponds exactly to

2L discontinuity locations and L polynomials. Let Rti and Rpi
be the number

of bits used to quantize each discontinuity and each polynomial of the ith view

respectively. The total number of bits used to encode this view is therefore given

by Ri = L(2Rti + Rpi
) and is associated to a distortion Di.

Assume just for one instant that the N views that have to be transmitted to

the receiver are independent. In this case, for an average distortion Di over all

the reconstructed views at the receiver, the total amount of data to be transmitted

would be of the order NRi = NL(2Rti + Rpi
) → ∑N

i=1 L(2Rti + Rpi
).

We can now show how the correlation model can be exploited to perform dis-

tributed compression for the three scene scenarios introduced in Section 4.2:

A: In this first scenario, we know that the knowledge of the discontinuity locations

and the polynomial coefficients from only two cameras is sufficient to retrieve the

original scene parameters. The correlation model tells us that the location of the

discontinuities on two different views are such that the range of possible disparities is

given by ∆i ∈ [0; αf
zmin

], where α is the distance between the two considered cameras.

The polynomial intensities of the different pieces are also known to be the same for

the two views (Lambertian surface assumption). This strong correlation structure

can therefore be exploited by means of a distributed coding approach.

Assume that a total of R bits is used to encode the first signal such that each

polynomial piece and each discontinuity is represented using Rp and Rt bits respec-

tively (R = L(Rp+2Rt)). On receiving this information, the decoder can reconstruct
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the first view with a distortion D. Assume now that the second encoder also uses

R bits to encode the other view at a similar distortion. Knowing that the encoded

version of the first view is already available at the decoder, the second encoder

does not need to transmit all its encoded data.1 First of all, since the polynomial

coefficients are similar for the two views, they do not need to be re-transmitted

from the second encoder. Secondly, since the discontinuity locations are correlated,

only partial information from each discontinuity need to be transmitted to the de-

coder using a distributed coding approach similar to the one proposed in Chapter 3.

The total number of bits required from the second encoder therefore corresponds

to 2LRtSW
= 2L(Rt − γs) bits, where γs = 
log2(

T
∆max

)� corresponds to the num-

ber of most significant bits of each discontinuity location that does not need to be

transmitted from the second view (Figure 4.2 illustrates this asymmetric distributed

coding strategy).

Thus, the total number of bits necessary to transmit the two views is given by

Rtot = L(Rp + 2Rt + 2RtSW
). Using this encoded data, the decoder can reconstruct

the two views or any other view with a distortion of the order of D. Notice that the

allocation of the bit-rates amongst the two encoders is very flexible as illustrated in

Figure 4.3 (symmetric case).

Assume now that we want to transmit information of the scene from more than

two encoders in order to balance the communication task amongst a larger set of

available cameras. The total information necessary at the decoder to reconstruct

all the different views with a distortion D can be divided and partially obtained

from any set of cameras using again the approach proposed in Chapter 3. We know

that the information about the polynomials can be arbitrarily obtained from any

camera and that as long as the two most distant cameras transmit their RtSW
least

1Notice that we assume a high bit-rate regime where the quantization errors are small compared
to the amplitudes of the disparities and the polynomials, such that the quantized view parameters
still satisfy (or nearly satisfy) the correlation model.
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Figure 4.2: Distributed asymmetric encoding of two views. Each view is first
encoded using R = L(Rp +2Rt) bits. Encoder 1 transmits its full representation
using R bits. Encoder 2 only transmits the RtSW least significant bits of its 2L
discontinuity locations (gray area).

Figure 4.3: Distributed symmetric encoding of two views. Complementary
subsets of the LRp bits representing the polynomials and the 2Lγs bits repre-
senting the most significant bits of the discontinuities are transmitted from the
encoders, along with all the 2LRtSW least significant bits of their discontinuities.
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significant bits for each of their 2L discontinuities, the rest of the Rtot−2LRtSW
bits

are common and can be obtained from any subset of the N encoders (Figure 4.4

illustrates a distributed coding strategy using five cameras). In other words, once

the two extreme sensors have transmitted their RtSW
least significant bits of each of

their 2L discontinuities, the remaining L(Rp + 2γs) bits to be transmitted (which

is the information that is common to all sensors) can be obtained from any subset

of the N cameras.2 The number of sensors used for the transmission has therefore

Figure 4.4: Distributed encoding of five views. Encoders 1 and 5 transmit the
RtSW least significant bits of each of their 2L discontinuities. Complementary
subsets of the LRp bits representing the polynomials and the missing 2Lγs bits
from the discontinuities are obtained from encoders 2, 3 and 4.

no influence on the reconstruction fidelity at the decoder. Using an optimal bit

allocation and transmitting the information using N sensors, the distortion of any

reconstructed view given the total bit budget Rtot can be shown to behave as (see

Appendix A.2):

DA(Rtot) ≤ c02
−2(2γs+G)

Q+9︸ ︷︷ ︸
c1

2
−2

L(Q+9)
Rtot . (4.3)

Notice that an independent encoding of the N views would lead to the following

behaviour:

D(Rtot) ≤ c02
−2

NL(Q+5)
Rtot . (4.4)

2Notice that in order to perform a symmetric encoding over the N cameras, we need to guarantee
a high bit-rate regime where Rtot

N ≥ 2LRtSW
.
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We can observe that Eq.(4.3) does not depend on the number of sensors N .

B: The distributed compression strategy in this case consists in sending the discon-

tinuity locations from L+1 views and each polynomial piece from only one encoder.

The total bit-rate necessary is therefore given by: Rtot = L((L + 1)2Rt + Rp). If we

now want to transmit information from more than this minimum number of sensors

Nmin = L + 1, we can do it in a flexible manner: For each new sensor introduced

in the system, we can ask it to take the responsibility of transmitting partial in-

formation about the polynomial pieces (therefore reducing the communication task

of some other sensors) or to replace one of its two neighbours to transmit some

subset of the most significant bits of its discontinuity locations. The distortion of

any reconstructed view given the total bit budget Rtot can be shown to behave as

(see Appendix A.3):

DB(Rtot) ≤ c02
−2LG

4L+Q+5︸ ︷︷ ︸
c2

2
−2

L(4L+Q+5)
Rtot . (4.5)

Again, the distortion at the receiver only depends on the total number of bits trans-

mitted Rtot and not on the number of sensors used.

C: The distributed compression strategy for this scenario can be summarized as

follows:

• Transmit the position of the discontinuities from L + Omax + 1 views.

• Transmit the polynomial pieces from Omax + 1 views.

The total bit-rate necessary is therefore given by: Rtot = L((L + Omax + 1)2Rt +

(Omax + 1)Rp). The flexible repartition of the transmission bit-rate used in the

previous scenario still holds here when more sensors are used for the transmission.
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The distortion of any reconstructed view given the total bit budget Rtot can be

shown to behave as (see Appendix A.4):

DC(Rtot) ≤ c02
−2OmaxG

4L+(Omax+1)(Q+5)︸ ︷︷ ︸
c3

2
−2

4L2+L(Q+5)(Omax+1)
Rtot . (4.6)

Table 4.1 summarizes the different R-D bounds derived in this chapter (see Ap-

pendix A for more details).

Table 4.1: Summary of the different R-D bounds.

Encoding mode total number of bits Rtot average R-D upper bounds
(for the encoding of N views)

Indep. Encoding Rtot = NL(2Rt + Rp) D(Rtot) ≤ c02
−2

NL(Q+5) Rtot

DSC - Scenario A Rtot = L(Rp + 4Rt − 2γs) DA(Rtot) ≤ c12
−2

L(Q+9) Rtot

DSC - Scenario B Rtot = L((L + 1)2Rt + Rp) DB(Rtot) ≤ c22
−2

L(4L+Q+5) Rtot

DSC - Scenario C 2L2Rt + L(Omax + 1)(Rp + 2Rt) DC(Rtot) ≤ c32
−2

4L2+L(Q+5)(Omax+1)
Rtot

4.4 Simulation Results

We propose a simple simulation where five cameras are observing a synthetic scene

made of three tilted polygons with linear intensities. The cameras are placed on a

horizontal line and observe blurred and undersampled views (32 × 32 pixels) of the

original scene as illustrated in Figure 4.5. For each view, knowing that the original

scene belongs to a certain class of signals with finite rate of innovation, the sampling

results presented in Section 4.2 can be used to retrieve the 33 original parameters

of the view (i.e. twelve vertices having two parameters each, and three 2-D linear

functions having three parameters each). Using these retrieved parameters, high

resolution version of the different views can be reconstructed at each encoder (see

Figure 4.6).

