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Abstract

Light Field Microscopy (LFM) is a 3D imaging technique that captures spatial and angular

information from light in a single snapshot. LFM is an appealing technique for applica-

tions in biological imaging due to its relatively simple implementation and fast 3D imaging

speed [1]. For instance, LFM can help to understand how neurons process information,

as shown for functional neuronal calcium imaging [2]. However, traditional volume recon-

struction approaches for LFM suffer from low lateral resolution, high computational cost,

and reconstruction artifacts near the native object plane. Therefore, in this thesis, we

propose computational methods to improve the reconstruction performance of 3D imaging

for LFM with applications to imaging neural activity.

First, we study the image formation process and propose methods for discretization

and simplification of the LF system. Typical approaches for discretization are performed

by computing the discrete impulse response at different input locations defined by a sam-

pling grid. Unlike conventional methods, we propose an approach that uses shift-invariant

subspaces to generalize the discretization framework used in LFM. Our approach allows

the selection of diverse sampling kernels and sampling intervals. Furthermore, the typical

discretization method is a particular case of our formulation.

Moreover, we propose a description of the system based on filter banks that fit the

physics of the system. The periodic-shift invariant property per depth guarantees that

the system can be accurately described by using filter banks. This description leads to a

novel method to reduce the computational time using singular value decomposition (SVD).

Our simplification method capitalizes on the inherent low-rank behaviour of the system.

Furthermore, we propose rearranging our filter-bank model into a linear convolution neural

network (CNN) that allows more convenient implementation using existing deep-learning
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software.

Then, we study the problem of 3D reconstruction from single light-field images.

We propose the shift-invariant-subspace assumption as a prior for volume reconstruction

under ideal conditions. We experimentally show that artifact-free reconstruction (aliasing-

free) is achievable under these settings. Furthermore, the tools developed to study the

forward model are exploited to design a reconstruction algorithm based on ADMM that

allows artifact-free 3D reconstruction for real data. Contrary to traditional approaches,

our method includes additional priors for reconstruction without dramatically increasing

the computational complexity. We extensively evaluate our approach on synthetic and real

data and show that our approach performs better than conventional model-based strategies

in computational time, image quality, and artifact reduction.

Finally, we exploit deep-learning techniques for reconstruction. Specifically, we pro-

pose to use two-photon imaging to enhance the performance of LFM when imaging neurons

in brain tissues. The architecture of our network is derived from a sparsity-based algorithm

for reconstruction named Iterative Shrinkage and Thresholding Algorithm (ISTA). Fur-

thermore, we propose a semi-supervised training based on Generative Adversarial Neural

Networks (GANs) that exploits the knowledge of the forward model to achieve remarkable

reconstruction quality. We propose efficient architectures to compute the forward model

using linear CNNs. This description allows fast computation of the forward model and

complements our reconstruction approach. Our method is tested under adverse conditions:

lack of training data, background noise, and non-transparent samples. We experimentally

show that our method performs better than model-based reconstruction strategies and

typical neural networks for imaging neuronal activity in mammalian brain tissue. Our

approach enjoys both the robustness of the model-based methods and the reconstruction

speed of deep learning.
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Notations

Aφ: Analysis operator with φ[·] as template

BH: Elementary matrix that circularly repeated forms Hi

g(x): Continuous LF output signal

f(x, z): Continuous volumetric input signal

Hδ,H: Conventional LFM measurement matrix

∆x1: Lateral Sampling interval for f(x, z)

∆x2: Sampling interval for g(x)

∆z: Axial sampling interval for f(x, z)

g[k]: Discrete LF output signal

f [k, l], fk,l: Discretized volumetric input signal

φ̃(x, z): Dual basis function of φ(x, z)

h(x,p): Impulse response of H

Hi: LFM measurement matrix for the i -th depth

Hd: LFM operator

H: LFM operator with continuous output

T : Microlens Pitch

N : Number of pixels under each microlens

d(x): Output sampling filter

Si: Operator that extracts the depth i
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φ(x, z): Synthesis filter

Sφ: Synthesis operator with φ[·] as template

s: Upsampling factor

Um: Upsampling matrix of factor m

f : Vectorized input volume

g: Vectorized light field
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Chapter 1

Introduction

1.1 Motivation and Objectives

U
NDERSTANDING how the brain process information is a critical goal of neuro-

science. This ambitious task poses multiple challenges for scientists in many fields.

In particular, understanding neuron communication mechanisms requires imaging the dy-

namics of large populations of neurons at high speed and spatial resolution over large areas.

Optical technology needed for this task has to simultaneously capture every neuron in the

3D space through highly scattering brain tissue.

Even though great efforts have been made to push forward fast optical techniques

for 3D imaging, conventional modalities are still insufficient to monitor populations of

neurons in the mammalian brain. For instance, wide-field microscopy increases photon

generation rates and imaging speeds; however, it produces background interference since

out-of-focus light appears in the in-focus image, reducing contrast. Two-photon microscopy

explores near-infrared illumination, which implies deep tissue penetration, and reduced

scattering. However, it requires sequential acquisition (point scanning), which limits the

imaging speed. Multiple alternatives have been proposed to increase acquisition speed

such as engineered beam trajectories [3–6], spatial or temporal multiplexing of multiple

foci [7], [8–14], as well as sculpting fluorescence excitation into an extended point spread

function [15–18], either scanned or targeted statically onto neurons of interest. However,

these alternatives usually imply constrained sample geometries or are not well-suited for

scattering samples.

LFM is an attractive technique for monitoring 3D neural activity with a fast frame
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rate. LF microscopes record the light intensity together with the location and direction

of arrival of the rays in a single snapshot. This capability can be achieved with a simple

modification of a standard wide-field (WF) microscope: a microlens array is placed at the

original imaging plane, and the imaging sensor is moved to the rear focal plane of the

microlenses. Several works have reported the use of LFM for monitoring neural activity

[1, 2, 19]. However, the benefits of light-field imaging imply reduced spatial resolution due

to the recording of spatial and angular information with a single sensor. Furthermore,

LFM also suffers from image degradation due to scattering in brain tissue.

LFM requires fast and robust algorithms to accurately reconstruct 3D images from

single LF images. Existing model-based reconstruction methods for LFM offer a degree

of robustness when imaging scattering tissue. However, they need high computational

resources and introduce reconstruction artifacts, reducing the merit of LFM. Furthermore,

new emerging learning-based techniques offer improved quality under specific scenarios

but cannot address challenging acquisition conditions when imaging brain tissue, such as a

lack of training data or highly scattering samples. Therefore, new computational methods

which are faster, more accurate, and more robust are needed.

Model-based reconstruction methods in LFM use simplified frameworks to avoid

further increases in computational requirements. Specifically, LFM needs to handle huge

3D images, to perform reconstruction from large LF stacks, and the system is not shift-

invariant (it cannot be described with a single convolution). Thus, LFM poses a complex

scenario that makes it challenging to use sophisticated methods for reconstruction. Prac-

tical reconstruction approaches for LFM must consider computational complexity since

time-consuming methods make studying large LF sequences challenging. Existing tech-

niques use modified versions of the Richardson-Lucy (RL) algorithm since it offers a fea-

sible reconstruction method. This work aims to investigate approaches that help manage

data dimensionality. In general, we seek efficient methods for the computation of the for-

ward model. Furthermore, we aim to explore perfect (aliasing-free) reconstruction from

LF images under ideal settings. A broader goal is to study model-based reconstruction

methods under real acquisition conditions such as noise, modelling imperfections, and lack

of training data.
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Deep-learning methods often challenge model-based methods in terms of perfor-

mance and speed in many applications. For instance, they have achieved remarkable re-

sults in image restoration, super-resolution, inpainting, etc. New deep-learning approaches

have recently been proposed for volume reconstruction in LFM. However, in LFM, deep-

learning methods usually require idealized settings that can be hard to achieve in many

practical situations. For instance, they rely on the availability of huge high-quality datasets

to achieve good reconstruction performance and generalization ability. In LFM, it is often

impossible to capture huge labelled datasets when imaging neural activity in mammalian

brain tissue. The neural activity cannot be captured accurately with current 3D imaging

techniques since they are not sufficiently fast. Furthermore, the quality of the captured

data is often poor since mammalian brain tissue is highly scattering. Even though training

with purely synthetic data may alleviate these issues, it requires very accurate simulations

of the system and noise, which is often non-trivial.

We aim to study hybrid approaches combining learning and model-based methods

that exploit current knowledge of the forward model and use very small training datasets

for reconstruction. The acquisition of small datasets can be performed by exploiting multi-

modal imaging combining LFM and two-photon microscopy. Two-photon microscopy can

be used to acquire structural data offline since this task does not require high acquisition

rates. Furthermore, we aim to design the neural network architecture by unfolding sparsity-

based reconstruction algorithms. The unfolding technique allows embedding the prior

knowledge of the system into the network architecture and better interpretability.

1.2 Original contribution and outline of thesis

The remainder of this thesis is organised as follows:

Chapter 2 reviews basic principles and techniques for imaging neuronal activity in

brain tissue. It also describes the idea of light field under three perspectives: ray optics,

wave optics, and phase-space optics. Moreover, this chapter explains how the light-field

camera and the light-field microscope work under these three perspectives. Finally, it

reviews previous work on 3D reconstruction for LFM, providing context for the following

chapters.
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Chapter 3 studies the discretization and simplification of the forward model. This

chapter proposes a framework for discretization based on generalized sampling theory. Un-

like standard methods, the proposed approach allows diverse sampling kernels and different

sampling rates for the input and output. Furthermore, it shows that the system can be

accurately described using filter banks due to the periodic shift-invariance property. In this

chapter, we also propose a simplification method that uses SVD to accelerate the compu-

tation of the forward model. We show that it is possible to accelerate the computation

without impairing the accuracy of the model. Finally, we propose to describe the system

using a linear CNN by adapting our filter-bank model. This novel description allows for

efficient implementations of the forward model.

Chapter 4 studies model-based reconstruction techniques for 3D imaging in LFM.

First, we exploit the shift-invariance assumption to achieve aliasing-free reconstruction

under ideal settings. We experimentally show that signals lying in a shift-invariant subspace

can be perfectly reconstructed if the sampling rates and sampling kernels are chosen so

that the equivalent discrete system is invertible. Furthermore, we study reconstruction

approaches under real acquisition conditions. We propose using optimization approaches

incorporating additional priors to perform artifact-free 3D reconstruction from real light

field images. Due to the simplification of the forward model, our method is faster than

conventional approaches used for 3D reconstruction. We experimentally show that our

approach performs better than Richardson-Lucy-based strategies in computational time,

image quality, and artifact reduction.

Chapter 5 studies learning-based reconstruction for imaging mammalian brain tis-

sues in LFM. This chapter analyses multi-modal imaging modalities combining 2P and

LFM to improve reconstruction quality. First, the architecture of our CNN is obtained by

unfolding the Iterative Shrinkage and Thresholding Algorithm (ISTA) and is based on the

observation that neurons in tissue are sparse. Then, we propose a semi-supervised training

based on Generative Adversarial Neural Networks (GANs) that exploits the knowledge

of the forward model to achieve remarkable reconstruction quality. Furthermore, we pro-

pose efficient descriptions of the imaging system using linear convolutional neural networks

that fit the physics of the system. These descriptions allow online computing of the for-
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ward model, complementing our reconstruction approach. We experimentally show that

our method provides better reconstruction quality than state-of-the-art model-based and

learning-based methods under adverse conditions: lack of training data, background noise,

and non-transparent samples.

Finally, Chapter 6 summarizes the main contributions and discusses possible future

work directions.

1.3 Publications

The work developed during my Ph.D. was part of a broader project run jointly with the

Department of Bioengineering (BB/R009007/1). The following paragraphs mention all the

material I contributed as an author. However, this thesis is mainly based on the papers

where I am the first author.

Submitted

• H. Verinaz-Jadan, P. Song, C. L. Howe, A. J. Foust and P. L. Dragotti, “Physics-

based Deep Learning for Imaging Neural Activity via Two-photon and Light Field

Microscopy”, submitted to IEEE Transactions on Computational Imaging, 2022

(bioRxiv).

Peer-Reviewed Journals

• H. Verinaz-Jadan, P. Song, C. L. Howe, A. J. Foust and P. L. Dragotti, “Shift-

invariant-subspace discretization and volume reconstruction for light field mi-

croscopy”, IEEE Transactions on Computational Imaging, 2022.

• Carmel L. Howe, Peter Quicke, Pingfan Song, Herman Verinaz-Jadan, Pier Luigi

Dragotti, Amanda J. Foust, “Comparing synthetic refocusing to deconvolution for the

extraction of neuronal calcium transients from light fields,” Neurophotonics, March

2022.

• P. Song, H. Verinaz-Jadan, C. L. Howe, A. J. Foust and P. L. Dragotti, “Light-field

microscopy for optical imaging of neuronal activity: when model-based methods meet

data-driven approaches”, IEEE Signal Processing Magazine, March 2022.



1.3 Publications 6

• Peter Quicke, Carmel L. Howe, Pingfan Song, Herman Verinaz-Jadan, Chenchen

Song, Thomas Knöpfel, Mark Neil, Pier Luigi Dragotti, Simon R. Schultz, Amanda

J. Foust, “Subcellular resolution three-dimensional light-field imaging with genetically

encoded voltage indicators,” Neurophotonics, August 2020.

• P. Song, H. Verinaz-Jadan, C. L. Howe, P. Quicke, A. J. Foust and P. L. Dragotti, “3D

Localization for Light-Field Microscopy via Convolutional Sparse Coding on Epipolar

Images”, in IEEE Transactions on Computational Imaging, 2020.

Peer-Reviewed Conferences

• P. Song, H. Verinaz-Jadan, C. L. Howe, P. Quicke, A. J. Foust and P. Luigi Dragotti,

“Model-Inspired Deep Learning for Light-Field Microscopy with Application to Neu-

ron Localization,” IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), 2021.

• H. Verinaz-Jadan, P. Song, C. L. Howe, P. Quicke, A. J. Foust and P. L. Dragotti,

“Deep learning for light field microscopy using physics-based models”, IEEE Interna-

tional Symposium on Biomedical Imaging (ISBI), 2021.