The original views are represented with the following precision: 22 bits for each

vertex (view of 2048 × 2048 pixels) and 9 bits for each polynomial coefficient. One
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Figure 4.5: Observations at the sensors. Each sensor observes a blurred and
undersampled version of the perspective projection of the scene.

Figure 4.6: High resolution version of the 5 views reconstructed at each en-
coder from the samples shown in Figure 4.5 using the FRI method of [68].

view is therefore exactly represented using 12×22+9×9 = 345 bits. The parameters

α, f and zmin are such that RtSW
= 10 bits (the disparities between the first and the

fifth views can actually be larger than a quarter of the image width). As we have

shown in Section 4.3.2, a total rate of Rtot = 345 + 12 × 10 = 465 bits is therefore

sufficient to reconstruct all the high resolution views at the receiver.

If the bit budget Rtot is smaller than 465, scalar quantization of the parameters

has to be done prior to applying distributed compression. Table 4.2 highlights our

bit-conservation principle for different bit budgets Rtot. In particular, it shows that

our approach suffers no rate loss when we increase the number of sensors used for

transmission.
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Table 4.2: An exact bit-conservation principle: simulation results with the 5
views presented in Figure 4.5.

R1 R2 R3 R4 R5 Rtot PSNR
(bits) (bits) (bits) (bits) (bits) (bits) (dB)
345 - - - 120 465 ∞
276 - - - 108 384 38.8
128 - 128 - 128 384 38.8
108 84 - 84 108 384 38.8
84 72 72 72 84 384 38.8
171 - - - 60 231 22.8
48 48 39 48 48 231 22.8

4.5 Conclusions

In this chapter, we have addressed the problem of distributed sampling and com-

pression in camera sensor networks for scenes with finite rate of innovation. In

particular, we have shown that if a piecewise polynomial model is used to represent

the scene, the critical sampling (i.e., the minimum number of sensors needed) can

be precisely derived. Then, we have also shown that when the number of sensors

increases, a distributed compression approach can be used to maintain a constant

global rate usage (independent on the number of sensors N), for any given recon-

struction quality. This result therefore leads to an exact bit-conservation principle.
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Chapter 5

Geometry-Driven Distributed

Compression of Real Multi-view

Images

5.1 Introduction

In this chapter, we show how a particular image coder based on tree structured

algorithms [69] can be modified to take advantage of our distributed coding approach

proposed in Chapter 3. Notice that several other distributed compression approaches

for real multi-view images have been proposed (see Section 2.3.3 for a more detailed

description of these methods). Our approach differs from the others in that it tries to

estimate the correlation structure in the visual information using some geometrical

constraints, and does not use conventional channel codes. The main properties of

our scheme is that a) it allows for an arbitrary partition of the rate between the

encoders and b) it satisfies a bit conservation principle. Namely, the reconstruction

fidelity at the decoder does not depend on the number of sensors involved, but only

on the total bit-budget R (as presented in Chapter 4).
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5.2 Distributed Compression using Tree Struc-

tured Approaches

This section introduces the model that we use to represent the different views ac-

quired from the linear multi-camera set-up that we consider in our work (see Fig-

ure 3.3). Then, we present a practical algorithm that can be used to approximate

real multi-view images with the proposed model. Finally, we show how distributed

compression can be performed on the approximated views in the 1-D (i.e., compres-

sion of scan-lines of different views) and in the 2-D case.

5.2.1 Multi-view model using piecewise polynomial repre-

sentations

Since the correlation model used by our distributed coding approach is related to

the object’s positions on the different views (see Chapter 3), we need to develop a

coding algorithm that can efficiently represent these positions. Our approach con-

sists in representing the different views using a piecewise polynomial model. The

main advantage of such a representation is that it is well adapted to represent real

images and that it is able to precisely catch the discontinuities between objects. Two

different views can therefore be modeled using a piecewise polynomial signal where

each discontinuity is shifted according to the correlation model: ∆i ∈ {∆min, ∆max}.
Moreover, if we assume that the scene is composed of lambertian planar surfaces

only and that no occlusion occurs in the different views, then we can claim that the

polynomial pieces are similar in the different views.1 Notice that this piecewise poly-

nomial model was already used in Chapter 4, where we assumed that the different

1With non-lambertian surfaces, or with the presence of occlusions, the polynomial pieces can
differ in the different views. Our simple correlation model should therefore be modified in this
case. For the sake of simplicity, we will however only consider this simple model to present our
coding approach.
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views were signals with FRI that could exactly be represented by this model. In this

chapter, we will show how real multi-view images can be approximated and com-

pressed with this model by means of a tree-based decomposition approach. Then,

our distributed source coding method will be used to compress these aproximations

in a distributed manner.

5.2.2 The prune-Join decomposition algorithm

In [69], Shukla et al. presented new coding algorithms based on tree structured

segmentation that achieve the correct asymptotic rate-distortion (R-D) behaviour

for piecewise polynomial signals. Their method is based on a prune and join scheme

that can be used for 1D (using binary trees) or for 2D (using quadtrees) signals in

a similar way.

The aim of this coding approach (in 1-D) is to approximate a given signal using

a piecewise polynomial representation. The first step of the algorithm consists in

segmenting the input signal using a binary tree decomposition. The signal is first

split in two pieces of the same length, then each piece is split again in a recursive

manner until the whole signal is decomposed into 2Jmax pieces of length T2−Jmax

where T is the support of the original signal. The binary tree representing this full

decomposition therefore consists of 2Jmax+1−1 nodes, each corresponding to a certain

region of the signal with a certain length. The second step of the algorithm consists

in approximating each node of the binary tree (i.e. a given region of the signal) with

a polynomial function of maximum degree Q. The best polynomial approximation

is obtained using a pseudo-inverse approach and is therefore optimal in the mean

squared error sense. The third step of the algorithm consists in generating R-D

curves for each node of the binary tree by quantizing the polynomial coefficients of

the approximations using a number of bits in the range [0;Rmax]. Then, assuming

that a global bit budget of R bits is available to encode the whole signal, optimal bit
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allocation between the different nodes of the binary tree must be performed. The

optimal bit allocation is obtained by choosing a fixed operating slope λ to select the

current rate on all R-D curves and performing the pruning of children nodes when the

following Lagrangian cost based criterion holds: (Dc1 +Dc2)+λ(Rc1 +Rc2) ≥ (Dp +

λRp). The indices c1, c2 and p correspond to the two children and the parent node

respectively. The resulting pruned tree gives the sequence of leaves that represent

the optimal bit allocation according to the current operating slope λ. In order to

further improve the encoding performances, neighbouring leaves that do not have

the same parent node are joined and coded together when the following Lagrangian

cost based criterion holds: (Dn1 + λRn1) + (Dn2 + λRn2) ≥ (DnJoint
+ λRnJoint

).

The resulting encoded version of the original signal is therefore represented using

the pruned tree, the joining information and the polynomial coefficients of each

approximated region (i.e. group of joined leaves). The pruned tree is represented

using a number of bits corresponding to its number of nodes (scanning the tree with

a top-down, left-to-right approach, a 0 means that the node has children, while a

1 indicates that the node is actually a leaf). The joining information requires a

number of bits corresponding to the number of leaves in the pruned tree (each leaf

needs to indicate if it is joined to the next one or not). If the total number of

bits used to encode the signal does not correspond to the global bit budget R, the

operating slope λ must be updated and the pruning and joining procedure must be

repeated until it reaches the global targeted rate or distortion.

We give here a sketch of this compression algorithm for 1D signals (Algo-

rithm 5.1) and encourage the reader to refer to the original work [69] for more

details.
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Algorithm 5.1 Prune-Join binary tree coding algorithm

1: Segmentation of the signal using a binary tree decomposition up to a tree depth
Jmax.

2: Approximation of each node of the tree by a polynomial p(t) of degree ≤ Q.
3: Rate-Distortion curves generation for each node of the tree (scalar quantization

of the Legendre polynomial coefficients).
4: Optimal pruning of the tree for the given operating slope −λ according to the

following Lagrangian cost based criterion: Prune the two children of a node if
(Dc1 + Dc2) + λ(Rc1 + Rc2) ≥ (Dp + λRp).

5: Joint coding of similar neighbouring leaves according to the following Lagrangian
cost based criterion: Join the two neighbours if (Dn1 + λRn1) + (Dn2 + λRn2) ≥
(DnJoint

+ λRnJoint
).

6: Search for the desired R-D operating slope (update λ and go back to point 4).

5.2.3 Our distributed coding strategy for 1-D piecewise

polynomial functions

Let f1(t) be a piecewise polynomial signal defined over [0;T ] consisting of L + 1

polynomial pieces of maximum degree Q each, and bounded in amplitude in [0;A].

Let {t1,i}S
i=1 represent the S distinct discontinuity locations of f1(t). We define f2(t)

as another piecewise polynomial function over [0;T ] having the same polynomial

pieces than f1(t), but the discontinuity locations {t2,i}S
i=1 are such that: ∆min ≤

t2,i − t1,i ≤ ∆max,∀i ∈ {1, . . . , S}. The relationship between f1(t) and f2(t) is

therefore given by the range of possible disparities [∆min; ∆max] which corresponds

to the plenoptic constraints we consider in our camera sensor network scenario.

Assume that these two signals are independently encoded using Algorithm 5.1

for a given distortion target. The total information necessary to describe each of

them can be divided in three parts: RTree is the number of bits necessary to code

the pruned tree and is equal to the number of nodes in the tree. RLeafJointCoding

is the number of bits necessary to code the joining information and is equal to the

number of leaves in the tree. Finally, RLeaves is the total number of bits necessary

to code the set of polynomial approximations.
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Figure 5.1 presents the prune-join tree decompositions of two piecewise constant

signals having the same set of amplitudes and having their sets of discontinuities

satisfying our plenoptic constraints. Because of these constraints, we can observe

that the structure of the two pruned binary trees has some similarities. Our dis-

tributed compression algorithm uses these similarities in order to transmit only the

necessary information to allow for a complete reconstruction at the decoder. It can

be described as follows (asymmetric encoding):

• Send the full description of signal 1 from encoder 1 using R1 bits. (R1 =

RTree1 + RLeafJointCoding1 + RLeaves1)

• Send only the subtrees of signal 2 having a root node at level J∆ along

with the joining information from encoder 2 using R2 bits. Here, J∆ =

�log2(
T

∆max−∆min+1
)�. Therefore, R2 = (RTree2 −R∆) + RLeafJointCoding2 where

R∆ corresponds to the number of nodes in the pruned tree with a depth smaller

than J∆.
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Figure 5.1: Prune-Join binary tree decomposition of two piecewise constant
signals satisfying our correlation model.

At the decoder, the original position of the subtrees received from encoder 2

can be recovered using the plenoptic constraints (i.e. ∆ ∈ [ αf
zmax

; αf
zmin

]) and the side

information provided by encoder 1. The full tree can then be recovered and the
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second signal can thus be reconstructed using the set of amplitudes received from

encoder 1.

Arbitrary bit-rate allocation

The construction proposed in the previous subsection is asymmetric since encoder

1 has to transmit its whole information, whereas encoder 2 only transmits missing

information from its pruned tree structure and its joining information. In order to

allow for an arbitrary bit-rate allocation between the two encoders, we propose the

following strategy:

• Send all the subtrees having a root node at level J∆ from both encoders, along

with their joining information.

• Send complementary parts of the two upper trees (depth < J∆).

• Send complementary subsets of the polynomial approximations.

The complementary subsets of the polynomial approximations can be chosen in a

fully flexible manner, but has to be static and known originally by the encoders, as

they cannot communicate between themselves. The subsets can typically consist of

sets of complementary bit-planes, complementary spatial regions of the signal, or a

combination of both. For example, it can be decided that encoder 1 only transmits

the most significant bits of its polynomial coefficients where encoder 2 transmits

the complementary least significant bits. This coding approach presents the same

global rate-distortion behaviour than the asymmetric approach, but allows for an

arbitrary bit-rate allocation (see Figure 5.2 and Table 5.1 for simulation results).
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An exact bit conservation principle

The distributed compression approach presented before can be extended to more

than two cameras. We consider the multi-camera scenario presented in Figure 3.3

with N cameras. If we consider that there is no occlusion in these different views,

the knowledge of the discontinuity locations from only two cameras is sufficient to

reconstruct any view in between (see Scenario A in Chapter 4). Assume that we

have a total bit budget of Rtot bits to allocate between the different encoders and

that only the two most distant cameras are transmitting information to the decoder.

In this case, we know that each encoder should first compute a representation of

its input signal using R = RTree + RLeafJointCoding + RLeaves bits such that (RTree −
1
2
R∆) + RLeafJointCoding + 1

2
RLeaves = 1

2
Rtot (symmetric encoding). At the decoder,

the two views can be reconstructed and any new view in between can be interpolated

with a certain fidelity.

Assume now that we want to transmit some information from other cameras

as well. We can show that, as long as the subtrees (depth ≥ J∆) are transmitted

from the two extreme cameras, the remaining information is common to all cameras

and can therefore be obtained from any set of cameras [22]. Here, the subtrees

represent the ”syndrome” of the discontinuity locations. They correspond therefore

to the innovation that cannot be obtained from the discontinuities location of any

other view. Moreover, because of the pixel precision of these locations, using the

two most distant cameras to retrieve them will lead to the best interpolation result

at the other camera locations. Then, since the polynomial pieces are similar for

each view, they can be transmitted from any camera, all this without impairing

reconstruction quality. This result leads to a practical algorithm reaching the exact

bit conservation principle of Chapter 4 (see Figure 5.3 and Table 5.2 for simulation

results).
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5.2.4 Simulation results on 1-D Piecewise polynomial sig-

nals

We have applied our distributed compression approach to different sets of 1-D piece-

wise polynomial signals in order to highlight the arbitrary bit-rate allocation and

the bit conservation principle presented in Section 5.2.3. In Table 5.1, we show

that an independent encoding of the two signals presented in Figure 5.2 requires a

total bit-rate of .304 bpp to achieve a distortion target (SNR) of 26 dB. Using our

distributed compression approach, we can see that a quarter of the total bit-rate

can be saved for an identical reconstruction fidelity. Moreover, this result remains

constant for any choice of bit-rate allocation (SW asym. or SW sym.). Notice that

a similar reduction of bit-rate with an independent encoding strategy would see the

total SNR to drop by about 10 dB.

Table 5.1: Arbitrary bit-rate allocation: simulation results with two 1-D views.

Coding R1 R2 Rtot Dtot (SNR)
Strategy (bpp) (bpp) (bpp) (dB)

Independent .307 .301 .304 26.01
SW asym. 1 .307 .148 .228 26.01
SW asym. 2 .154 .301 .228 26.01

SW sym. .227 .227 .227 26.01

In Table 5.2, we highlight our bit conservation principle, by applying our com-

pression approach to the three views shown in Figure 5.3. We know that the two

extreme views contain enough information to allow the reconstruction of any view

in between with a comparable fidelity. Applying our S-W approach to these two ex-

treme views, a total of 235 bits is necessary to achieve a distortion (SNR) of about

26 dB for the three reconstructed views. A similar global rate-distortion behaviour

holds when part of the information is transmitted from the central view.2 This re-

sult highlights our bit conservation principle. In other words, if we assume that the

2The small variations in the SNR values are only due to different quantization errors.
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Figure 5.2: Join-Prune tree decomposition of two piecewise polynomial signals
with shifted discontinuities for a given distortion target (26 dB).

sensors transmit their compressed data to the central decoder using a multi-access

channel, the fidelity of the reconstructed views only depends on the global capacity

of this channel and not on the number of sensors used.

Table 5.2: An exact bit conservation principle: simulation results with three
1-D signals.