• H. Verinaz-Jadan, P. Song, C. L. Howe, A. J. Foust and P. L. Dragotti, “Volume Re-

construction for Light Field Microscopy”, IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), 2020.

• C. L. Howe, P. Quicke, P. Song, H. Verinaz-Jadan, P. L. Dragotti, and A. J. Foust,

“Comparing wide field to 3D light field for imaging red calcium transients in mam-

malian brain,” Biophotonics Congress: Biomedical Optics 2020 (Translational, Mi-

croscopy, OCT, OTS, BRAIN), 2020.

• P. Quicke, C. L. Howe, P. Song, H. Verinaz-Jadan, P. L. Dragotti, T. Knopfel, A. J.

Foust, S. R. Schultz, and M. Neil, “Calculation of high numerical aperture lightfield

microscope point spread functions,” Imaging and Applied Optics 2019 (COSI, IS,

MATH, pcAOP), 2019.

• P. Song, H. Verinaz-Jadan, P. Quicke, C. L. Howe, A. J. Foust, and P. L. Dragotti,



1.3 Publications 7

“Location Estimation for Light Field Microscopy based on Convolutional Sparse Cod-

ing,” in Imaging and Applied Optics 2019 (COSI, IS, MATH, pcAOP), 2019.



8

Chapter 2

Background

2.1 Imaging Neural Activity

I
MAGING a large population of neurons in the brain and their electrical activity up to

cellular resolution or even sub-cellular resolution is necessary to reveal the functioning

mechanism of neural circuits [20]. The observation of this electrical activity is known as

functional cellular neuroimaging while observing the morphology or anatomy of neural

circuits is called structural imaging. Although there are various viable techniques for

functional imaging, such as functional MRI or electrophysiological techniques [21], [20],

optical imaging with fluorescent indicators is more attractive owing to the high spatial

resolution and non-invasive nature. Optical imaging with fluorescent indicators has, in

part, enabled the study of networks of neurons in biological systems [22–24]. However,

high-speed 3D functional imaging of a large number of neurons in brain tissue is still

challenging for current imaging technology.

Fluorescence is a tool in biological imaging that offers high sensitivity, contrast, and

the possibility of obtaining cell type-specific labeling [21]. Typical fluorescent indicators

for functional neuroimaging usually respond to changes in membrane potential or detects

changes in concentration of calcium ions such as Ca2+ [20]. Although calcium indicators

monitor neuronal membrane potential indirectly, they are popular because of their slow

transients and high signal amplitude, which makes them easier to detect than membrane

potential indicators. However, recent developments show that genetically encoded voltage

indicators (GEVIs), which respond to membrane potential changes, also efficiently monitor
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(a) (b) (c) (d)

Figure 2.1: The imaging modalities categorized based on the acquisition mode: (a)
point, (b) line, (c) plane (light-sheet), and (d) volume (wide-field) illumination. In
a sequential acquisition, shown in (a), a focal spot is scanned across one or more
dimensions in space to cover the entire volume. Consequently, the location of the
signal is determined by the instantaneous position of the excitation beam, and a
point detector can be used to collect the emitted fluorescence photons irrespective
of the path with which they reach the detector. Such imaging modalities confer
robustness to light scattering and are, therefore, well-suited for deep tissue imaging.
This comes at the cost of a reduced temporal resolution. In parallel acquisition
modes, as shown in (b)-(d), some or all voxels are recorded simultaneously on a
camera sensor array, which enables higher volume rates. In particular, light-sheet
imaging simultaneously scans the light-sheet excitation plane to quickly build up a
volume plane by plane. In this way, it enables the imaging of the whole volume plane
by plane. In contrast, light field imaging enables the simultaneous recording of all
voxels within a volume. Fluorescence generated throughout the volume is captured
through a microlens array to simultaneously encode both the position and angular
information. However, unlike point scanning modalities, parallel acquisition modes
are inherently vulnerable to scatter-induced crosstalk between neighboring camera
pixels. See also [21] for a description of different imaging modalities.

neural activity [25]. Even though approaches, such as detecting sodium or potassium ions,

or pH, are possible, they produce signals many orders below the sensitivity required for

the study of entire networks of neurons [20].

Calcium indicators can be used with diffraction-limited point scanning techniques

and single-pixel detectors to identify the precise location of activity-related signals [20].

In particular, two-photon microscopy is an imaging approach robust to scattering, with a

small point spread function, and is well suited for imaging deep in tissue. Even though

two-photon microscopy has the potential to facilitate the understanding of neural circuits,

it results in a low temporal resolution due to the point scanning nature. In two-photon

microscopy, a point-like laser scans the whole volume, and the emitted fluorescence is

collected with a point-like detector, as shown in Figure 2.1 (a). Two-photon microscopy
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offers appealing tissue penetration and spatial resolution, but its temporal resolution is

ill-suited to capture fast biological dynamics on a large population of neurons.

The study of neural information coding requires high-temporal-resolution imaging

methods. In recent years, we have witnessed substantial progress in fluorescence microscopy

imaging due to improved fluorescent indicators of neuronal activity and alternative scan-

ning strategies for faster acquisition [21], [20]. For example, scanning with lines or sheets

instead of points speeds up the acquisition through spatial parallelization. These scanning

schemes are depicted in Figure 2.1 (b) and (c). However, parallel scanning usually implies

constrained sample geometries or is not well-suited for scattering samples.

Scanning-based microscopy is proposed as an alternative to scan-less whole-volume

microscopy (called wide-field). Wide-field imaging is one of the most basic microscopy

techniques. It uses the most efficient illumination scheme, maximizing photon generation

rates and imaging speed. However, this speed comes at the cost of increased background

interference since out-of-focus light appears in the in-focus image, reducing contrast. Thus,

typical wide-field microscopy is unsuitable for efficient imaging of neuron activity. Never-

theless, it is possible to take advantage of the out-of-focus fluorescence and reassign photons

to their correct 3D locations computationally, as depicted in Figure 2.1 (d). Light field

microscopy (LFM) is a technique that exploits this idea by using a point spread function

(PSF) designed to promote diversity between impulse responses located at different depths.

LFM is a wide-field imaging technique that has become an attractive candidate for

high-speed 3D bioimaging. In LFM, a microlens array (MLA) is inserted at the native

image plane (NIP) of a wide-field microscope to capture a 4D light field (including the 2D

lateral position and 2D angular information), as shown in Figure 2.2(a). The angular infor-

mation, in turn, relays depth information for volumetric reconstruction. Figure 2.2 (b),(c)

and (d) shows how the impulse response changes as the axial position of the light source

changes. A more detailed description of this behaviour is given in the following sections.

In this way, LFM can capture volumetric information of the scene in a single snapshot,

allowing 3D imaging at video frame rates. Various works have explored LFM for imaging

neuronal circuits. For instance, whole-brain calcium imaging in small organisms like C.

elegans and zebrafish larvae [15], [26], [27] or large-volume functional recording in awake,
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Figure 2.2: An optical diagram of the light field microscope. (b)-(d) The LFM optical
path and light field patterns generated by one point source at different depths (i.e.,
axial positions). A point source below or above the native object plane, as shown in
(b) and (d), generates a more complicated intensity pattern than a source in focus, as
shown in (c). White lines in the LFM images depict the virtual profile of the microlens
in the image space, and each square represents a subimage associated with a specific
lenslet. LFM simultaneously captures spatial and angular information, which can be
revealed in an epipolar plane image. A deeper source leads to a more tilted line,
whose center indicates the lateral position.

behaving mice [2] have been demonstrated. However, a limitation of LFM is the trade-off

between spatial and angular resolution, computational complexity, and reconstruction ar-

tifacts. Furthermore, deep in the tissue, scattering events may lead to a complete loss of

directional information from emitted fluorescence [21].

2.2 The concept of light field and light field devices

Light field is a function that maps each ray in the space to a non-negative value called

radiance. As mentioned by Ren Ng et al. in [30], the modern concept of light field was

first introduced by Levoy and Hanrahan [31], and by Gortler et al. [32] in 1996. However,

these ideas come from even earlier work. The pioneer was Lippman in 1908 with his

contribution to the concept of “Integral Photography”. Even though the light field is

traditionally described with ray optics, it can be studied with different level of detail. This

section describes the light field from the ray optics, scalar wave optics, and phase-space

optics perspectives.
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(a) Camera-array based light field imaging

(b) An array of multi-view images. (c) EPIs in u− s and v − t space.

Figure 2.3: Illustration of light field imaging. (a) In a light field system, a light ray
that propagates from the scene is uniquely determined by the intersections with two
parallel planes, leading to a relative two-plane parametrization of the light field. The
s− t plane is usually related to the spatial information of the rays, and the u− v plane
encodes the angular information of the rays. A pinhole camera placed in the camera
plane captures light rays with directions determined by the image plane inside the
camera. The collection of captured images in (b) shows the multi-view images or
sub-aperture images obtained when the angles u − v and location s − t change. The
variables s− t index the pixel of each sub-aperture image, while u− v index the view
angle. (c) A EPI (up) in u − s space for fixed (v, t) and an EPI (right) in v − t space
for fixed (u, s). (Images are modified from [28,29].)

2.2.1 Ray-Optics Perspective

Light field imaging attempts to record the intensity of every light ray from a scene of

interest. A simple method to achieve this goal is to place a pinhole camera at every

position (s, t) in the camera plane. A pixel (u, v) in the image plane of the pinhole camera

indexes the angle of arrival of a light ray, while the camera position (s, t) indexes its spatial

location. See Figure 2.3 (a) for clarification. The set of captured images is the observable

light field. It can be reordered into a set of sub-aperture images as shown in Figure 2.3 (b)

or forming epipolar plane images (EPIs), as in part (c). These concepts are clarified in the

following paragraphs.



2.2 The concept of light field and light field devices 13

AA

B

(𝑢஺ଵ, 𝑣஺ଵ)

(𝑢஺ଶ, 𝑣஺ଶ)(𝑠஺ଶ, 𝑡஺ଶ)

(𝑠஺ଵ, 𝑡஺ଵ)

(𝑢஻ଶ, 𝑣஻ଶ)
(𝑠஻ଶ, 𝑡஻ଶ)

(𝑠஻ଵ, 𝑡஻ଵ)

𝑢, 𝑣s, 𝑡
𝐿 𝑠, 𝑡, 𝑢, 𝑣 :  ℝସ → ℝା

(𝑢஻ଵ, 𝑢஻ଵ)

Figure 2.4: Definition of the light field. The light field is a function that maps every
ray in the space to a non-negative value (radiance). Using the two-plane parametriza-
tion, each ray in the 3D space can be described with four scalars (s, t, u, v). The
two-plane parametrization exploits the observation that a ray in space intersects two
parallel planes in two points. The four scalars defining the two points of intersection
are the parameters that define a ray.

Since the light field maps a light ray to a positive number, it can be represented by

a function L(s, t, u, v) : R4 7→ R+. The four scalars (s, t, u, v) uniquely represent a light ray

using the two-plane parameterization, as shown in Figure 2.3 (a). Several assumptions must

hold to make the definition of light field consistent. The light field must be monochromatic

to remove the wavelength dependence, the temporal dimension is removed by integration

over time, and rays propagate through a vacuum in a space without any external object

such that the radiance is constant along the ray. The latter statement is called free-space

assumption. Also, diffraction effects should be negligible. An exhaustive explanation of

these concepts can be found in [33], [31].

Ideally, the knowledge of the light field allows for finding the location of every light

source in the 3D space. For instance, in Figure 2.4, from the intersections defined by sA1

and sA2 with directions defined by uA1 and uA2, it is possible to retrieve the position of

the point source A in the 2D space. Similarly, the point source B located at a different

position emits a different set of rays, say sB1 and sB2 with directions defined by uB1 and

uB2. By considering the four coordinates (s, t, u, v) for each ray, one can localize point

sources in the 3D space. Therefore, the light field is a tool that can be potentially used for

reconstructing 3D scenes.

The light field is inherently redundant. The light field corresponding to the rays
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Figure 2.5: Light field geometry for a point source. This figure shows the geometric
relationship satisfied by all the rays coming from a given point source. The two-plane
parametrization of the rays shows that the light field of a single point source is nonzero
on a 2D plane immersed in the 4D space.

emitted from a single point source in the 3D space is non-zero in a 2D plane immersed

in the 4D space. To see this, note that from the diagram shown in Figure 2.5 and using

triangle similarities, it can be written that:

u =

(
f

z

)
s− xf

z

v =

(
f

z

)
t− yf

z
,

(2.1)

where positions u and v are measured with respect to the s and t locations, respectively.

Measuring the relative positions u and v allows a simple interpretation of the light field,

which will become clear in the following lines. For a given point source at (x, y, z), the

light field L(s, t, u, v) is nonzero on the 2D plane defined by Equations (2.1), and zero

elsewhere. Note that if the parameter f is known, the slope in Equation (2.1) defines the

z-coordinate of the point source, and the intercepts define the x-y location. To distinguish

between spatial (s, t) and angular (u, v) coordinates, we can redefine u and v as u := u/f

and v := v/f , which are the tangents of the arrival angle and do not depend on the plane

separation.

The light field carries spatial and angular information from light. If we compute

the light field for fixed angular coordinates (u, v), we obtain an image Lu,v(s, t) containing

only spatial information. This image shows a view of the scene (all the rays arrive with the
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same angle) and is known as a sub-aperture image, as shown in Figure 2.3 (b). Similarly,

when the coordinates (s, u) are fixed, the obtained image Ls,u(t, v) is named epipolar plane

image (EPI) and it is relevant in many applications since it carries depth information of

the scene [34–37]. See Figure 2.3 (c) for clarification.

Light Field Camera

A light field camera records ray intensities with their spatial location and direction of

arrival simultaneously. In contrast, a standard camera records only the intensity and

location of the rays reaching the sensor. Thus, a light field camera allows for digital

refocusing, for reconstruction of super-resolved images, and also for changing digitally the

aperture [28], [38].

Various forms to capture the light field function have been proposed over the years.

As mentioned in the previous section, one can use an array with multiple cameras or a

moving camera to capture the light field. However, these implementations are impractical

and challenging due to synchronization problems. It is more efficient to record the light

field with a single device that captures multiple views of the scene in a single snapshot [39]

such as the array of mirrors camera [40], the coded aperture imaging technique [41], or

the microlens-based camera. The latter is the most widespread light field device since

it is very effective and simple to implement. Ren Ng et al. reported the first successful

implementation of a modern light field camera using MLAs in [30]. Now, this camera

design is known as plenoptic 1.0. Later, other designs, such as the plenoptic 2.0 [42], were

also proposed.