Coding R1 R2 R3 Rtot Dtot (SNR)
Strategy (bits) (bits) (bits) (bits) (dB)

Independent 157 124 157 438 26.13
SW - 2 views 117 0 118 235 25.68
SW - 3 views 82 71 82 235 26.13

5.2.5 Simulation results on scan lines of stereo images

In order to justify the correlation model we used in our distributed compression

scheme, we applied it to a set of scan lines of real multi-view images. We present a

simulation on scan lines of a pair of stereo images (Figure 5.4) using a piecewise linear

model and a symmetric encoding strategy. The reconstructed signals present a good

level of accuracy for the discontinuity locations. However, since the assumption of

lambertian surfaces does not hold for this scene, the polynomial pieces can sometime
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Figure 5.3: Join-Prune tree decomposition of three piecewise polynomial sig-
nals for a given distortion target (26 dB).

be slightly different from one view to the other. A solution to this problem would

be to consider a more sophisticated correlation model for the polynomials.
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Figure 5.4: (left) Stereo images of a real scene where the objects are lo-
cated between a minimum and a maximum distance from the cameras. (right)
Reconstructed scan lines using a piecewise linear model for the binary tree
decomposition and a symmetric distributed compression.
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5.3 Extension to 2D using Quadtree Decomposi-

tions

In this section, we extend our results by showing how the prune-join binary tree

decomposition used in the 1D case has an intuitive extension in 2D. In this case,

the binary tree is replaced with a quadtree and the polynomial model is replaced

with a 2D geometrical model. Our implementation of the quadtree encoder, which

is directly inspired from the prune-join quadtree decomposition algorithm proposed

in [69], is first presented and we then show how our distributed coding scheme can

be adapted in this context. Our simulation results show that our approach still

outperforms the rate-distortion behaviour of independent encoding with real multi-

view data even when the correlation model is not fully respected.

5.3.1 The prune-join quadtree compression algorithm and

the geometrical model used

We give here a sketch of our implementation (Algorithm 5.2) of the quadtree com-

pression approach proposed in [69]. Figure 5.5(b) shows the quadtree structure that

we obtain for the encoding of cameraman at a bit-rate of 0.2 bpp. Notice that the

reconstructed image (Figure 5.5(c)) has a higher PSNR (about 1dB) than what we

obtain using a Jpeg2000 encoder (we use the java implementation of the Jpeg2000

reference software available at: http://jj2000.epfl.ch).

5.3.2 Our distributed encoding approach for stereo pairs

with arbitrary bit-rate allocation

We consider a scene consisting of a set of vertical polygons of linear intensities

that are placed at different depths between the zmin and zmax values (the polygons
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(b) R ate = 0.2 bpp
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(c) P S NR  = 27.3 dB(a) Tile model

Figure 5.5: (a) Our geometrical model consists of two 2D linear regions sepa-
rated by a 1D linear boundary. This boundary is represented with two coeffi-
cients (θ,ρ) and each 2D region of the tile is represented with three coefficients
(c1, c2, c3) such that f(x, y) =

∑3
i=1 ciLi(x, y), where {Li(x, y)}3

i=1 forms an or-
thonormal basis for 2D linear functions over the region covered by f(x, y). (b)
Prune-Join quadtree decomposition of cameraman with a target bit-rate of 0.2
bpp. (c) The PSNR of the reconstructed image is about 1dB better than what
we obtain with a Jpeg2000 encoder.

Algorithm 5.2 Prune-Join quadtree encoding algorithm

1: Segmentation of the signal using a quadtree decomposition up to a maximum
depth Jmax.

2: Approximation of each node of the quadtree by a geometrical model consisting
of two 2D linear pieces separated by a 1D linear boundary (see Figure 5.5(a)).

3: Rate-Distortion curves generation for each node of the quadtree using scalar
quantization and optimal bit allocation on the 8 coefficients (2 coefficients for
the 1D linear boundary and 3 coefficients for each 2D linear piece). Two or three
bits of side information per node are needed to indicate the model used (each
tile can be represented with one or two 2D polynomials that can be constant or
linear).

4: Optimal pruning of the quadtree for the given operating slope −λ according to
the following Lagrangian cost based criterion: Prune the four children of a node
if:∑4

i=1(Dci
+ λRci

) ≥ (Dp + λRp).
5: Joint coding of similar neighbouring leaves (or groups of already joint leaves)

according to the following criterion: Join the two neighbours if:
(Dn1 + λRn1) + (Dn2 + λRn2) ≥ (DnJoint

+ λRnJoint
).

Two bits of side information are needed to indicate the direction of the joint
neighbour (up, down, left or right).

6: Search for the desired R-D operating slope (update λ and go back to 4).
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can be horizontally tilted such that their right and left extremities are at different

depths). Assume now that V1(x, y) and V2(x, y) are two views of this scene obtained

from two consecutive cameras. These two views are therefore 2D piecewise linear

signals defined over [0; T ] × [0; T ]. They can be represented using the same set of

poynomials3 but their 1D linear discontinuities are shifted according to the range of

possible disparities given by the correlation model.

Our distributed coding approach consists in decomposing each view using the

quadtree approach presented in Algorithm 5.2, and then transmitting only partial

information from each view. The total information necessary to describe each view

can be divided in 3 parts: RTree is the number of bits necessary to code the pruned

quadtree and is equal to the number of nodes in the quadtree, RLeafJointCoding is

the number of bits necessary to code the joining information and is equal to the

number of leaves in the quadtree plus two bits of side information for each joined

leave. Finally, RLeaves is the total number of bits necessary to code the geometrical

information of the leaves (2D polynomials, 1D boundaries and model side informa-

tion).

Our approach can be described as follows (asymmetric case):

• Send the full description of V1(x, y) from the first encoder.

• Sent only the subtrees of the quadtree structure of V2(x, y) having a root node

at level J∆ = �log2(
T

∆max−∆min+1
)� along with the joining information and the

coefficients representing the 1D boundaries.

Note that a more flexible allocation of the bit-rates between the encoders can be

easily obtained by letting each of them send complementary subsets of their poly-

nomials in a way similar to the proposed approach in Section 5.2.3. In order to give

3Note that the 2D polynomials can be horizontally contracted or expanded but their represen-
tation remains the same as we normalize them according to their support.



5.3 Extension to 2D using Quadtree Decompositions 94

the correct intuition about this coding approach, we propose a simple example in

Section 5.3.4, where the scene consists of a simple rectangle of constant intensity.

5.3.3 Joint reconstruction at the decoder and the matching

problem

At the decoder, the information obtained from all the encoders is used along with the

known a-priori correlation structure to retrieve all the shifts (disparities) and retrieve

the missing information about the segmentation of the signals in a way similar to the

one in the 1D case (see Section 5.2.3). The missing polynomial coefficients are then

simply copied from the view where they are available. This matching of the different

quadtree structures is straightforward in the case where the correlation between the

views satisfy our piecewise polynomial model exactly, but becomes more involved

in the case of real multi-view images. This is due to the fact that the quadtree

decomposition can encode, in a particular view, a discontinuity that does not appear

in the other views. In certain cases, the decoder can then make errors when matching

the two quadtree structures, which would lead to a poor reconstruction. Moreover,

if the scene does not fully satisfy the lambertianity assumption, and because of the

noise induced by the acquisition system, the quadtree algorithm may, in many cases,

not decompose the different views with the exact same set of polynomials.

In order to fix this problem, we can transmit some extra (redundant) infor-

mation to help the decoder perform a correct matching of the discontinuities of

the different views. When matching the different discontinuities, the algorithm can

check that the extra information about polynomials shows consistency with the ex-

isting polynomials, therefore reducing the risk of selecting a wrong match. The aim

of the matching is to retrieve the most reliable depth map of the scene such that the

polynomial intensities of the different regions can be correctly used to reconstruct
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the views where this information is not available. The depth map is created by

fitting linear pieces between the retrieved depth positions of the matched disconti-

nuities. Each polynomial piece can then easily be shifted and stretched according to

the depth map before being copied from one view to another. The coding strategy

for distributed encoding of real stereo pairs can therefore be modified as follows:

First, both views transmit their full quadtree structures, along with the joining in-

formation, the side information about the geometrical model used for each region,

and the set of 1-D boundaries. Then, the first encoder transmits its full set of poly-

nomials, while the second one only transmits the most significant bits of its constant

coefficients. These most significant bits correspond to the redundant information

that has to be transmitted in order to help the decoder perform a correct matching

of the quadtree structures.

During the reconstruction, each polynomial piece of the first view is matched

with its corresponding region in the other view. This matching is done by scanning

all the possible positions on the second view according to the epipolar constraints

and selecting the one that presents the best characteristics (similar position and ori-

entation of discontinuity and equivalence in the most significant bits of the constant

coefficients). Once this best match is identified, the original region of the first image

is warped and copied to the corresponding region on the other view.

In Section 5.3.5, we present some simulation results based on this modified

algorithm on real multi-view images.

5.3.4 A simple example in an ideal scenario

We consider here a simple example to highlight our quadtree based distributed

coding technique. Figure 5.6 shows three views of a scene consisting of a single

rectangle of constant intensity placed at a certain depth (in front of a constant
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background) such that its displacement from one view to the next one is equal

to four pixels. The figure also shows the structure of the pruned quadtree (green

dashed lines) along with the joining information (red lines). Using our standard

prune-join quadtree encoder, we can see that each of these views can be losslessly

encoded using a total of 114 bits. The pruned quadtree represented using its full

first three levels, therefore consists of 40 +41 +42 = 21 nodes and is represented with

21 bits. The joining information requires one bit per leaf to indicate that the leaf is

joined to the next one, and two more bits to indicate the direction of the next leaf.

The total number of bits necessary to encode the joining information is therefore

equal to 16 + 13 × 2 = 42 bits. Finally, 51 bits are used to encode the geometrical

representations (16 bits for the 1-D boundaries, 32 bits for the polynomials and 3

bits for the model side information).

We assume in this example that the minimum and maximum disparities are

given by: {∆min; ∆max} = {1; 8}. This means that J∆ = 2 and that the first

two level of the quadtree structure (5 bits) need to be transmitted from only one

encoder. In Table 5.3, we show different bit allocation examples that lead to a

perfect reconstruction of the three views. These examples highlight the arbitrary bit

allocation and the bit conservation principle of our coding approach. For example,

the last line of Table 5.3 presents an example of bit allocation between the three

encoders, where each encoder 1 and 3 transmits 77 bits. These are used to represent

part of their quadtree structures (starting at level J∆ = 2) (16 bits), their joining

information (42 bits), their side information about the geometrical models (3 bits)

and their 1-D boundaries (16 bits). The encoder 2 transmits a total of 37 bits

corresponding to the first two level of the quadtree (5 bits) and the polynomial

coefficients (32 bits).
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Figure 5.6: Three 32 × 32 views of a very simple synthetic scene consisting of
one rectangle at a certain depth. The quadtree decomposition uses a total of
114 bits to encode each view (21 bits for the pruned quadtree, 42 bits for the
joining information and 51 bits for the geometrical representations).

Table 5.3: Numerical results for the lossless encoding of the simple views
shown in Figure 5.6

Coding R1 R2 R3 Rtot

Strategy (bits) (bits) (bits) (bits)
Independent 114 114 114 342

SW asym. - 2 views 114 - 77 191
SW sym.- 2 views 95 - 96 191

SW asym. - 3 views 77 37 77 191
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5.3.5 Simulation results on real 2-D multi-view images

We present some simulation results obtained on the lobby multi-view sequence from

Shum et al. [71]. Figure 5.7 shows the result of an asymmetric encoding of a stereo

pair where the first view is encoded at 0.32 bpp, whereas the second view is encoded

at a significantly lower bit-rate and some information about its polynomial coeffi-

cients is discarded. After the matching, the missing coefficients can be retrieved

from the first view, which improves the quality of the reconstructed view.

Figures 5.8 and 5.9 show results obtained on a sequence of six consecutive views,

where the first and the sixth views are fully transmitted and only the quadtree struc-

ture is transmitted for the other four views. Figure 5.8 shows that our approach

outperforms an independent encoding of the six views for all the range of considered

bit-rates. In Figures 5.10, 5.11 and 5.12, the difference in the reconstruction qual-

ity between the independent and distributed approach is highlighted. The images

correspond to the 5th view of the lobby sequence.

Since the different views of the scene do not fully satisfy our correlation model,

the reconstruction quality of any view for which the original polynomial coefficients

have not been transmitted is limited, even when the quality of the other views is

increased. This residual error is typically due to the noise, the non-lambertianity

of the scene, or the presence of non-flat surfaces. To some extend, the problem

of the noise is less problematic for the reconstruction algorithm than the possible

geometrical discrepancies between the scene and the correlation model. This is

due to the fact that the quadtree decomposition algorithm is naturally robust to

the presence of noise and can actually be used as an efficient image denoiser as

demonstrated in [70].

Figures 5.13, 5.14, 5.15, 5.16 and 5.17 show other simulation results obtained

on different set of multi-view images. Again, the distributed approach outperforms
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the independent compression algorithm.

R econstructed Image 1

R  = 0.32 bpp - P snr = 34.1 dB

R econstructed Image 2
     (J oint decoding)

P snr = 28.3 dB

R econstructed Image 2 (Indep)

R  = 0.06 bpp - P snr = 27.3 dB

Figure 5.7: Distributed stereo encoding of two views. View 1 (left) is encoded
at 0.32 bpp and fully transmitted. View 2 (right) is encoded at a much lower
bit-rate and some of its polynomial coefficients are discarded. Joint decoding
of view 2 (center) shows an improvement of the reconstruction quality of about
1dB compared to an independent encoding.

5.4 Conclusions

In this chapter, we have shown how our distributed compression approach proposed

in Chapter 3 can be used with a real image coder based on tree structured decompo-

sitions. We have shown that our approach allows for an arbitrary bit-rate allocation,

and we have highlighted an exact bit conservation principle. Our approach has been

shown to outperform independent encoding of real multi-view images even when our

piecewise polynomial correlation model is not fully respected.
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Figure 5.8: Distributed vs. independent encoding of six views. Results ob-
tained with a Jpeg2000 encoder are also shown.
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view 1

R  = 0.221 bpp - P snr = 32.67 dB

view 6

R  = 0.218 bpp - P snr = 32.29 dB

view 2

R  = 0.032 bpp - P snr = 29.34 dB

view 3

R  = 0.033 bpp - P snr = 30.49 dB

view 4

R  = 0.035 bpp - P snr = 29.96 dB

view 5

R  = 0.034 bpp - P snr = 30.02 dB

Figure 5.9: The six images correspond to a distributed encoding with an
average bit-rate of 0.08 bpp. Images 1 and 6 are encoded indepedently while
images 2 to 5 are encoded using our distributed compression approach.
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View 5 − Independent encoding (Quadtree)

P S NR  = 28.24 dB

View 5 − Distributed encoding

P S NR  = 30.02 dBP S NR  = 27.18 dB

View 5 − Independent encoding (J peg2000)

Figure 5.10: Reconstruction of the 5th view. Independent encoding at 0.08 bpp
with Jpeg2000 (left). Independent encoding at 0.08 bpp with the prune-join
quadtree coder (center). Our distributed encoding approach with an average
of 0.08 bpp (right).

Abs. error − Independent encoding (Quadtree)

Error Variance = 82.1

Abs. error − Distributed encoding

Error Variance = 54.2

Abs. error − Independent encoding (J peg2000)

Error Variance = 104.7

Figure 5.11: Variance of the errors of reconstruction for the 5th view encoded
at 0.08 bpp.
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R egion of View 5 Independent encoding Distributed encoding

Figure 5.12: Visual quality of a specific region of the 5
th view at the decoder.