A microlens-based light field camera is implemented by interposing a MLA between

the pixel sensor and the main lens of a standard camera. The distance between the MLA

and the sensor is equal to the microlens focal length in the plenoptic 1.0. In the plenoptic

2.0, this distance is not necessarily the focal length. In this work, we focus on the plenoptic

1.0 configuration since it is more common in LFM. Moreover, it has been found that the

plenoptic 1.0 creates a more diverse point spread function (PSF) between adjacent points

than the plenoptic 2.0 design [43]. A diagram of a plenoptic 1.0 camera is depicted in

Figure 2.6.

The idea of LF allows a simple interpretation of the behaviour of the microlens-
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Figure 2.6: Light Field Camera Diagram. A microlens-based light field camera is
designed by interposing a MLA between the main lens and the image sensor of a
standard camera. Each microlens in the camera tells the location of the light ray,
while the pixel behind the microlens tells the direction of arrival of the ray. If the
the main lens and microlenses are matched [30], the image at the image sensor can
be interpreted as a sample version of the light field L′(s′, t′, u′, v′).

based camera. For simplicity, we consider that the microlens plane corresponds to the s− t

plane mentioned in previous section, and the sensor plane corresponds to the u− v plane.

They are re-named s′ − t′ and u′ − v′, respectively, as shown in Figure 2.6. Similarly, the

light field inside the camera is named L′(s′, t′, u′, v′) to distinguish it from the external

light field. Suppose each microlens is modelled as a pinhole and each pixel sensor is a

point-like detector [28]. In that case, one can find that the indexation of the microlenses

tells the location of the ray, while the indexation of the pixels tells the direction of arrival

of the ray. Thus, the MLA together with the sensor pixels act as a sampling device of the

function L′(s′, t′, u′, v′). For this to hold, we assume that rays from adjacent microlenses

do not overlap, which is ensured by matching the main lens and microlenses [30]. For a

plenoptic 1.0 configuration, the final output of the camera is defined as follows:

L[m,n, p, q] = L′(mTs, nTt, pTu, qTv), (2.2)

where Ts and Tt are the horizontal and vertical microlens pitch, which are usually the

same Ts = Tt = T , the angular sampling intervals are Tu = Tv = T/(Nfµ), T is the

microlens pitch, N is the one-dimensional number of pixels under the microlens, and fµ is

the microlens focal length. Note that since the raw output of the camera is a 2D image,
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one must first calibrate and reshape the 2D array into a 4D structure to properly recover

L[m,n, p, q], as explained in [29].

The internal light field L′(s′, t′, u′, v′) is not the same as the external light field

L(s, t, u, v) due to the optical system of the camera. This system, usually modelled with

a single lens, aims to bring to focus any object of interest but also limits the spatial and

angular information of the light field. For simplicity, the internal and external light fields

are usually related with a linear transformation as follows:

L(s, t, u, v) = L′((s, t, u, v)M), (2.3)

where L(s, t, u, v) is the external light field, and the transformation matrix M models both

propagation and lens effect [44]. See Figure 2.6.

A single lens cannot describe the optical system of a LF microscope. Unlike a

LF camera, a LF microscope uses a 4f-system with a telecentric stop, which differs from

the optical system used for cameras (see Appendix A for a description of the 4f-system).

A LF microscope is an orthographic system, as explained in [45]. This optical design

implies that, under ideal conditions, the internal light field L′(s′, t′, u′, v′) only differs from

L(s, t, u, v) due to the magnification factor as follows:

L(s, t, u, v) = L′(sM, tM, u/M, v/M) (2.4)

where M is a scalar representing the magnification factor of the microscope. In this thesis,

we are interested in the behaviour of the LF microscope, which is described in more detail

in the following sections.

Sampling Pattern and Kernel in microlens-array based devices

In the previous section, each microlens in the array is a pinhole, and each pixel in the

sensor is a point-like detector. Under these assumptions, and considering only one spatial

and one angular dimension for simplicity, the predicted sampling pattern is a 2D comb

function, shown with red dots in Figure 2.7 (a). However, ray optics allows for a more

accurate description of the system. Suppose each pixel is rectangular, each microlens is

a rectangular thin lens, and that light from adjacent microlenses does not overlap. In
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Figure 2.7: Sampling pattern and kernel. The microlens array, followed by propa-
gation and a camera sensor, can be a sampling device for the light field function. In
part (a), we show the sampling pattern and kernel of a plenoptic 1.0 configuration.
If each microlens is a pinhole and each pixel in the sensor is a point-like detector,
the predicted sampling pattern is a 2D comb function shown in (a) with red dots. If
each pixel is a rectangular sensor and each microlens is a thin lens. The sampling
kernel is a rectangle shown in blue in part (a). In part (b), we show the sampling
pattern and kernel of the plenoptic 2.0. Here, the distance between the microlens
array and the sensor is not the same as the focal length of the microlenses. Thus the
shape of the sampling kernel changes to a sheared rectangle. In this figure, n is the
one-dimensional number of pixels under each microlens, Ts = T is the microlens pitch,
fµ is the microlens focal length and b is the distance between the microlens array and
the sensor.

that case, the predicted sampling kernel is rectangular, with dimensions defined by the

geometry of the camera sensor and MLA, as specified in Figure 2.7 (a). If the distance

between the MLA and the sensor is not the same as the focal length of the microlenses, as

in the plenoptic 2.0 configuration, the shape of the sampling kernel changes to a sheared

rectangle, as shown in Figure 2.7 (b). For more details, see [46].

If rays from adjacent microlenses do not overlap, a microlens array followed by

propagation and a camera sensor is a sampling device for the light field function. The

geometry of the elements in the arrangement, such as the focal length, the microlens pitch,

the sensor pixel pitch, and the separation between the MLA and the sensor, determines the

device sampling pattern and sampling kernel. For instance, the plenoptic 1.0 configuration

forms a rectangular kernel, and the plenoptic 2.0 yields a rectangle with slanted sides,

as shown in Figure 2.7. Also, note that a rectangular packaged MLA and pixels sensor

always form a rectangular-like sampling grid. A different MLA and pixel sensor package
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can create other sampling patterns. For instance, one can use hexagonal packaged MLAs

described in Appendix A. In this thesis, we use a given plenoptic 1.0 LF microscope with

a square shaped and square packaged MLA and sensor.

2.2.2 Scalar-Wave-Optics Perspective

The description of light based on the ray model is considered insufficient to describe a

microscope since it ignores diffraction, which is a dominant effect on a microscopic scale.

Thus, one can study the complex field directly instead of studying the 4D light field

mentioned in the previous section. Therefore, microscopes are usually described using

scalar or vector wave optics depending on the scenario [47]. Scalar wave optics does not

take into account the vector nature of light. It assumes that the electromagnetic field can

be described by a single time-dependent scalar field, namely u(t). Thus, instead of using

the vector wave equations for the electric field and magnetic field derived from Maxwell

equations [48], it proposes the use of a single scalar wave equation, as follows:

∇2u− n2

c2
∂u

∂t2
= 0, (2.5)

where n is the refractive index, c is the speed of light and u is the time-dependent scalar

field. The use of a single scalar differential equation is justified by making some assumptions

on the surrounding media [48], [49]. In general, the medium needs to be dielectric (real

permittivity, normally the case for visible light), it needs to be a linear material (a linear

relationship between electric field and displacement field), to be homogeneous (constant

permittivity across the region of propagation), to be isotropic (its behavior does not depend

on the field polarization), to be non-dispersive (permittivity independent of frequency) and

non-magnetic (vacuum permeability).

The Helmholtz equation is an equivalent version of the wave equation (2.5). If we

focus on time-harmonic fields, we can assume u = Re{Ue−jωt} in Equation (2.5). This

procedure results in the following equation:

(∇2 + k2)U = 0, (2.6)
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Figure 2.8: Light field microscope diagram. A light field microscope captures spatial
and angular information from the light by interposing a MLA between the tube lens
and the camera sensor. The objective and tube lens form a 4F system that magnifies in
the native image plane (NIP) the field at the native object plane (NOP). The shown LF
microscope corresponds to the plenoptic 1.0 configuration, where the distance between
the MLA and the sensor plane is the focal length of the microlenses. Contrary to the
LF camera, the optical system is orthographic by design, and diffraction effects are
dominant due to the size of the samples.

where the angular wavenumber is k = nω/c, c is the speed of light in vacuum, and n is

the refractive index of the media. This equality is known as the Helmholtz equation and

is a basic equation behind wave optics. Notice that, in general, the Helmholtz equation

holds for any scalar field u with a valid Fourier transform U since the Helmholtz equation

can be derived by taking the Fourier transform in the temporal dimension of both sides of

Equation (2.5).

The Helmholtz equation is not used directly to describe optical devices. Instead,

various simplifications and more practical concepts are exploited. For instance, Rayleigh-

Sommerfeld solution, Fresnel-Kirchoff diffraction, paraxial approximations, or the concept

of angular spectrum are used to describe propagation. Furthermore, simple optical devices

such as lenses or an array of lenses can be defined conveniently with a complex function

named transmittance. See Appendix (A) for a more precise description of these approxi-

mations. Altogether, these concepts allow describing complex devices such as microscopes,

as explained in the following paragraphs.
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Light field microscope

Optical configurations designed for LF photography can be adapted to microscopy. In [45],

Levoy et al. first proposed this idea by implementing the plenoptic 1.0 configuration in a

standard microscope: A MLA is placed at the native imaging plane of the 4F system with

a camera placed at the back focal plane of the MLA, as shown in Figure 2.8.

Wave optics accurately describes the functioning of a LF microscope. Specifically,

the system behaviour can be divided into four processes: initial propagation from the

source location to the native image plane (NIP), modulation due to the MLA, propagation

to the image sensor plane, and discretization due to the sensor pixels. See the complete

optical path in Figure 2.8.

The initial propagation from the source location to the NIP is greatly affected by

diffraction. The light field just after the tube lens can be approximated from the far field

of a point source (dipole) as follows [48,50]:

U(P1) = P (P1)
exp(jkf)

f
, (2.7)

where P (P1) is called apodization function, P1 is a point of interest, and f is the focal

length of the lens. The apodization function is introduced to model the field distribution

on the spherical wavefront just after the lens. It also models the finite extent of the

device, which, together with the sample sizes, greatly contributes to observing diffraction

effects. Then, the field at the NIP can be found using the first Rayleigh-Sommerfeld

solution (Appendix 2 explains the first and second Rayleigh-Sommerfeld solutions). The

first Rayleigh-Sommerfeld solution leads directly to the desired field since the field in the

boundary is known. Note that the surface causing diffraction is a lens and the field in the

boundary is the field measured just after the lens, shown in Equation 2.7. The resulting

integral is simplified assuming a circular lens and using the Debye approximations leading

to the Debye integral, as mentioned in [50], [51]. Finally, considering that the 4f system

magnifies in the NIP the field at the NOP by a factor M , the field at the native image

plane at a point x = (x1, x2), due to a source located at p = (p1, p2, p3) can be written as:

Ui(x,p) ∝
∫ α

0
exp

(
jkp3 cos(θ)

)
P (θ)J0

(
kr sin(θ)

)
sin(θ)dθ, (2.8)
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(a) PSF at depth of 5 µm. (b) PSF at depth of 10 µm.

Figure 2.9: Simulated light field for ideal point sources located at two different
depths. The observed pattern becomes wider as the point source moves away from the
native object plane. LFM exploits the diversity of the observed pattern to reconstruct
points at different 3D locations from a single 2D image. The square grid shown in
white represents the MLA.

where P (θ) =
√
cos (θ), r =

√
(x1/M − p1)

2 + (x2/M − p2)
2, k = 2nπ

λ and α =

sin−1
(
NA
n

)
. Here, the function P (θ) is the apodization, N is the numerical aperture,

n is the refractive index, λ is the wavelength, and M is the microscope magnification.

Notice that this is a proportional relationship because any constant factor can be safely

ignored in the image formation process.

The next step is multiplying the complex field Ui(x,p) by the transmittance Φ(x)

of the rectangular MLA and propagating the field to the sensor. The propagation is a

linear shift-invariant process with transfer function G (kx, ky) (see Appendix A for more

details on the propagation transfer function and lens transmittance). Therefore, the field

at the image sensor plane can be written as follows:

Uf (x,p) = F−1 {F {Ui(x,p)Φ(x)}G (kx, ky)} , (2.9)

where F is the Fourier transform. Finally, the camera sensor captures the light intensity,

which is the magnitude square of the field in Equation (2.9). This intensity is named

h(x,p) and is computed as follows:

h(x,p) = |Uf (x,p)|2, (2.10)
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where the function h(x,p) is also the impulse response of the continuous system de-

scribing the microscope. The output of this continuous system still needs to be discretized

by the pixels in the image sensor to obtain the observed light field image. Thus, the final

step is modelled as a convolution with a square kernel k(x) describing the pixel shape,

followed by sampling with sampling interval ∆x equal to the microlens pitch.

In this work, we consider that there is no coherent interference when light from

two emitters interacts. The complex field from two different sources cannot be linearly

combined. However, we can safely assume that the map from the source distribution to

the light intensity measured in the sensor is linear [51]. Therefore, the LF microscope can

be entirely characterized by its impulse response. In Figure 2.9, we show the simulated

impulse response of the LF microscope corresponding to two different locations of the input.

In a real scenario, additional factors, like occlusion or non-constant refractive indexes, could

make the system nonlinear. However, we found that nonlinear effects can be safely ignored

for the applications discussed in this work.

2.2.3 Phase-Space-Optics Perspective

Phase-space optics allows combining wave and ray optics description of the light field into

a single concept. The phase-space analysis is interesting from a theoretical point of view

since it gives a justification to apply ideas from ray optics to wave phenomena. Even

though the ray optics and wave optics perspectives are enough to follow the remaining of

this thesis, we show these ideas for completeness.

Phase-space optics refers to the study of optical signals as a function of both the

space and the spatial frequency. In optics, the spatial frequency of the signal also carries

information about the direction of propagation of the wave. Thus, phase-space optics is use-

ful for simultaneously analyzing spatial and angular information in optical phenomena [52].

This section focuses on studying LF systems using the Wigner distribution function.

Wigner distribution function

The Wigner distribution function (WDF) is a transformation that allows studying a field

as a function of the space and its Fourier conjugate variable simultaneously. The WDF of

any complex scalar field U1(x, y) measured on an x-y plane is defined as follows:
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WU1(x, y, fx, fy) =

∫∫
U1(x+

x′

2
, y +

y′

2
)U∗

1 (x−
x′

2
, y − y′

2
)e−j2π(fxx′+fyy′)dx′dy′. (2.11)

The definition of WDF shown in Equation(2.11) requires the use of coherent fields, but the

concept of WDF can be extended to partially coherent fields using a stochastic description

[53]. As mentioned in Section 2.2.2, the field from two different sources is assumed to be

incoherent in this work. However, the field from a single point source is coherent with

itself. Therefore, the transformation shown in Equation (2.11) is still valid in LFM.

In signal processing, the short-time Fourier transform (STFT) is a well-known trans-

formation used to study a function with respect to the original dimension and its Fourier

conjugate simultaneously. Interestingly, the WDF can be related to the STFT [54]. The

definition of the STFT of U1(x, y) is:

STFT{U1}(x, y, fx, fy) =
∫∫

U1(x
′, y′)a(x′ − x, y′ − y)e−j2π(fxx′+fyy′)dx′dy′, (2.12)

where a(x, y) is a sliding window. The magnitude square of the STFT (the spectrogram)

is related to the WDF by a convolution operation as follows:

|STFT{U1}(x, y, fx, fy)|2 = WU1(x, y, fx, fy) ∗Wa(x, y, fx, fy), (2.13)

where Wa(·) is the Wigner distribution of the sliding window a(x, y) in Equation(2.12).

Even though the STFT is more common in signal processing, the WDF has more

appealing characteristics in optics. For instance, many typical operations in wave optics

involving integrals, like propagation or multiplication by transmittances like lens modula-

tion, can be reduced to simple shearing of the WDF [55]. Various useful WDF properties

are listed in [56]. In addition, integrating the WDF along the frequency axis gives the

intensity of the field at the depth the WDF was measured, while the integration along

the spatial axis gives the power spectrum for that depth [56], [55]. Moreover, the WDF

of a point source is a 2D plane immersed in the 4D space, like the light field of a point

source [52]. Therefore, the WDF can be interpreted as an extension of the concept of light

field used in ray optics.
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Figure 2.10: Sampling kernel predicted by phase-space optics. Part (a) shows the
sampling kernel predicted for rectangular shaped-microlenses and rectangular-shaped
pixels using phase-space optics. Ray optics uses a simplified model that predicts a
rectangular-shaped kernel shown in blue in (b), which approximates the kernel in part
(a). The sampling pattern predicted by phase-space and ray optics coincide and is
shown with red dots in part (b). The shown figures correspond to a plenoptic 1.0
configuration.

Capturing the Wigner distribution function

The use of the WDF as a tool to describe a LF camera was proposed by Levoy et al.

in [57]. Since the WDF is a generalization of the concept of light field, it allows a simple

description of a light field camera or microscope. By following an analysis similar to [57],

and using the WDF properties described in [55], it is possible to show that the relationship

between the WDF at the native image plane WUi(s, t, u, v) and the field captured at the

sensor plane L[m,n, p, q] is defined as follows:

L[m,n, p, q] = L(mTs, nTt, pTu, qTv), (2.14)

where L(s, t, u, v) = WUi(s, t, u, v)⊛K(s, t, u, v), ⊛ means convolution, the spatial sampling

intervals are Ts = Tt = T , T is the microlens pitch, and the angular sampling intervals Tu

and Tv are related to the pixel pitch as follows Tu = Tv = T
Nλfµ

, where λ is the wavelength,

fµ is the microlens focal length and N is the one-dimensional number of pixels under each

microlens. The 4D discrete signal, L[m,n, p, q], is just a rearrangement of the pixels of

the 2D image capture at the sensor, as mentioned in Section (2.2.1). For Equation 2.14 to

hold, it is necessary that images behind each microlens do not overlap, which is ensured
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Figure 2.11: Block diagram of a LF microscope based on the WDF. The LFM system
can be interpreted as a LF microscope followed by a 4D WDF sampling device. Thus,
the properties of the WDF can be exploited for the reconstruction of 3D images. This
observation was exploited by Levoy et al in [45].

if the microlens and objective numerical apertures are matched by design [30], [45]. Due

to matched numerical apertures, it also holds that Tu = Tv = 2NA
MλN , where NA is the

numerical aperture of the microscope and M is the magnification factor. Equation (2.14)

is derived for a plenoptic 1.0 LF microscope with squared grid MLA and sensor. The

function K(s, t, u, v) is a kernel defined by the MLA and the sensor grid. If the shape of

each microlens and pixel sensor is known, the kernel K(s, t, u, v) is computed as follows:

K(s, t, u, v) = WT (−s,−t, u, v)⊛ P (u, v), (2.15)

where the function WT (·) is the WDF of the pupil function T (x, y), which is an indicator

function that is one inside the microlens and zero elsewhere, and the function P (u, v) is an

indicator function for the pixels in the camera sensor. Note that the 4D kernel K(s, t, u, v)

does not depend on the microlens focal length but on the shape of the microlens T (x, y)

and pixels P (u, v) due to the plenoptic 1.0 configuration. See the complete derivation in

Appendix (A).

The MLA followed by propagation, and a camera sensor, can be interpreted as a

sampling device of the 4D continuous WDF. For this to hold, light from adjacent mi-

crolenses must not overlap. As mentioned in Section 2.2.1, the geometry and optical

parameters of the configuration determine the shape of the kernel and sampling pattern.

For instance, the sampling kernel for rectangular microlens and rectangular sensor pixels is

depicted in Figure 2.10 (a). Observe that the shown kernel is a more accurate description
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of the sampling kernel predicted using ray optics in Section 2.2.1, and again depicted in

Figure 2.10 (b). Specifically, the sampling kernel shown in Figure 2.10 (a) corresponds to

the rectangular kernel shown in blue in part (b). The predicted sampling grid still coincides

with the one predicted by ray optics, and it is shown with red dots in Figure 2.10 (b).

The system that goes from the point source to just before the MLA is a wide-field

(WF) microscope. Therefore, a light field microscope can be modelled as a standard mi-

croscope followed by a WDF sampling device. See Figure 2.11. This observation was used

by Levoy et al in [45]. They propose to use the properties of the WDF for reconstruction:

A single slice of a focal stack is obtained by summation of L[m,n, p, q] along the frequency

dimensions. Then, L[m,n, p, q] is sheared so that the WDF is focused at a different depth.

This process is performed repeatedly (in the Fourier domain) to obtain a blurred focal

stack, which is finally deconvolved using a standard 3D deconvolution approach.

Although the phase-space formulation is conceptually interesting, this description

has hardly been exploited for reconstructing high-resolution 3D volumes [58]. A recon-

struction based on the phase-space description would need to manipulate high-resolution

4D WDF, which implies the need for high computational resources.

2.3 Computational methods for 3D volume reconstruction

from LFM Data

LFM is a technique that relies on computational approaches to perform the reconstruction

of 3D volumes. Computational methods in LFM differ from those in photography because

they must consider wave optics to describe the system accurately. In contrast, the ray-

optics model is usually accurate enough in photography.

Reconstruction approaches for LFM are based on both deep learning and model-

based strategies. Deep-learning methods for LFM are faster and perform better than classic

model-based approaches if they are evaluated in controlled scenarios, e.g., huge training

datasets, low background noise, non-scattering media, and transparent samples. On the

other hand, model-based approaches are more robust than learning methods and helpful

in adverse conditions, as shown in works studying neuronal imaging in mammalian brain

tissue [59], [60].
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2.3.1 Model-based methods

Early work in LFM exploit refocusing or the Richardson-Lucy (RL) algorithm for recon-

struction. As mentioned in Section 2.2.3, Levoy et al. first introduced an algorithm that

follows two steps [45]. It refocuses the light field to obtain a raw volume or focal stack, then

sharpens the stack using 3D deconvolution. Even though this method is fast, the recon-

struction has limited quality, and the microlens pitch size determines the lateral resolution

of the reconstructed volume. Specifically, the lateral resolution is always the same as the

sampling interval of the light field function, which is restricted by the existing trade-off

between spatial and angular sampling of the light field [45]. In LFM, a single camera sensor

and a MLA are used to capture both the position and direction of the light rays or, equiv-

alently, both spatial and angular information of the light field. This optical arrangement

imposes physical limitations on the sampling rates of the light field function: the spatial

sampling interval is proportional to the microlens pitch, whereas the angular sampling

interval is inversely proportional to the number of pixels under each microlens [45]. Thus,

if the light field function is sampled with a high spatial sampling density, it is necessarily

sampled with a low angular sampling density and vice versa.

Later, Broxton et al. [51] proposed computing the measurement matrix of the system

by using a wave-optics model. This model is used to pose a linear inverse problem solved

using the RL algorithm [51]. This method achieves better performance than the refocusing

approach in terms of quality. Furthermore, the resolution of the reconstructed volume is

not limited by the microlens pitch. However, this strategy is computationally demanding

and suffers from square-like artifacts at specific depths.

Currently, model-based reconstruction approaches rely mainly on a RL strategy.

In [19], Prevedel et al. proposed a RL-like algorithm called Iterative Image Space Recon-

struction Algorithm (ISRA) [61]. When applied to time series extraction from neuronal

cells expressing fluorescent activity reporters, Nöbauer et al. [2] included a reconstruction

step using total variation and sparse priors using a modified version of ISRA. More recently,

Lu et al. [58] proposed a Phase-Space deconvolution method that avoids reconstruction ar-

tifacts by first upscaling the light field image and then using ISRA for each light field view.

Stefanoiu et al. [62] proposed an approach that includes a filtering step to remove artifacts
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after each RL iteration.

2.3.2 Learning-based methods

Apart from model-based methods, various approaches that exploit deep learning for recon-

struction have been proposed recently. In [63], Wang, et al. describe the first approach that

uses an end-to-end convolutional neural network (CNN) for reconstruction. The VCD-Net

network is a 2D U-Net trained using synthetic LF data and 3D images obtained with con-

focal microscopy as labels. The VCD-Net is tested on real LF data by imaging neuron

activity in C. elegans and blood flow in the heart of zebrafish larvae.

Later, a technique that uses a mixed reconstruction approach was proposed by Li

et al. in [64]. The network named deepLFM is designed to enhance the reconstruction ob-

tained after a few RL iterations on LF images. DeepLFM is a 3D U-Net trained and tested

using labels obtained by 3D imaging K562 cells with confocal fluorescence microscopy.

Then, Page et al. proposed 3D reconstruction from LF images using a network based

on a 2D U-net named LFMNet [43]. LFMNet is trained on real LF data and 3D stacks

obtained via confocal microscopy. The training data is obtained after imaging brain slices

with fluorescently labeled blood vessels.

Finally, a convolutional neural network (CNN) named HyLFM that can be retrained

to refine the 3D reconstruction with the aid of an additional single plane selective-plane

illumination microscopy (SPIM) image has been proposed in [65]. HyLFM is trained on

real LF images and SPIM stacks as labels. HyLFM is specifically tested to image medaka

heart dynamics and zebrafish neuronal activity.
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Chapter 3

Shift-Invariant-Subspace

Discretization and Model

Simplification

T
HE conventional reconstruction methods used for LFM require long computational

times, which clashes with the goal of LFM to analyze time series of volumetric

simples or to study fast biological dynamics of specimens in-vivo. Time constraint limits the

complexity of the reconstruction algorithm for many time-sensitive applications. Therefore,

this chapter studies model simplification methods that accelerates the computation of the

forward model.

We propose a generalized discretization framework based on shift-invariant subspace

modelling for LFM. Unlike the discretization approach used in conventional reconstruction

methods, our framework allows diverse sampling densities and template functions. The

canonical discretization approach is a particular case of our framework.

The LFM system is modelled using filter banks, and the corresponding forward

model is simplified using singular value decomposition (SVD). Our approach allows faster

computation compared to conventional modelling. Furthermore, our model can be conve-

niently implemented using a linear convolutional neural network (CNN).
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3.1 Forward Model Analysis

As mention in Chapter 2, a light-field microscope can be described as an operator that

transforms a 3D scalar field into a 2D discrete image called a “light field", as in [51]. For

simplicity, we ignore one lateral dimension and assume unit magnification since extend-

ing the analysis to the original problem is straightforward. Under these assumptions, a

monochromatic light-field microscope can be modelled as an operator Hd that transforms

an intensity distribution f(x, z) defined for any lateral and axial coordinates x, z into a

pixel value g[k] for any index k as follows:

g[k] = Hd{f(x, z)}. (3.1)

The functions f(·, ·) ∈ L2 : R2 7→ R+ and g[·] ∈ ℓ2 : Z 7→ R+ represent the volumetric

input and the light field, respectively. To characterize the light-field microscope Hd, we

divide it into a cascade of two blocks, as shown in Figure 3.1(a). The first block describes

a continuous ideal microscope H that is usually described using wave optics. The second

block represents a discretization process of the light field. This process is performed intrin-

sically by the pixels in the image sensor, and it can be modelled by a convolution followed

by sampling.

For fluorescent microscopy imaging, it is realistic to assume that light emitted from

two different sources is incoherent and that effects of occlusion or non-constant refractive

indexes can be safely omitted. Based on these assumptions, the operator H that maps the

volumetric input to the output light intensity (magnitude square of the complex field) is

linear. Hence, for a volumetric input f(p), the intensity g(x) observed before sampling at

the image sensor can be described with a superposition integral as follows:

g(x) =

∫
h(x,p)f(p)dp, (3.2)

where the function h(x,p) is the impulse response of the system H, or, equivalently, the

light intensity at the output when the input is a point source located at p = (xp, zp) ∈ R2.