Original quality (left). Independent encoding at 0.08 bpp (center). Distributed
encoding with an average of 0.08 bpp (right).

view 1

R ate = 0.10 bpp
P S NR  = 27.4 dB

view 2

R ate = 0.10 bpp
P S NR  = 27.4 dB

view 3

R ate = 0.10 bpp
P S NR  = 27.4 dB

view 4

R ate = 0.10 bpp
P S NR  = 27.3 dB

view 5

R ate = 0.10 bpp
P S NR  = 27.5 dB

view 6

R ate = 0.10 bpp
P S NR  = 27.4 dB

Figure 5.13: Independent encoding of six views at 0.1 bpp.
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view 1

R ate = 0.22 bpp
P S NR  = 29.9 dB

view 6

R ate = 0.22 bpp
P S NR  = 29.9 dB

view 2

R ate = 0.04 bpp
P S NR  = 28.7 dB

view 3

R ate = 0.04 bpp
P S NR  = 28.7 dB

view 4

R ate = 0.04 bpp
P S NR  = 28.9 dB

view 5

R ate = 0.04 bpp
P S NR  = 29.0 dB

Figure 5.14: Distributed encoding of the six views with an average bit-rate of
0.1 bpp. Images 1 and 6 are encoded independently while images 2 to 5 are
encoded using our distributed compression approach.
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View 5 − Independent encoding (Quadtree)

P S NR  = 27.5 dB

View 5 − Distributed encoding

P S NR  = 29.0 dBP S NR  = 26.3 dB

View 5 − Independent encoding (J peg2000)

Figure 5.15: Reconstruction of the 5th view. Independent encoding at 0.1 bpp
with Jpeg2000 (left). Independent encoding at 0.1 bpp with the prune-join
quadtree coder (center). Our distributed encoding approach with an average
of 0.1 bpp (right).

Abs. Error − Independent encoding (Quadtree)

Error Variance = 115.1

Abs. Error − Distributed encoding

Error Variance = 82.3

Abs. Error − Independent encoding (J peg2000)

Error Variance = 153.6

Figure 5.16: Variance of the errors of reconstruction for the 5th view encoded
at 0.1 bpp.
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Figure 5.17: Distributed vs. independent encoding of six views. Results
obtained with a Jpeg2000 encoder are also shown.
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Chapter 6

Distributed Coding of Binary

Sources

6.1 Introduction

Most of the distributed source coding approaches introduced in Chapter 2 present

very good performances, but mainly focus on the asymmetric scenario, where one of

the two sources is transmitted perfectly to the receiver. For practical applications,

however, it might be necessary to have more flexibility in the repartition of the

bit-rates between the encoders.

In [53], Pradhan and Ramchandran proposed a technique based on their original

work (DISCUS [52]) in order to achieve any point of the Slepian-Wolf achievable rate

region. Their method creates two sub-codes of a single channel code by splitting the

original generator matrix in two. Then, each encoder uses one of these sub-codes

to encode its data. Several practical approaches inspired from these results have

recently been proposed in [11,64,74].

In this chapter, we propose our own constructive approach (inspired from our

coding approach for multi-view images presented in Chapter 3) that allows for a
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flexible repartition of the transmission rates between the encoders. Our technique

uses a single linear channel code that can be non-systematic [59]. The performance

of our approach depends only on the quality of the channel code used. As presented

in Figure 2.3, the two correlated sources can be seen respectively as the input and

the output of a certain channel used to model their correlation. We refer to this

virtual channel as the correlation channel of the two sources. If we can find a code

that achieve the capacity of this correlation channel, then our distributed source

coding approach can reach any point of the Slepian-Wolf bound and is therefore

optimal.

Notice that similar approaches have recently been proposed in [11, 64, 74, 75].

Although our own approach is relatively similar in spirit to the one in [74], our

scheme can also be used with non-systematic codes, whereas their technique can only

be used with systematic codes. Note that good capacity achieving LDPC codes are

usually non-systematic. In [64] and [11], iterative decoding procedures are proposed

in order to decode the two correlated blocks simultaneously. Their main strategy

is to apply the standard sum-product algorithm (message-passing decoding [60]) on

an extended factor graph, corresponding to two standard LDPC decoders connected

through correlation nodes modeling the joint distribution between the sources. In

Section 6.3, we show that our approach does not require the use of such extended

factor graphs since our methods only needs to decode one single block (the difference

pattern). A standard iterative decoding scheme similar to the one proposed in [38]

can therefore be used in our case. Our approach can thus be seen as an intuitive

extension of the asymmetric approach proposed in [38] in order to achieve the entire

Slepian-Wolf achievable rate region.
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6.2 A Simple Example with the Hamming (7, 4)

Code

By looking at our coding strategy for multi-view images illustrated in Figure 3.4, we

can see that the minimum information required at the decoder from both sources is

the last Rmin bits. This information corresponds to the uncertainty of an object’s

position on an image given its position on the other image. It is therefore related

to the conditional entropy of the position and plays the same role as the syndrome

in the general case of binary sources. An intuitive generalization of this coding

strategy for correlated binary sources would consist in sending the syndrome from

each source and then, only complementary subsets of their first I(x, y) bits.

Assume x and y are two uniformly distributed 7-bit binary random variables

obtained from two correlated sources such that the Hamming distance between them

cannot exceed one (dH(x, y) ≤ 1). We consider the Hamming (7, 4) code C with the

following parity check matrix:

H =




0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1


 . (6.1)

This code C is known to have a minimum distance of three and can therefore be

used as a channel code able to correct up to one erroneous bit per 7-bit codeword.

Assume that the x and y belong to cosets i and j respectively. The difference

between x and y is given by the error pattern ek = x⊕ y (x and y differs at position

k), where ⊕ corresponds to the binary addition. We know that the syndromes of x

and y are given by sx = HxT = HeT
i and sy = HyT = HeT

j respectively, where ei
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and ej are the error patterns of the cosets i and j respectively. We can observe that:

sk = HeT
k = H(x ⊕ y)T = HxT ⊕ HyT = sx ⊕ sy. (6.2)

This result shows that knowing only the syndromes of x and y, we can retrieve

the syndrome of their difference pattern and, therefore, the bit position where they

differ. We assume the following block representations for x, y and H:

x = [xa xb] y = [ya yb] H = [Ha Hb] (6.3)

where the first and the second blocks are of length four and three respectively.

The coding approach proposed in Figure 6.1 consists in sending [x1 x2 sT
x ] from

encoder 1 and [y3 y4 sT
y ] from encoder 2.

Encoder 1
Encoder 2

x1 x2 x3 x4

xa sx

y1 y2 y3 y4

ya sy

Figure 6.1: Example of distributed source coding of two correlated 7-bit blocks
using the Hamming (7, 4) code. A total of 10 bits are sent to the receiver (gray
squares).

At the decoder, the syndrome of the difference pattern between x and y is ob-

tained by computing the sum of the two syndromes sx⊕sy. Using the corresponding

error pattern (recovering the difference position), the missing bits of xa and ya can

easily be retrieved. Finally, xb and yb are obtained as: xT
b = H−1

b (sx ⊕ Hax
T
a ) and
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yT
b = H−1

b (sy ⊕ Hay
T
a ) where the inverse matrix of Hb is given by:

H−1
b =




1 1 1

0 1 1

1 0 1




−1

=




1 1 0

1 0 1

1 1 1


 . (6.4)

This coding scheme is able to transmit x and y to the decoder using any of the

following pair of rates: (R1, R2) ∈ {(3, 7); (4, 6); (5, 5); (6, 4); (7, 3)}, and provides

therefore more flexibility than the original asymmetric approach. Figure 6.2 high-

lights a practical example for the symmetric encoding of a given pair (x, y). In the

next section, we propose a formal extension in order to use this intuitive approach

with any binary linear code.

6.3 Constructive Approach using any Linear

Channel Code

Assume we have an (n, k) binary linear code C with parity check matrix H in its

reduced form such that: H = [H1 H2], where H2 is a non-singular square matrix.

Notice that if the code is systematic (i.e., the generator matrix is of the form:

G = [Ik P]), then H can be given by: H = [−PT In−k]. In this case, H2 is

simply the identity matrix.

We know that such a code is capable of correcting 2n−k different error patterns.

In other words, this code C generates 2n−k cosets each containing 2k codewords of

length n. Let xi be a binary block of length n represented as: xi = [ai bi qi],

where ai, bi and qi are of length k1, k2 and n − k respectively (k1 and k2 are chosen

such that their sum is equal to k and determine how the total bit-rate will be

distributed between the two encoders). The syndrome of xi is defined as: si =
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(1:2) = (3:4) =

(a)

(b)

(c)

(d)

(e)

(f )

5 bits 5 bits

Encoder 1 Encoder 2

Figure 6.2: Practical example of symmetric encoding of two 7-bit blocks x
and y. (a) x and y are uniformly distributed and they are correlated such
that their Hamming distance is at most one. (b) The two realisations for x
and y. (c) The encoders transmit complementary subsets of the first 4 bits of
their blocks along with the syndromes. (d) The decoder retrieves the error
pattern by adding the two syndromes. (e) The missing bits from xa and ya are
recovered. Then, xb is computed and y is simply obtained by adding the error
pattern to x. (f) x and y are perfectly recovered by the decoder for a total
transmission of 10 bits that corresponds to H(x, y). The coding is therefore
optimal.
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H1[ai bi]
T ⊕H2q

T
i . We know that xi belongs to the coset number k, if its syndrome

is given by: si = HxT
i = HeT

k (ek is the coset leader of coset number k, i.e., the

codeword with minimum weight).

Consider now two n-bit blocks x1 and x2, correlated such that their Hamming

distance dH(x1, x2) is at most m. Assume that the channel code C is able to correct

up to M ≥ m errors. We know that the following relation must hold:

2n−k ≥
M∑

j=0

(
n

j

)
(sphere packing bound). (6.5)

Our distributed coding strategy consists in sending [a1 sT
1 ] and [b2 sT

2 ] from the

encoders 1 and 2 respectively. The transmission bit-rates are therefore given by:

R1 = n− k2 bits and R2 = n− k1 bits, corresponding to a total of R1 +R2 = 2n− k

bits.

At the receiver, we let ed correspond to the “difference pattern” between x1 and

x2 as: ed = x1 ⊕ x2. We know that the syndrome of ed is given by sd = HeT
d =

H(xT
1 ⊕ xT

2 ) = s1 ⊕ s2. We can now retrieve the error pattern ed corresponding

to this syndrome sd using one of the following techniques: If the code is not too

large, a simple lookup table storing the corresponding pattern error for each possible

syndrome can be used. For larger code, an iterative method has to be used. Using

an iterative decoding scheme such as the one proposed in [38], we can recover ed

as the closest codeword to the all zero sequence satisfying the syndrome sd. Notice

that this iterative decoding approach is particularly suited for LDPC codes which

are amongst the best block codes known for memoryless channels.

Knowing the difference pattern ed, the missing bits of the k first bits of x1 and

x2 are easily obtained as: [a2 b1] = [a1 b2] ⊕ ek
d, where ek

d corresponds to the k

first bits of ed.

The syndrome of x1 is given by: s1 = H1[a1 b1]
T ⊕H2q

T
1 . Let z1 be defined as:
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z1 = s1 ⊕ H1[a1 b1]
T . We can now retrieve q1 by computing: qT

1 = H−1
2 z1. Notice

that H−1
2 can be obtained using Gaussian Elimination and that, if C is systematic,

we can have H2 = In−k and q1 = zT
1 . Knowing q1, we have now completely recovered

x1 and we can easily obtain x2 as x2 = x1 ⊕ ed.

In terms of performance, we can say that the ability of our distributed source

coding technique to work close to the Slepian-Wolf bound only depends on the

quality of the channel code used. More specifically, if x1 and x2 are uniformly

distributed and have a joint distribution p(x1, x2), then the closer the channel code

C gets to the capacity of the virtual binary channel defined by p(x2|x1), the closer

our system gets to the Slepian-Wolf bound. The design of capacity achieving channel

codes, however, is beyond the scope of this thesis.

6.4 Generalization to more than two Sources

Our approach presented in the previous section can be extended to any number of

correlated sources. In particular, consider N correlated binary sources producing

binary blocks of length n (x1, x2, . . . , xN), such that the Hamming distance of two

consecutive sequences is at most m (i.e., dH(xi, xi+1) ≤ m for i = 1, . . . , N −1). Our

coding strategy proposed in Section 6.3 can be extended to this N sources scenario

(see Figure 6.3) through the following proposition:

Proposition 6.1. Assume x1, . . . , xN are N binary sequences of length n correlated

such that the Hamming distance between two consecutive sequences is at most m

(i.e., dH(xi, xi+1) ≤ m for i = 1, . . . , N − 1). Consider an (n, k) linear channel

code C that can correct perfectly up to M ≥ m errors per n-bit block. The following

distributed coding strategy uses a total of n + (N − 1)(n − k) bits to encode the N

sequences and is sufficient to allow for a perfect reconstruction of all of them at the

decoder:
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• From each encoder, send the syndrome si of the corresponding block xi.

• Send only complementary subsets of their first k bits such that each bit position

is sent from only one encoder.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

syndromes (n-k bits)

X1

X2

X3

XL

k first bits

Figure 6.3: Our encoding strategy for N correlated binary sources. Each
encoder sends the syndrome and a subset of the first k bits of their input
block. The subsets are chosen such that each bit position is sent from only
one source.

At the decoder, the N − 1 difference patterns can be recovered from the N

syndromes, allowing then to complete the first k bits of each sequence. The decoding

method used here is similar to the one presented in the previous section. The

difference pattern of each pair of consecutive blocks is retrieved by running the

standard iterative decoding method with the sum of the two syndromes. Knowing

all the difference patterns and having received complementary subsets of the first k

bits, the first k bits of each block can then be recovered. Finally, each original block

xi := [ai qi] (i = 1, . . . , N) is completed by recovering its last n − k bits as:

qT
i = H−1

2 (si ⊕ H1a
T
i ). (6.6)

This coding strategy is in some cases optimal. For instance, if the N sources
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(x1, x2, . . . , xN) are uniformly distributed, the Hamming distance of two consecutive

sequences is at most m and the sequences x1, x2, . . . , xN form a Markov chain; then,

if the code C is such that M = m and Equation (6.5) is satisfied with equality (i.e.,

C is perfect), we can write:

H(x1, x2, . . . , xN) = H(x1) +
N∑

i=2

H(xi|xi−1) (6.7)

= n + (N − 1)(n − k). (6.8)

Our scheme, as indicated in Proposition 6.1, uses n + (N − 1)(n − k) bits and is

therefore optimal in this case.

6.5 Conclusions

In this Chapter, we have proposed an intuitive distributed source coding technique

for general correlated binary sources inspired from our coding approach for multi-

view images presented in Chapter 3. Our approach can use any linear code (sys-

tematic or not), and allows for a flexible bit-allocation between the two encoders.

It can therefore achieve any point of the Slepian-Wolf region. We have also shown

that this method can be easily extended to the case of more than two sources.
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Chapter 7

Conclusions

7.1 Summary

Distributed compression of the plenoptic function

We have proposed a distributed compression strategy for simple synthetic scenes that

can truly exploit the geometrical correlation available in multi-view images. We have

introduced the plenoptic function which can be used to represent the geometrical

dependencies between the different views. Then, we have proposed a coding scheme

that can be used to efficiently encode the positions of the objects on the different

views in a fully distributed manner. Finally, we have shown that our approach can

be made resilient to the problem of visual occlusions and have presented simulation

results.

Fundamental trade-offs in camera sensor networks

We have studied some fundamental trade-offs in camera sensor networks. In particu-

lar, we have shown that if the observed scene is of finite rate of innovation (FRI) and

can be represented exactly with polygons of polynomial intensities, an exact sam-
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pling strategy can be devised. Moreover, we have derived rate-distortion bounds for

the reconstruction of the views at the decoder and we have shown that an exact

bit-conservation principle exists. In other words, the quality of the reconstructed

views only depends on the total transmission bit-rate and not on the number of

sensors involved in the encoding process.

Distributed compression of real multi-view images

We have proposed a practical algorithm for distributed compression of real multi-

view images. We have presented the piecewise polynomial model that we use to

represent the different views and have shown that a tree-based coding approach

recently proposed in the literature can be extended to take advantage of our dis-

tributed coding scheme and is optimal in idealized scenarios. We have proposed

a detailed description of our distributed algorithm for the 1-D case using binary

tree segmentation, and then have shown how to extend it to the 2-D case using a

quadtree approach. Finally, we have presented some simulation results obtained on

real multi-view images.

Distributed source coding of binary sources

We have proposed a distributed source coding approach for correlated binary sources

directly inspired from the scheme presented for the distributed encoding of multi-

view data. In particular, we have shown that this intuitive approach can cover the

entire Slepian-Wolf achievable rate region, and have presented a simple example to

give the correct intuition.
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7.2 Future Research

Extension to other multi-camera configurations

In our work, we have focused on linear camera arrays. This simple scenario has

allowed us to precisely derive the correlation structure between the different views

and obtain exact results for the problem of distributed compression of this particular

multi-view information. In future works, it would be of interest to consider other

geometrical multi-camera set-ups such as cameras on a circle, on a cube, on a sphere

or in any other configuration. For each of these configurations, the structure of the

acquired data can be estimated by observing the corresponding constraints imposed

on the plenoptic function. The distributed compression approach that we proposed

in this thesis could then be adapted to this new data structure.