In this thesis, we assume that h(x,p) is computed using the optical analysis first

proposed by Broxton et al. [51]. Thus, the impulse response h(x,p) is described by in-
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Figure 3.1: Description of a light-field system. (a) Basic block diagram of a light-
field microscope Hd. The system is composed of a continuous ideal microscope H
followed by a discretization step represented by a convolution with kernel d(x) followed
by sampling. (b) Conventional discretization approach and optical diagram. The
conventional approach computes the impulse response for different input locations,
which leads to a block-circulant-like matrix for each z-location. The upsampling factor
s and the number of pixels under each microlens N define the block sizes of H.

dependently studying three parts of the system: (a) propagation from the source to the

microlens array, (b) modulation due to the microlenses, and (c) propagation from the mi-

crolens array to the image sensor plane. As mentioned in Chapter 2, an additional process

must model the light-field discretization performed by the image sensor. This process is a

convolution with a kernel d(x) followed by sampling. The final output of the system is a

discrete image g[k]:

g[k] = gd(k∆x), (3.3)

where gd(x) = g(x) ∗ d(x), and ∆x is the sampling interval. In many practical cases, it

holds that ∆x = T/N , where T is the microlens pitch and N is the number of pixels under

each microlens. See Figure 3.1 (b).

As explained in [51], the system H is not shift-invariant. However, it satisfies an

important property: periodic shift-invariance. Namely, ignoring the finite extent of the

device, for any x, z ∈ R, if the input is shifted by multiples of T along the lateral axis,
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then the output is also shifted by multiples of T . Hence, the following relationship holds:

g(x− nT ) = H{f(x− nT, z)},∀n. (3.4)

This means that for any depth z, this equation describes a periodically shift-invariant

behaviour. An equivalent form to characterize this property is to state that the impulse

response h(x, xp, zp) of the system H is periodic:

h(x, xp, zp) = h(x− T, xp − T, zp), (3.5)

where xp, yp and zp are the 3D coordinates of the input point source. Finally, the

entire system is discretized such that the inversion can be computed numerically. In [51],

a standard discretization approach was proposed: first, a Dirac delta is shifted laterally

and axially; then, each shifted Dirac is used individually as an input to compute the

corresponding impulse response, which is then stored in a matrix. The shifts of the Dirac

delta are defined by an axial sampling interval ∆z and a lateral sampling interval T
s , where

the integer s is the upsampling factor, as shown in Figure 3.1(b). Since the system is not

shift-invariant, multiple impulse responses for different positions must be stored. The final

discrete system can be described by:

g = Hf , (3.6)

where matrix H ∈ Rm×n maps a vectorized volume f ∈ Rn into a light field g ∈ Rm. The

number n of voxels of the volume is usually much larger than the number m of pixels of

the light field.

In [51], the inverse problem derived from Equation (3.6) is solved using RL. Since

property (3.4) leads to matrix H that is block-circulant for each z position, it is feasible

to solve the problem by using RL [51]. However, this can be highly computationally

demanding. Furthermore, the recovered volume suffers from artifacts near the native object

plane (NOP): the plane where a point source is in focus at the microlens array, as described

in [51] (conventionally, the plane z = 0).
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(1)

(2)

(3)

(1)  Haar

(2)  Linear    
Spline

(3)  Dirac

Analysis

Figure 3.2: Discretization of the light-field system using shift-invariant subspaces.
We show the discretization of a volume f . If f belongs to the shift-invariant subspace
defined by template function φ(x, z), the discretization can be inverted after filtering
with φ(x, z), as shown in the block diagram on the top of the figure. This allows per-
forming a non-standard discretization that generalizes the conventional discretization
method in LFM, as indicated on the bottom of the figure. Notice that the input dis-
cretization depends on the sampling density and template function φ(x, z), while the
output is discretized intrinsically by the device depending on the physics of the pixel
sensors. In our example we show three possible choices for the input filters (Haar,
Linear Spline and Dirac delta).

3.1.1 A general discretization framework

As mentioned previously, the standard approach presented in [51] discretizes the system

by computing the impulse response for different input positions. However, a more general

strategy is to discretize both the input and output using the assumption that the volume

f(x, z) belongs to a shift-invariant subspace (SIS) defined by a template function φ(x, z),

which was proposed in [66] for convolution operators in digital holography. If a function

f(x, z) belongs to a SIS Vφ generated by φ(x, z), it can be written as follows:

f(x, z) =
∑

k

∑

l

fk,lφ

(
x

∆x1
− k,

z

∆z
− l

)
, (3.7)
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where fk,l = ⟨f(x, z), φ̃( x
∆x1
−k, z

∆z − l)⟩ and φ̃(x, z) is the dual basis of φ(x, z). As shown

in Figure 3.2 (top), the relationship shown in Equation (3.7) can be represented with a

simple pipeline: convolution, sampling, convolution. Note that any input f(x, z) belonging

to the subspace Vφ can be perfectly reconstructed from its samples fk,l. Furthermore, the

samples fk,l can be computed by filtering f(x, z) with φ̃(x, z) and then sampling with

sampling interval ∆x1, ∆z. This idea is exemplified in Figure 3.2 (top) by using three

types of filters: a Haar, a linear spline and a Dirac delta.

If f(x, z) is the input to the light-field microscope, the model in Equation (3.7)

suggests an alternative discretization process illustrated in Figure 3.2 (bottom). The input

is sampled using the template function φ(x, z) with sampling intervals ∆x1, ∆z. The

output is sampled using the template function d(x) with a sampling interval ∆x2. Notice

that the sampling of the output is performed intrinsically by the light-field microscope,

whereas the sampling of the input depends on how f(x, z) is modelled. For example, if we

assume f(x, z) is a bandlimited signal, φ(x, z) is the sinc function. If we assume f(x, z) is

a uniform spline, then φ(x, z) is a spline. In contrast, d(x) is usually a fixed box function

(Haar filter) that models the effect of each pixel in the camera sensor [61]. Since the filter

d(x) should have support equal to the pixel size to simulate the effect of the pixel, a box

function is usually enough to model the system properly. See Figure 3.2.

The discretization process leads to a new system defined by the impulse response

hφ(x, xp, zp). This system is equivalent to a cascade of three systems, (a) a 2D convolution

with kernel φ(x, z), (b) the system H, and (c) a 1D convolution with kernel d(x). See

Figure 3.2 (b) for clarification. Therefore, by construction, periodicity still holds for the

impulse response hφ(x, xp, zp):

hφ(x, xp, zp) = hφ(x− T, xp − T, zp). (3.8)

The corresponding discretized impulse response can be found from the impulse response

hφ(x, xp, zp) by sampling it along each dimension. Therefore, the discrete system is defined

by:

hφ[k, kp, lp] = hφ(k∆x2, kp∆x1, lp∆z). (3.9)
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Furthermore, using Equation (3.8) and Equation (3.9) it is possible to show that a period-

icity property also holds for the discrete impulse response hφ[·]:

hφ[k, kp, lp] = hφ[k − rq, kp − ts, lp], (3.10)

where we assumed that integers q, r, s and t exist such that ∆x1
T = q

s and ∆x2
T = t

r and

where both fractions are irreducible. To see this, note that from Equation (3.8), it always

holds that:

hφ(x, xp, zp) = hφ(x− aT, xp − aT, zp), (3.11)

where a can be any integer. Then, using Equation (3.9), we can write the following

equivalence:

hφ[k, kp, lp] = hφ(k∆x2, kp∆x1, lp∆z) = hφ((k − a
T

∆x2
)∆x2, (kp − a

T

∆x1
)∆x1, lp∆z).

(3.12)

Finally, Equation (3.10) is found by choosing a = tq, and using the assumption that

∆x1
T = q

s and ∆x2
T = t

r .

The conventional discretization procedure can be understood as a particular case of

this more general framework. Note that if we allow φ(x, z) to be a Dirac delta, q = 1 and

t = 1, our framework reduces to the standard discretization approach. In this case, s is

the upsampling factor, r is the number of pixels under each microlens N , and hφ[k, kp, lp]

is the standard discrete impulse response, as described in [51].

3.1.2 Filter-Bank Description and Model Simplification

Equation (3.10) indicates that periodically-shift invariance holds for each depth of the dis-

crete system. Therefore, the measurement matrix H derived from the discretized impulse

response hφ[k, kp, lp] can be written as

H =
D∑

i=1

HiSi, (3.13)

where Si is an auxiliary matrix that selects the depth lp = i from the discrete volumetric

input, D is the number of depths, and each matrix Hi follows a block-circulant structure

due to Equation (3.10). Furthermore, as depicted in Figure 3.3, the periodic shift-invariant
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property allows each Hi to be represented as a filter bank that performs a set of convolu-

tions with the input. This accelerates the computation of the forward model. Assuming

that each Hi is full rank, 2×ts×D convolutions are needed to describe the whole H. This is

because the number of branches needed to represent each Hi equals ts, and 2 convolutions

are required for each branch, as shown in Figure 3.3 (b). However, these computational

requirements may be excessive in practice since the number ts of branches can be very

high.

To mitigate this issue, we propose a simplification of the forward model. The

computation can be accelerated by reducing the number of branches of each filter bank to

F by optimally choosing the corresponding filters. First, we analyze the case F = 1, and

then we generalize for arbitrary F . Thus, to approximate each Hi using a filter bank with

a single branch, we state the following optimization problem:

min
c,v

∥Hi −CUrqDtsV
T∥22, (3.14)

where the matrix Dts is a downsampling matrix of factor ts and the matrix Urq models

upsampling by rq. The matrix V is circulant, and it is completely defined by one column

v, which corresponds to the input filter of the filter bank. Similarly, the matrix C is

circulant, and one column c corresponds to the output filter of the filter bank. The proper

selection of c and v will allow the best approximation of Hi in the least square sense. The

norm used here is the Frobenius norm.

To solve this problem, we limit the analysis to v with compact support ts. Since

both Hi and CUrqDtsV
T have a similar structure, they can be expressed as follows:

Hi = (...B̂H,BH, B̌H...), (3.15)

and

CUrqDtsV
T = (...B̂CV,BCV, B̌CV...). (3.16)

The notation B̂H means that each column of BH is shifted upward by rq elements. Simi-

larly, B̌H indicates a downward shift by rq elements. Similar notations apply to BCV. See

Figure 3.1 (b) and Figure 3.3 (a) for clarification. Hence, using Equation (3.15) and (3.16),
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(a)

(b)

Figure 3.3: Filter Bank Representation. In (a), a block diagram of light-field micro-
scope is depicted. For each depth i, the linear system Si performs a slicing operation
which chooses the respective i-th slice of the volume fi[k] = f [k, i]. Then, each slice
is passed through a filter bank to obtain a light field gi[k] per depth i. Finally, the
light field g[k] is the summation of all gi[k]. (b) For each depth, the filter bank can
be approximated by reducing the number of branches of the filter bank from ts to F .
The sampling filter vm[k] defines the circulant matrix Vm and the filter cm[k] = σmum[k]
defines the circulant matrix Cm. Filters vm[k], um[k] are the left and right singular
vectors and coefficients σm are the singular values coming from a singular value de-
composition. Notice that when F = ts, the approximation becomes equality.

expression (3.14) reduces to the minimization of ∥BH − BCV∥22. Based on the compact

support assumption for v, it holds that BCV = cvT. Therefore, c and v should be chosen

such that:

min
c,v

∥BH − cvT∥22. (3.17)

This minimization is a rank-1 approximation easily solved by using the SVD of BH.

More importantly, computing the approximated forward model CUrqDtsV
T involves only

two convolutions, implying much less computational complexity than computing the whole

model.
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As a generalization to the above rank-1 (very coarse) approximation of Hi by solving

problem (3.14), the following rank-F approximation that keeps the largest F singular values

of BH is proposed:

Hi ≈
F∑

m=1

CmUrqDtsV
T
m. (3.18)

For each matrix Vm, the respective vm is a right singular vector of BH and the cm of Cm

is a left singular vector um multiplied by the respective singular value σm: cm = σmum.

Notice that, since this approximation comes from an SVD, the summation progressively

improves the approximation of the matrix Hi. In particular, when F equals ts, the ap-

proximation turns into an equality. We also note that Equation (3.18) can be interpreted

as a filter bank with F branches. Thus, for each depth, the approximation of Hi with F

terms reduces the number of branches of the filter bank from a maximum of ts to F (see

Figure 3.3).

Finally, given a volumetric input with an arbitrary number of depths D, the rank-F

approximation strategy can be applied to approximate each matrix Hi for each depth i

independently.

3.1.3 Experiments and Results

For these experiments, the input sampling intervals are set as ∆x1 = T/N1 for both

lateral axes and ∆z = T , while the output sampling intervals are set to ∆x2 = T/N2 for

both lateral axes, where N1 = 8, N2 = 19, T = 125 µm, and the microscope magnifies

the volume by a factor of M = 25. In part (a), we set φ(x, z) to be a Dirac delta and

a linear spline in part (b). Figure 3.4 shows F = 8 optimal filters computed using our

SVD approximation for two depths. The shown filters are the equivalent 2D versions of

the filters {vm}Fm=1 of the filter bank shown in Figure 3.3. One can observe that the shape

of each filter changes with the depth. In part (a), for z = 0 µm, the filter for singular

value σ1 is close to a square, which means that the system averages a region of the size

of the microlens area, and projects this region into the light-field space. Furthermore,

the singular value σ2 is almost 0.09 times the singular value σ1, which shows the rank

deficiency of the matrix BH for this depth. However, changing the template function to a
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Figure 3.4: Optimal analysis filters. This figure shows F = 8 optimal filters found for
two different depths (z = −11 µm, z = 0 µm) from a maximum of ts = 19 × 19 filters.
For each depth, these filters are the 2-D version of the 1-D filters named {vm}Fm=1. In
(a) we use a dirac Delta as the template function φ and in (b) we use a spline. The
shown singular values σm are normalized to be between 0 and 1.

linear spline modifies the measurement matrix of the system, as shown in Equation (3.9).

We observe in part (b) that the optimal filter corresponding to σ1 for z = 0 µm is not

a square anymore, which shows how the rank deficiency of the matrix BH was reduced

due to the integration along the axial dimension that occurs when a spline is selected as a

template function.