Better modelling of the prediction error

The piecewise-polynomial-based correlation model that we proposed in our work has

the main advantage of being relatively simple but can sometimes fail to accurately

represent the real correlation in multi-view data. In particular, the lambertianity

and occlusion-free assumptions are rarely satisfied in real scenarios. In future work,

the correlation model should therefore be improved to consider a more realistic

structure. For example, the polynomial intensity of an object on different views

can be slightly different due to reflections. These differences could be modelled to

improve the global correlation structure.

Distributed video compression

The distributed multi-view coding scheme presented in our work focuses on the

compression of static scenes. This coding approach could be extended to perform
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distributed video compression of single video sources (see Section 2.3.2 for a descrip-

tion of existing DVC approaches). The multi-view correlation could be replaced by

a inter-frame correlation model, where the constraints on the disparities are replaced

by constraints on the motion of the objects (the min and max disparities in static

multi-view could typically be replaced by min and max speeds in video).

Distributed multi-view video compression

The distributed static multi-view coding approach and the distributed video coding

approach could lead to the development of a distributed multi-view video coding

approach. The analysis of the global correlation structure is more involved in this

context but could be estimated using some constraints on the position of the cameras,

the geometry of the scene and the motion of the objects.
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Appendix A

Computation of the

Rate-Distortion Bounds

In this Appendix, we provide a more detailed derivation of the different R-D bounds

presented in Chapter 4. The piecewise polynomial model that we use is shown in

Figure A.1. It corresponds to L separated polynomial pieces of maximum degree

Q. The ith piece is represented with the polynomial pi(t) and is defined over the

support Ii = [t2i−1, t2i] of width Si.

A.1 Independent Encoding1

The error relative to each quantized discontinuity can be upper bounded by:

e2
ti
≤ A2|ti − t̂i| (A.1)

where t̂i is the quantized version of ti using Rti bits. The quantization error is at

most one half of the quantization step, which leads to the following upper bound

1Notice that the derivation proposed in this section is inspired from the work in [55].
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A

T0 t1 t2 t3 t4 t2Lt2L-1

S1 S2 SL

p1(t)

p2(t)

pL(t)

t

Figure A.1: Piecewise polynomial signal with L separated pieces of maximum
degree Q each. The signal is defined on the suport [0, T ] and is bounded in
amplitude in [0, A].

for the distortion associated with the encoding of this discontinuity:

Dti(Rti) ≤
1

2
A2T2−Rti . (A.2)

Notice that we consider a strict upper bound here (worst case scenario) and there-

fore do not use the fact that the quantization error is uniformly distributed in

[−T2−(Rti+1); T2−(Rti+1)]. The different polynomial pieces are encoded using the

Legendre expansion. We consider here the ith piece defined over Ii = [t2i−1, t2i]: (we

deliberately omit the i index for simplicity of notations in the following)

p(t) =

Q∑
n=0

pnt
n =

Q∑
n=0

2n + 1

S
lnLI(n; t) , (A.3)

where LI(n; t) is the Legendre polynomial of degree n over the support I, and {ln}Q
n=0

are the Q+1 Legendre coefficients to be quantized. Notice that due to the properties
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of the Legendre expansion, we have:

|ln| ≤ 1

2
AS (A.4)

for all n. We can thus express the squared error as:

e2 =

Q∑
n=0

(2n + 1

S

)2
∫ t2i

t2i−1

L2
I(n; t)dt

= S−1

Q∑
n=0

(2n + 1)(ln − l̂n)2 , (A.5)

where l̂n is the quantized version of ln using bn bits (the quantization step is of size

AS2−bn , and
∑Q

n=0 bn = Rp). The error can therefore be bounded as:

e2 =
1

4
A2S

Q∑
n=0

(2n + 1)2−2bn . (A.6)

For the sake of simplicity, we assume that the same number of bits (bn = Rp

Q+1
bits)

is allocated to each coefficient, and that the support is maximal (S = T ). This leads

to the following upper bound for the distortion associated with the encoding of this

piece:

Dp(Rp) ≤ 1

4
A2T (Q + 1)2 2

−2
Q+1

Rp . (A.7)

The global distortion for the encoded signal can be upper bounded by:

D ≤
L∑

i=1

Dpi
(Rpi

) +
2L∑
i=1

Dti(Rti) . (A.8)

The optimal bit allocation for this piecewise polynomial function is impractical to

derive because of the dependences on all the polynomial parameters across the whole

function. We therefore derive a coarser but more general upper bound by assuming

the following simplifications:
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• all polynomial pieces are considered as being of degree Q.

• the same number of bits Rp is assigned to each polynomial piece.

• all discontinuities are encoded at the same rate Rt.

The R-D bound becomes:

D(R) ≤ 1

2
A2TL(2−Rt + (Q + 1)2 2

−2
Q+1

Rp) , (A.9)

where the total rate R corresponds to: R = L(2Rt +Rp). The optimal bit allocation

between Rp and Rt can be obtained by computing the derivative of this R-D bound,

and is given by:

Rp =
Q + 1

Q + 5

R

L
+ G , (A.10)

Rt =
2

Q + 5

R

L
− 1

2
G , (A.11)

where G = 2(log(Q + 1) + 2)
(Q + 1

Q + 5

)
. (A.12)

The global R-D bound is finally given by:

D(R) ≤ 1

2
A2LT ((Q + 1)2 2

−2G
Q+1 + 2

1
2
G)︸ ︷︷ ︸

c0

2
−2

(Q+5)L
R . (A.13)

A.2 Distributed Encoding - Scenario A

In this scenario, the total number of bits that needs to be transmitted is given by:

Rtot = L(Rp + 2Rt + 2RtSW
) , (A.14)

where RtSW
= Rt − γs, and γs = 
log2(

T
∆max

)�. We know that distributed encoding

using Rtot = L(Rp + 4Rt − 2γs) would lead to an average distortion similar to an
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independent encoding of one signal using R = L(Rp + 2Rt) bits. Using the optimal

bit allocation computed in the previous section, we obtain:

Rtot =
Q + 9

Q + 5
R − L(2γs + G) , (A.15)

⇒ R = (Rtot + L(2γs + G))
Q + 5

Q + 9
. (A.16)

The global average R-D bound is therefore given by:

DA(Rtot) ≤ c02
−2(2γs+G)

Q+9︸ ︷︷ ︸
c1

2
−2

L(Q+9)
Rtot . (A.17)

A.3 Distributed Encoding - Scenario B

The total number of bits that needs to be transmitted from the N ≥ L + 1 sensors

in this scenario is given by:

Rtot = L(Rp + 2(L + 1)Rt) . (A.18)

Using the optimal bit allocation, we obtain:

Rtot =
4L + Q + 5

Q + 5
R − L2G , (A.19)

⇒ R = (Rtot + L2G)
Q + 5

4L + Q + 5
. (A.20)

The global average R-D bound is therefore given by:

DB(Rtot) ≤ c02
−2LG

4L+Q+5︸ ︷︷ ︸
c2

2
−2

L(4L+Q+5)
Rtot . (A.21)
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A.4 Distributed Encoding - Scenario C

In this scenario, the total number of bits is given by:

Rtot = L((L + Omax + 1)2Rt + (Omax + 1)Rp) , (A.22)

where Omax is the maximum number of occluded views for any given object of the

scene. Following the optimal bit allocation, we obtain:

Rtot =
4L + (Omax + 1)(Q + 5)

Q + 5
R + LGOmax , (A.23)

⇒ R = (Rtot − LGOmax)
Q + 5

4L + (Omax + 1)(Q + 5)
. (A.24)

The global average R-D bound is therefore given by:

DC(Rtot) ≤ c02
−2OmaxG

4L+(Omax+1)(Q+5)︸ ︷︷ ︸
c3

2
−2

4L2+L(Q+5)(Omax+1)
Rtot . (A.25)