As explained previously, truncating the number of branches of each filter bank of

the model accelerates its computation. To show the utility of this approximation, we

take a single-depth volume (z = −4 µm) and simulate the forward model using both the

standard method and our approximation. We use the same downsampling and upsampling

factor ts = rq = 19 for both lateral axes. Figure 3.5 shows visual results for F = 8 and

F = 38, which correspond to a matrix approximation error of approximately 10% and 1%,

respectively. Notice that the number of filters F is much lower than a maximum ts = 19×

19. Furthermore, for both cases, the approximated light field is visually indistinguishable

from the ground truth, the error measured from the light field is less than 6% for F = 8,

and it is almost zero when F = 38. The latter is because the system matrix is inherently
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a) Ground Truth
Standard Method
t=4.86 s

b) Approximation
Matrix MSE=10%
F=8
t=0.25 s
LF Error= 0.59%

c) Approximation
Matrix MSE=1%
F=38
t=1.14 s
LF Error= 0.00017%

Single-depth Volume
(z=-4 μ m)

LF

969x969x1

Simulation

969x969

Figure 3.5: Model simplification example. A synthetic light field was computed
from a single depth volume. In (a) we show the simulated light-field image using the
standard model without any approximation. Furthermore, we show results using our
approximation method by setting F = 8 and F = 38, and this leads to a matrix error
(mean square error) of 10% in (b) and 1% in (c). The rightmost column shows the
average computational time and the error between the approximated light-field image
and the ground truth. The single-depth volume is a sample of Drosophila melanogaster
Kc167 cells taken from a publicly available library [67]. All the methods were tested
in a CPU ( Intel Core i7-6700, 16 GB RAM) using MATLAB R2018b.

low rank. Furthermore, in this experiment, our simplified model is almost 19 times faster

to compute when F = 8 and four times faster when F = 38 than the standard approach.

3.2 Forward model as a linear CNN

In this section, we propose a novel description of the light-field system by using convolu-

tional layers. We adapt the filter-bank description of the system to model the system using

a linear Convolutional Neural Network (CNN)

3.2.1 4D representation of Light Field

As mentioned in Chapter 2, the light field can be efficiently represented as a 4D function

in photography-related applications. Specifically, the 2D image captured with a light-field

camera is reordered into a 4D array that is a sampled version of the continuous light-

field function [30]. Two dimensions of the array represent horizontal and vertical spatial

coordinates, while the other two represent horizontal and vertical spatial frequencies. The

4D light field can be interpreted as a collection of sub-aperture images or views, which
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Figure 3.6: Linear forward model. In (a) we show how a 2D LF can be transformed
into a set of N×N sub-aperture images, where N×N is the number of pixels under each
microlens. In (b), we show how to describe the image formation of a 3D LF image using
filter banks. Observe to the right that the model does not contain upsampling blocks
since they were absorbed due to the reordering; furthermore, the synthesis filters
were replaced by a group of N × N filters per branch that introduce the additional
dimension representing the view index. In (c) we show the representation of the LFM
system as a forward CNN f(·). The previous structure (b) is a particular case of the
CNN f(·). The notation Conv2D(·, ·, ·, ·, ·) means a 2D convolutional layer with input
parameters ordered as follows: number of input channels, number of output channels,
height of the filter, width of the filter, and stride. If the stride is omitted, it means
unit stride.

are 2D images obtained when the spatial frequencies are fixed [30]. See Figure 3.6 (a) for

clarification. In microscopy, the idea of capturing a 4D light field is still valid if the array

is interpreted as a sampled version of a 4D Wigner distribution function, a generalization

of the concept of light field that considers the effects of diffraction and briefly discussed in

Section 2.2.3 [57].

3.2.2 Linear CNN

The representation of the light field as a group of views has a convenient property. Un-

like the 2D light-field image, each view is not an abstract pattern. Each view preserves

the structure of the original scene since it only carries spatial information. Furthermore,

this multi-view representation is attractive for 3D reconstruction in LFM since it is more
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suitable to fit conventional CNN architectures, as also proposed in [68].

Since the 4D light-field can be obtained by just rearranging pixels of the 2D light-

field, the filterbank description of the LF system described in Section 3.1.2 can be adjusted

to explain the formation of a group of sub-aperture images. Specifically, reordering the

synthesis filter of each branch allows simple computation of the sub-aperture images, as

shown in Figure 3.6 (b). Note that this new representation follows the basic structure of

the original filter bank in Figure 3.3 (a). However, there is no upsampling block since the

original synthesis filter bank is replaced by a group of N ×N filters that leads to multiple

outputs forming a set of views or sub-aperture images.

The multiple-view filterbank description of the system can be conveniently imple-

mented by using convolutional layers. The LF system can be written as a cascade of two

2D convolutional layers without bias term, where the first layer has a stride given by the

downsampling factor s and the second layer has a unit stride. We represent the CNN by

f(·) and call it forward CNN (see Figure 3.6 (c) for clarification). Since the forward CNN

is derived from the filter bank representation, the parameters of f(·) have a connection

with the parameters of the microscope and the physics of the system: the number N ×N

of output channels is defined by the number of pixels under each microlens, the number of

input channels D is the number of depths, the filter size L1 is equal to the dowsampling

factor s, as explained in Section 3.1.2, the filter size L2 is instead given by the support

of the PSF, specifically if the support of the PSF related to the largest depth is M , then

L2 = M/N . Finally, the parameter F is related to the upsampling factor. If F is set to

s × s, it resembles the theoretical model exactly, while if it is set to a smaller value, it

performs an approximation, as explained in Section 3.1.2. This CNN representation offers

additional advantages. It allows model calibration if a labelled dataset is available; other-

wise, the network parameters can be computed directly from the theoretical model using

the SVD approach explained previously. Furthermore, the restriction on the filter size

L1 needed for our SVD method could be removed, and the weights can be learned using

any optimization framework designed for CNN training. Moreover, the adjoint operator

(transpose) can be computed easily by permutations and reflections of the weights of the

CNN, which is a task that is demanding in typical approaches [69].
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3.3 Summary

We have proposed a novel discretization method that uses more diverse sampling densities

and shift-invariant subspaces to sample the impulse response of the light-field system. We

have shown that the periodic-shift invariance still holds in the discrete domain if the ratio

between the input and output sampling interval is a rational number.

Moreover, we have proposed to model the system using filter banks. Both analysis

and synthesis filters of the filter bank can be chosen using the SVD. Furthermore, the

SVD allows a method that accelerates the computation of the forward model. We can

approximate the forward model progressively by using a truncated SVD.

Finally, we have proposed a method to reshape the forward model into a linear

CNN. This novel system description allows taking advantage of existing software designed

for deep learning for faster computation and optimization.
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Chapter 4

Model-Based Reconstruction for

LFM

L
IGHT-FIELD microscopy aims to recover high-quality 3D images from single LF

measurements. However, using a 2D image to encode 3D spatial information lim-

its the quality of the reconstruction. Therefore, typical model-based reconstruction ap-

proaches suffer from low resolution and reconstruction artifacts.

This chapter analyzes the model-based reconstruction of 3D volumes from a single

light field image. We first focus on aliasing-free reconstruction under ideal settings by

exploiting the shift-invariant subspace assumption. Then, instead of using conventional

methods for inversion based on the Richardson Lucy (RL) algorithm, we propose a general

method for reconstruction under real acquisition conditions based on ADMM. Our ap-

proach alleviates typical reconstruction artifact in RL-based methods. Furthermore, it is

faster than typical methods by exploiting simplification techniques explained in Chapter 3.

4.1 Ideal reconstruction under shift-invariant-subspace as-

sumption

In Section 3.1.1, we discussed an alternative discretization process based on the assumption

that the volumetric signal f(x, z) lies in a shift-invariant subspace generated by φ(x, z).

This is again depicted in Figure 4.1 (a). Under this assumption, the image formation

process is described by the discrete filter hφ[k, kp, lp] and, if this filter is invertible, recon-

struction is achieved by first filtering the discrete light field image g[k] with h−1
φ [k, kp, lp]
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Figure 4.1: Shift-invariant subspace assumption. In (a), we show a method to dis-
cretize the system using a shift-invariant subspace (SIS) Vφ. An arbitrary volumetric
signal f(x, z) ̸∈ Vφ is discretized with a template function φ(x, z) at an arbitrary sam-
pling density. In contrast, the output is discretized intrinsically by the microscope
with the kernel d(x) at a sampling density defined by the pixel sensor to obtain a
discrete output g[k] . In (b) we show how to perform perfect reconstruction from g[k]
under the assumption that the volume f(x, z) belongs to the assumed SIS Vφ and the
discrete system hφ[k, kp, lp] is invertible. In (c), we show the discrete version of the
shift-invariant subspace discretization shown in (a). In (d), we show how to perform
perfect reconstruction in the discrete space, under the assumption that HδS is full
rank and the discrete volume f [x, z] belongs to the assumed discrete SIS Vφ[·].

and then by resynthesizing the original volume using a continuous filter φ(x, z), see Fig-

ure 4.1 (b). In other words, perfect reconstruction (aliasing-free) of the continuous signal

f(x, z) is always achievable if two conditions hold: (a) hφ[·] is invertible and (b) the volume

being imaged genuinely belongs to the SIS generated by φ(x, z) e.g. Linear spline, box

function, sinc function (which models band-limited functions). As an analogy, in the prob-

lem of reconstructing a signal from its discrete samples, the named conditions are analog

to the requirement for perfect reconstruction of the input. In Nyquist theorem, when the

input signal genuinely belongs to the space of band-limited functions when the cutoff fre-

quency equal to half the sampling frequency, the signal can be perfectly reconstructed from

its samples. This observation suggests a way to find volumes that can be reconstructed

from the light field image.

In practice, it is difficult to find a close form for hφ; we therefore first discretize

both h(x, xp, zp) and f(x, xp, z) as in [51], but at a much finer resolution than the native
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lateral resolution of the LFM and then apply the shift-invariant model to the discretized

f , which we denote as f [k, l]. This leads to the alternative model shown in Figure 4.1 (c),

which can be described in matrix vector form as follows:

g = HδSφAφf . (4.1)

Here, vector f ∈ Rn is the vectorized volumetric input, vector g ∈ Rm is the light

field image, matrix Aφ ∈ R
n

r1r2
×n represents the convolution with the filter φ̃(x, z) followed

by downsampling, matrix Sφ ∈ Rn× n
r1r2 models upsampling followed by convolution with

the filter φ(x, z), the downsampling and upsampling are defined by the factor r = (r1, r2),

and Hδ ∈ Rm×n is the forward model discretized using [51] (see Figure 4.1 (c)).

To recover the original volume f , one can choose the downsampling factor r and filter

φ[·] in Figure 4.1 (c) in a way that HδSφ is full column rank and then the pseudoinverse

can be used as follows:

f = Sφ(HδSφ)
†g. (4.2)

Notice that this approach allows perfect reconstruction if matrix HδSφ is full rank

and the input belongs to the assumed SIS. This process is depicted in Figure 4.1 (d).

However, we highlight that there are limitations that make Hδ rank deficient that

cannot be overcome by the selection of a proper SIS. These limitations arise from the

inherent lack of diversity in the impulse response for different input positions, e.g., the

impulse response for in-focus points. Thus, the rank of Hδ imposes a limit on the maximum

number of samples that can be recovered. In particular, if the lateral sampling interval

∆x1 is decreased, the axial sampling interval ∆z needs to be increased. This implies that

it is not feasible to achieve high resolution simultaneously in both axes. Finally, one needs

to choose the template function φ[·] and downsampling factor r such that the inversion of

HδSφ is as stable as possible, which gives a degree of freedom to investigate in practice.

4.1.1 Experiments

In this section, we demonstrate this framework by modelling the SIS using separable 3D

filters formed by one-dimensional linear splines. For the subspace used in the first scenario

(scenario 1), we set a downsampling factor r = (4, 4, 16) which means a factor of 4 for both
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Figure 4.2: Ideal reconstruction using the pseudoinverse on synthetic data. In this
experiment, the ground truth volume satisfies the SIS assumption. We show two
volumes lying into 2 different subspaces as ground truth, subspace 1 (a) and subspace 2
(b). Then, we show the respective reconstruction without any prior assumption (using
ISRA) and the reconstruction using the pseudoinverse with the prior assumption.
Top, we show the in-focus plane, one xz, and one yz plane. Below, we show additional
slices for different depths. All the distances are measured in µm. The volumetric
data was taken from Lilium Longiflorum Pollen [67], while the light field images were
simulated from the 3D pollen volumes.

lateral dimensions and 16 for the axial dimension. In the second case, scenario 2, we use

the same filter type but a downsampling factor r = (8, 8, 8). For this experiment, we use

publicly available 3D data: the Lilium Longiflorum Pollen [67]. This volume is projected
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into the named subspaces to ensure the assumption holds. Figure 4.2 (a) shows that the

ground truth volume for scenario 1 has a visually slightly higher lateral resolution than for

scenario 2 due to the different downsampling factors r used for each subspace.

To compute Hδ we use lateral and axial sampling intervals, ∆x1 and ∆z, equal

to T/16, and the output sampling interval ∆x2 defined by the pixel size of the sensor is

equal to T/19, where T is the microlens pitch. Notice that our framework allows diverse

sampling densities for both input and output, as opposed to [51]. Then, we compute

the light field image using matrix Hδ and attempt to recover the original volume using

Equation (4.1). We clarify that the pseudoinverse was approximated iteratively since the

closed-form expression of the pseudoinverse is not accessible.

Figure 4.2 shows the comparison between the proposed approach and the conven-

tional reconstruction using ISRA. We show both lateral and axial slices of the volume.

The reconstructed volume using the pseudoinverse and the SIS assumption matches the

ground-truth volume very accurately, which is verified by the high Peak Signal to Noise Ra-

tio (PSNR) and Structural Similarity Index Measure (SSIM). Moreover, the reconstruction

does not suffer from heavy square-like artifacts near z = 0 as in the standard reconstruc-

tion approach (ISRA). Note that the volume was reconstructed at the maximum sampling

density 16/T for both scenarios. However, for scenario 1, the volumetric signal lies in a

SIS with a shift equal to 0.25 times the microlens pitch, and for scenario 2, the volume

lies in a SIS with a shift equal to 0.5 times the microlens pitch. This experiment shows

that, for the proposed ideal scenarios, exploiting the underlying low-dimensionality of the

volume allows artifact-free reconstruction with much higher accuracy than ISRA in terms

of two metrics, SSIM and PSNR.

4.2 General Scenario and Additional priors

As mentioned previously, when no prior assumption is made about the input, the recon-

struction suffers from square-like artifacts near the plane z = 0. This is explained in [51]

and also verified in our experiments in the previous section. The reason is that a solu-

tion found using the pseudoinverse of Hδ lies in the row space of the matrix Hδ, which

only contains volumes with artifacts, due to the rank deficiency and the particular matrix
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structure for this depth.

Furthermore, during the volumetric reconstruction, commonly used algorithms such

as ISRA and RL only impose mild priors (e.g., non-negativity and noise distribution),

which are insufficient to regularize the solution. Therefore, we suggest incorporating more

advanced priors as additional regularization to enforce the solution to live in a richer space

far away from the row space of Hδ.

In particular, we propose two techniques for volume reconstruction. First, we pro-

pose to solve the following optimization problem:

min
f
∥Hδf − g∥22 + ∥Dn

xf∥1 + ∥Dn
y f∥1 + ∥Dn

z f∥1

s.t. f ≥ 0,
(4.3)

where f is the desired volume, g is the light field image, and Dn
x, Dn

y and Dn
z are the

n-th order derivatives along each axis. The parameter n can be adjusted experimentally

since the derivative order does not imply too much additional computation. Notice that if

n = 1, the regularizer is an anisotropic total variation. However, this whole optimization

is computationally demanding due to the high dimension of matrix Hδ. To alleviate this

issue, we propose to use our approximation method based on SVD to compute the forward

model.

As shown in the previous section, a SIS spanned by linear splines is able to reproduce

typical structures that appear in the LFM image of a pollen volume. Considering this, we

state the following optimization problem that exploits the SIS assumption to impose an

additional constraint on the reconstructed volume:

min
f
∥HδSφAφf − g∥22 + ∥Dn

xf∥1 + ∥Dn
y f∥1 + ∥Dn

z f∥1

s.t. f ≥ 0,
(4.4)

where matrix Aφ and matrix Sφ have been defined before. Note that if the projec-

tion SφAφ is orthogonal, the transpose of the matrix HδSφAφ satisfies:

(HδSφAφ)
T = (SφAφ)

THδ
T = SφAφHδ

T. (4.5)

Therefore, the rows of the new measurement matrix span volumes that always lie

in the assumed subspace. This characteristic, together with the sparsity imposed into the
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Algorithm 1 Volume Reconstruction
Input : Light field image g, matrix block BH for every depth, learning rate α, impor-

tance of derivatives {ρx, ρy, ρz}, non-negativity importance ρ+, soft-threshold
parameter λ, number of iterations K.

Output: Reconstructed Volume fK

k = 0
Initialize fk and auxiliar variables {uk

i }4i=1, {zki }4i=1 to zero.
for k < K do

zk+1
1 = prox+(f

k + uk
1)

zk+1
3 = prox|·|(D

n
y f

k + uk
3;λ)

zk+1
2 = prox|·|(D

n
xf

k + uk
2;λ)

zk+1
4 = prox|·|(D

n
z f

k + uk
4;λ)

fk+1 ← solve Equation (4.6) ( Hfk+1 is computed from BH, possibly using our fast
approximation)

(I+ ρ+I+ ρxD
nT
x Dn

x + ρyD
nT
y Dn

y + ρzD
nT
z Dn

z )f
k+1

= fk − αHT(Hfk − g) + ρ+(z
k
1 − uk

1)

+ ρxD
nT
x (zk2 − uk

2) + ρyD
nT
y (zk3 − uk

3)

+ ρzD
nT
z (zk4 − uk

4) (4.6)

uk+1
1 = uk

1 + fk+1 − zk+1
1

uk+1
2 = uk

2 +Dn
xf

k+1 − zk+1
2

uk+1
3 = uk

3 +Dn
y f

k+1 − zk+1
3

uk+1
4 = uk

4 +Dn
z f

k+1 − zk+1
4

k = k + 1
end

n-th order derivatives, helps to reduce typical reconstructions artifacts. Furthermore, the

dimension of the matrix HδSφ is smaller than that of Hδ. This allows solving the problem

by exploiting the underlying low-dimensional 3D space where f lives, thereby contributing

to efficient computation.

Finally, to solve optimization problems (4.3) and (4.4), we require an algorithm

that avoids time-consuming inner loops and does not introduce strong artifacts from the

computation of the transpose. To this end, we propose to adapt the inner-loop-free ADMM

proposed in [70] for cryogenic electron microscopy to the light field problem, as shown in

Algorithm 1. Note that Algorithm 1 can be implemented efficiently since it only needs the

computation of the forward model, the adjoint (transpose), additional convolutions, and

point-wise non-linear operators (soft-thresholding and rectifier linear units).
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4.3 Experiments and Results

In this section, we show experimental results using synthetic and real data. For synthetic

data, we measure reconstruction performance using the peak signal to noise ratio (PSNR)

and the structural similarity index measure (SSIM) since the ground truth is available in

this case. For real data, we only show reconstructed results for visual comparison.

If not stated otherwise, the settings of the light field microscope used for both the

simulated and the real data are set as: numerical aperture = 1, refractive index = 1.33,

wavelength = 490 nm, magnification (M) = 25, microlens pitch (T ) = 125 µm, microlens

focal length = 1250 µm, tube lens focal length = 0.18 m, pixels under each microlens =19.

Furthermore, to compute Hδ we set the lateral and axial sampling intervals, ∆x1 and ∆z

to T/16, and set the output sampling interval ∆x2 defined by the pixel size of the sensor

to T/19, where T is the microlens pitch.

4.3.1 Synthetic Data

To validate our analysis, we perform experiments using two types of volumes. First, from

the pollen structure [67], we simulate a light field image using matrix Hδ. The size of the

synthetic light field is 779×779 pixels, while the original and reconstructed volumes are of

size 656×656×96 voxels (notice that 659 = 779×16/19). Then, from the light field image,

we try to reconstruct the volume using five methods: (a) conventional ISRA [2], (b) ISRA

with total variation, (c) artifact-free ISRA [62], (d) ADMM with sparsity regularization on

the derivatives, as shown in Equation (4.3), and (e) ADMM with SIS assumption as well

as sparsity regularization on the derivatives, as shown in Equation (4.4). For the latter

case, we choose splines as template functions. Specifically, we choose the settings named

‘scenario 1’ in the previous section.The order of the derivative n in Equation (4.3) and (4.4)

is set to 3. For all the three methods, the number of iterations is set to 24. In Appendix B

we discuss the use of a different stopping criteria.

We clarify that we use the same algorithm to solve both optimization problems (4.3)

and (4.4). However, for the first case, our approximation method (3.18) is used to make

the optimization computationally tractable, while for the second case, the approximation

is not needed since HδSφ has a smaller size than Hδ. In these experiments, we choose
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Figure 4.3: Reconstruction using synthetic light field data. Top, we show the in-focus
plane, one xz, and one yz slice of the ground truth volume, the reconstruction using
ISRA, ISRA with total variation [2], artifact-free (AF) ISRA [62], ADMM without
SIS assumption, and ADMM with SIS assumption. The shown PSNR and SSIM
correspond to the whole volume. Furthermore, below, we show additional slices for
different depths. The shown PSNR and SSIM correspond to each slice. In this case,
the ground truth volume does not satisfy the SIS assumption. We use the Lilium
Longiflorum Pollen [67] dataset in (a), and a brain slice taken from an EGFP tagged
triple transgenic mouse line in (b). The light field images were created synthetically
from wide field volumes. All distances are measured in µm.
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Table 4.1: Performance of model-based methods on synthetic data.

PSNR SSIM Time/Iteration (s)
Pollen

ISRA [19] 26.05 0.54 470
ISRA (Total Variation) [2] 26.18 0.53 520
ISRA (Artifact-free) [62] 25.10 0.54 485

ADMM 27.22 0.65 79
ADMM (SIS) 27.70 0.66 32

Neurons
ISRA [19] 30.81 0.94 471

ISRA (Total Variation) [2] 28.38 0.91 530
ISRA (Artifact-free) [62] 32.20 0.92 481

ADMM 33.83 0.96 68
ADMM (SIS) 39.67 0.98 26

F in Equation (3.18) to achieve a matrix approximation error of 10%. Furthermore, note

that in Algorithm 1, the additional computation performed includes convolutions and

the adjoint operator of the system. The convolutions can be computed efficiently, and the

adjoint operator can be found easily from the original measurement matrix using reflections

and permutations. Therefore, Algorithm 1 can be implemented efficiently. Finally, the

parameters α, ρx, ρy, ρz, ρ+ and λ of Algorithm 1 can be found manually. In this section,

we show that different choices of values have a limited effect on the performance of the

method.

Figure 4.3 (a) shows the 3D structures recovered from a simulated light field image

using the ISRA approaches and our method. Both the standard ISRA and the ISRA

with total variation [2] introduce artifacts at planes near z = 0. In contrast, our ADMM

methods achieve artifact-free reconstruction. Even though the ISRA version proposed

in [62] also achieves artifact-free reconstruction, the solution is over-smoothed near z = 0.

Furthermore, our ADMM approaches give higher PSNR and SSIM than all the ISRA

approaches. The ADMM with the SIS prior gives slightly higher PSNR and SSIM than

the ADMM with no SIS assumption, as shown in Table 5.1.

For the second experiment, we imaged a 50-um-thick brain slice from a mouse

line Ai90 [71] expressing an Enhanced Green Fluorescent Protein (EGFP) with a wide-

field microscope (Figure 4.3 (b)). Then, we simulated light field images using the captured

volume as ground truth data. For this type of data, we obtain similar results as in the pre-

vious case. Both ADMM methods achieve artifact-free reconstruction, while the standard
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Table 4.2: Performance of iterative methods with Poisson noise.

α0 48 40 32 24 16 8 48 40 32 24 16 8
Pollen

PSNR SSIM
ISRA [19] 27.17 26.89 26.35 27.16 27.07 26.73 0.62 0.63 0.54 0.57 0.56 0.55

ISRA (Total Variation) [2] 26.96 26.19 26.48 26.28 26.41 25.84 0.56 0.54 0.54 0.54 0.54 0.53
ISRA (Artifact free) [62] 26.77 25.16 25.92 26.03 25.50 25.71 0.55 0.51 0.52 0.53 0.51 0.52

ADMM 26.83 26.65 27.11 27.04 27.21 26.79 0.63 0.63 0.64 0.64 0.64 0.64
ADMM (SIS) 27.82 26.97 26.61 27.27 27.80 27.67 0.64 0.64 0.66 0.65 0.66 0.66

Neurons
PSNR SSIM

ISRA [19] 34.20 27.93 32.51 32.61 29.31 33.79 0.88 0.80 0.88 0.90 0.88 0.94
ISRA (Total Variation) [2] 29.50 25.92 28.13 29.77 27.71 28.60 0.84 0.77 0.83 0.86 0.84 0.86
ISRA (Artifact-free) [62] 30.05 30.82 31.34 32.15 31.58 31.88 0.86 0.87 0.88 0.90 0.90 0.91

ADMM 33.02 31.50 34.25 34.69 32.70 34.36 0.94 0.93 0.96 0.96 0.95 0.96
ADMM (SIS) 31.96 29.68 32.88 34.60 32.12 34.37 0.90 0.88 0.92 0.95 0.94 0.96

ISRA and the ISRA with total variation [2] reconstructs squares near the plane z = 0, as

shown in Figures 4.3 (b). The artifact-free ISRA [62] removes squares, but in this case the

solution is distorted. Quantitatively, as shown in Table 5.1, the resulting PSNR and SSIM

using the SIS assumption are slightly higher than those without the SIS assumption. Both

ADMM methods outperform ISRA approaches in terms of PSNR and SSIM.

Furthermore, for the given settings, the ADMM methods are faster than the con-

ventional methods. Each iteration of all the ISRA methods takes more than 470 seconds

on average, whereas the ADMM without SIS prior takes 74 seconds, and ADMM with the

SIS prior takes 29 seconds on average, as shown in Table 5.1. All the methods were tested

in a CPU ( Intel Core i7-6700, 16 GB RAM) using MATLAB R2018b. Further results with

synthetic light field created from mouse blood vessels [43] and mouse neurons co-expressing

the functional calcium indicator GCaMP8f, and the structural marker tdTomato [72] are

shown in Section 4.3.2.

Performance under noise. To further analyze the performance of our method we in-

cluded Poisson noise in the system as follows:

y ∼ α0Pois(
Hδx

α0
), (4.7)

which means that y is drawn from a Poisson distribution with mean Hδx
α0

. The scalar α0

controls the amount of noise ( larger α0 means more noise).

We use the same datasets used in the previous section for this experiment. We
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Figure 4.4: Reconstruction using noisy synthetic light field data. Top we show recon-
struction when the Poisson model in Equation (23) noise uses α0 = 16, and bottom we
show reconstruction for α0 = 40. This figure shows slices for different depths of the
ground truth volume, the reconstruction using ISRA, ISRA with total variation [2],
artifact-free (AF) ISRA [62], ADMM without SIS assumption, and ADMM with SIS
assumption. All distances are measured in µm. The shown PSNR and SSIM corre-
spond to the whole volume. In this case, the ground truth volume does not satisfy
the SIS assumption. We use the Lilium Longiflorum Pollen [67] dataset in (a), and a
brain slice taken from an EGFP tagged triple transgenic mouse line in (b). The light
field images were created synthetically from wide field volumes.

synthetically created LF images with different noise levels by varying the scalar α0 from 8

to 48, as shown in Table 4.2. We found that both ADMM methods can manage adequately

low to moderate noise conditions. Furthermore, the ADMM methods achieve the highest

PSNR and SSIM for most cases. Specifically, for the pollen data, the ADMM with SIS prior

consistently gives the best performance, as shown in Table 4.2. Visual results for the pollen

dataset are shown in Figure 4.4(a). We show results for reconstruction that corresponds to
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α0 = 16 and α0 = 40. For both levels of noise, our ADMM with SIS assumption achieves

the best performance. For this dataset, it is found that quantitatively, the original ISRA

is more robust than the artifact-free and TV versions even though it introduces strong

artifacts near the in-focus plane.

Similarly, for the neuron data, the ADMM without the SIS assumption achieves the

best performance in most cases. Visual results for the neuron dataset are shown in Fig-

ure 4.4(b). Moreover, for this dataset, the SIS assumption only provides the best PSNR

for minimum noise levels (α0 = 8). Furthermore we found that the artifact-free ISRA

achieves the best quantitative performance among the ISRA methods for this dataset.

However, qualitatively Figure 4.4 (b) shows that both the artifact-free ISRA and ISRA-

TV are severely affected by noise. In particular, the noise is highly detrimental at depths

z = −11µm, z = 5µm, and z = 8µm. In contrast our ADMM method without the

SIS assumption can visibly tolerate noise for both α0 = 16 and α0 = 40.Furthermore, Sec-

tion 4.3.3 shows that our methods also exhibit satisfactory results for real noisy acquisition

conditions.

Ablation Study. To evaluate the robustness of our algorithm, we evaluated the PSNR

achieved with our ADMM methods when varying each hyper-parameter in Algorithm 1

independently, while the rest of the parameters were kept fixed using the values shown in

Table 4.3. As mentioned previously, these hyper-parameters were found manually. We use

the Pollen dataset in these experiments. Note that the last column in Table 4.3 shows the

PSNR achieved by the corresponding configuration.

Table 4.3: ADMM hyper-parameters.

α ρ+ ρx, ρy ρz λ PSNR
(No SIS) 2× 10−6 1.21 1000 100 5× 10−4 27.22

(SIS) 2.5× 10−6 1.21 2000 0 5× 10−4 27.70

We tested the 6 parameters of our algorithm: learning rate α, importance of deriva-

tives {ρx, ρy, ρz}, non-negativity importance ρ+ and the threshold λ for soft-thresholding.

Note that we fixed ρx and ρy to be the same.

In our experiments, we found that the maximum PSNR achieved by the ADMM with

the SIS prior is always larger than the maximum PSNR achieved by the ADMM without
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Table 4.4: Hyper-parameter study(PSNR).

α ρ+ ρx, ρy ρz λ
[0.3, 3]× 10−6 [1.2, 12] [250, 2500] [0, 100] [0.15, 15]× 10−4

ADMM Min. 24.91 24.32 27.32 25.84 27.31
Max. 27.48 27.47 27.47 27.47 27.48

ADMM(SIS) Min. 25.67 25.98 27.47 27.50 27.62
Max. 27.82 27.86 27.71 27.71 27.71

the SIS prior, as shown in Table 4.4. These results coincide with the results in Table 5.1.

Furthermore, the PSNR shows no significant variations when the hyperparameters are

modified within the ranges in Table 4.4. We also note that, the non-negativity importance

ρ+ and the learning rate α have a greater impact on the reconstruction.

4.3.2 Additional Datasets

In this section, we perform volume reconstruction using different settings for the light field

microscope. Furthermore, two additional datasets are used for reconstruction: (1) Mouse

brain slices with fluorescently labelled blood vessels captured using confocal microscopy

from [43] and (2) Neurons from mouse brain slices expressing calcium indicator GCaMP8f

taken with our two-photon microscope.

From the 3D volumes we created synthetic light field images under 3 different con-

figurations as follows:

(a) Numerical aperture = 1, refractive index = 1.33, wavelength = 490 nm, magnifica-

tion = 25, microlens pitch = 125 µm, microlens focal length = 1250 µm, tube lens

focal length = 0.18 m, pixels under each microlens =19.

(b) The wavelength is changed to 660 nm while the rest of the parameters are the same

as in (a).

(c) The wavelength is set to 488 nm, the numerical aperture is set to 0.5, the magnifi-

cation is 22.5, the microlens focal length is 3125 µm, and the tube lens focal length

is 0.3 m, while the other parameters are the same as in (a).

For this experiment, we simulate a light field image using the measurement matrix

named Hδ. The size of the reconstructed volume is 1072x1072x92, while the light field

image is of size 1273x1273. We reconstruct the volume using the classic ISRA and our
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Figure 4.5: Reconstruction using synthetic light field images computed from labelled
blood vessels captured using confocal microscopy from [43]. We show slices for dif-
ferent depths using ISRA, ADMM without SIS assumption, and ADMM with SIS
assumption. The shown PSNR and SSIM are computed for each slice. Labels (a),
(b) and (c) indicate the configuration used for the microscope, as explained in Sec-
tion 4.3.2

.
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Figure 4.6: Reconstruction using synthetic light field images computed from mouse
brain slices captured using our two-photon microscope. We show slices for different
depths using ISRA, ADMM without SIS assumption, and ADMM with SIS assump-
tion. The shown PSNR and SSIM are computed for each slice. Labels (a), (b) and
(c) indicate the configuration used for the microscope, as explained in Section 4.3.2
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Table 4.5: Performance of iterative methods with different microscope settings.

LFMSettings (a) (b) (c) (a) (b) (c)
Blood Vessel

PSNR SSIM
ISRA [19] 30.74 33.95 30.37 0.867 0.915 0.915
ADMM 31.91 35.43 34.30 0.905 0.938 0.939

ADMM (SIS) 31.76 35.52 34.32 0.904 0.937 0.940
Two-Photon Neurons

PSNR SSIM
ISRA [19] 30.40 35.01 32.33 0.570 0.706 0.631
ADMM 30.94 36.10 33.44 0.635 0.789 0.706

ADMM (SIS) 30.90 35.77 33.29 0.634 0.782 0.702

ADMM methods. For the ADMM with the SIS assumption, we choose splines as template

functions. We choose the settings named ‘scenario 1’ in Section 4.1. For all the three

methods, the number of iterations is set to 24.

In Figure 4.5, we show the results for the mouse blood vessels. Notice that the

classic reconstruction introduces square-like artifacts near the native object plane while

our ADMM methods remove artifacts. Similar artifact reduction is shown for the mouse

neurons in Figure 4.6. In addition, the PSNR and SSIM for our ADMM methods are higher

than those from classic ISRA, as shown in Table 4.5. In Figure 4.5 and Figure 4.6, we

compute the PSNR and SSIM per depth. Notice that our ADMM methods achieve better

PSNR and SSIM for most depths. In particular, there is a significant improvement close to

the in-focus plane. Furthermore, our experiments found that the microscope configuration

can affect the obtained PSNR and SSIM (in all the reconstruction methods). In particular,

the configuration named (b) allows higher PSNR and SSIM than other configurations. For

the three proposed configurations, our approaches perform better than classic ISRA.

4.3.3 Real Data

In this section, we evaluate the proposed approaches using real light field data. The

experimental settings we use for the ADMM algorithms are the same as those in the

previous section. The size of the real input light field image is 2033 × 2033 pixels. From

this single image, we reconstruct a volume of size 1712× 1712× 96 voxels covering a depth

range −15µm < z < 15µm.

The light field image is captured from the same 50-µm-thick mouse brain slice of

the previous section. We show the light field image in Figure 4.7 (a). We also capture the
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Figure 4.7: Reconstruction using real light field data from a brain slice (50 µm thick)
imaged from an EGFP tagged triple transgenic mouse line. In part (a), from left to
right, we show the original light field image; then, for comparison, we show a wide-
field image taken without the microlens array; finally, the reconstruction using ISRA,
our ADMM without and with the SIS assumption. We show the in-focus plane and
two xz and yz slices below and to the left of each lateral slice, respectively. In part
(b), we show additional slices for different depths. All the distances are measured in
µm. The settings used to capture both the light field image, and the wide-field image
are specified in Section 4.3.

corresponding volume with the microscope in wide-field modality by scanning it along the

z-axis without the microlens array. This wide-field image stack provides an approximation

of the target volume we aim to reconstruct. The in-focus plane, together with two axial

slices, are shown in Figure 4.7 (a). Furthermore, different lateral slices corresponding to

seven depths are shown in Figure 4.7 (b). Notice that the non-ideal optical system and

the specimen type cause increased noise in the images. To avoid noise amplification, the

number of iterations used for reconstruction must be chosen properly. As proposed in

previous works [2], [62], [19], a typical empirical number of iterations used for ISRA is
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Figure 4.8: Reconstruction using real light field data from acute mouse brain slices
expressing the calcium indicator NIR-GECO2G [73], [74]. In part (a) from left to
right, we show the original light field image, a wide-field image taken with the mi-
croscope, the reconstruction using ISRA, and our ADMM without and with the SIS
assumption. We show the in-focus plane and two xz and yz slices below and to the left
of each lateral slice, respectively. In part (b), we show additional slices for different
depths. All the distances are measured in µm. The settings used to capture both the
light field image, and the wide-field image are specified in Section 4.3

between 8 and 10. We fixed this value to 10 for ISRA, and keep 24 iterations for our

ADMM methods.

We compare the conventional method ISRA with the ADMM methods with and

without SIS prior. In this case, we only present visual results since there is no ground

truth available. As shown in Figure 4.7, both ADMM methods give a better reconstruction

performance than ISRA in terms of artifacts reduction. In particular, these artifacts are

strongly present at z = 0 µm, but also at other slices close to the in-focus plane, such as

z = 3 µm and z = −3 µm. In general, comparable performance is achieved for depths far
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from z = 0 µm, but artifacts near the native object plane are clearly removed when using

the proposed ADMM methods.

For the second experiment, we use a light field image captured from acute mouse

brain slices expressing the calcium indicator NIR-GECO2G [73], [74]. Furthermore, the

size of the input light field is 1881× 1881 pixels. From this single image, we reconstruct a

volume of size 1584× 1584× 96 voxels covering a depth range −30µm < z < 30µm.

Figure 4.8 (a) shows the light field image and the corresponding wide-field image

stack (in-focus plane with two axial slices) captured from the same volume. Furthermore,

different lateral slices corresponding to seven depths of the captured volume are shown

in Figure 4.8 (b). In this case, we find similar results as in the previous example. We

observe that both ADMM methods behave similarly but remarkably remove artifacts near

the native object plane, specifically at depths z = −2 µm, z = 0 µm and z = 2 µm. ISRA

instead produces strong square-like artifacts in these planes.

Finally, we show how our method adapts to different types of data by performing

reconstruction using the light field data provided in [65]. For this experiment, part of the

previous microscope settings is modified. According to [65], the wavelength is set to 488

nm, the numerical aperture is 0.5, the magnification is 22.5, the microlens focal length is

3125 µm, and the tube lens focal length is 0.3 m. From a single light field of size 931×931

pixels, we reconstruct a volume of size 752×752×96 in the range −50µm < z < 50µm. The

image corresponds to a group of beads, as shown in Figure 4.9 (a). Furthermore, in this

case, a high-quality image stack of the volume obtained using selective plane illumination

microscopy (SPIM) is available. Additionally, the reconstruction obtained using the deep

network hylfm-net from [65] is also available.

The results obtained using light field data from [65] are consistent with our previous

conclusions. Figure 4.9 (a) and 4.9 (b), show that ISRA produces square-like artifacts

near the native object plane while both ADMM methods do not introduce noticeable

artifacts. In addition, this figure show that the hyLFM-net can reconstruct sharp beads

that are visually similar to the SPIM images because SPIM volumes were used as labels

in the training stage. However, when the trained hyLFM-net [65] and VCDNet [63] were

tested on synthetic light field images of pollens and neurons (shown in Figure 4.3), the

performance of both networks degraded dramatically, as shown by the poor PSNR and
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Figure 4.9: Reconstruction using real light field data from beads taken from [65]. In
part (a), from left to right, we show the original light field image, a SPIM image, the
reconstruction using the HyLFM-Net [65], the reconstruction using ISRA, and finally,
our ADMM without and with the SIS assumption. We show the in-focus plane and
two xz and yz slices below and to the left of each lateral slice, respectively. In part (b),
we show additional lateral slices for different depths. All the distances are measured
in µm. The settings used to capture the light field image are specified in Section 4.3
according to [65].

SSIM scores shown in Table 5.2. Even though both learning approaches can perform well

if tested with similar data as used in the training stage [65], [63], producing thousands of

labelled data pairs for each type of sample is challenging and even unfeasible under many

realistic conditions. Furthermore, in our scenario, a network trained on synthetic data will

not perform well on real data without proper modelling of the background noise and light

scattering, as opposed to [63]. This highlights the relevance of model-based methods in



4.3 Experiments and Results 66

scenarios like those discussed in this chapter.

Table 4.6: Performance of learning methods on synthetic data.

PSNR SSIM
Pollen

VCDNet 22.76 0.49
hyLFMNet 22.84 0.57

Neurons
VCDNet 23.03 0.23

hyLFMNet 22.54 0.10

Deep-Learning prior. In this section, we perform additional experiments using a self-

supervised learning technique that aims to solve problems related to the lack of data for

training.

Specifically, we use a deep-learning prior for reconstruction [75]. In Section 4.2,

we proposed to use a customized ADMM algorithm to perform volume reconstruction.

However, ADMM is a general tool that can also be used to impose a deep prior. Therefore,

another approach to solve the LFM problem is to replace the proposed SIS prior with a

deep-learning prior and use the ADMM algorithm for reconstruction, as proposed in [76]

for medical image restoration. Thus, in this method, we aim to solve the inverse problem

by assuming that the reconstructed volume is the output of a neural network with input

z. Furthermore, an additional isotropic total variation prior is imposed as follows:

min
θ
∥Hδfθ(z)− g∥22 + ∥t∥2,

s.t. Dfθ(z) = t,
(4.8)

where fθ(z) is a neural network with learnable parameters θ, z is a fixed random

vector and D is the discrete gradient operator. To solve this problem we use ADMM, as

proposed in [76]. The following sub-problems must be solved for each iteration k:

θk+1 ∈ argmin
θ

1

2
∥Hδfθ(z)− g∥22+

+
β

2
∥Dfθ(z)− tk +

λk

β
∥22,

(4.9)
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Figure 4.10: Reconstruction using ADMM with deep prior. Top, we show the in-focus
plane, one xz, and one yz slice of the ground truth volume, the reconstruction using
ADMM with deep prior. All distances are measured in µm. Furthermore, below, we
show additional slices for different depths. The shown PSNR and SSIM correspond
to the whole volume. We use the Lilium Longiflorum Pollen [67] dataset. The light
field images were created synthetically from the 3D volumes.

tk+1 = argmin
t

∥t∥22+

+
β

2
∥t− (Dfθk+1(z) +

λk

β
)∥22,

(4.10)

λk+1 = λk + β(Dfθk+1(z)− tk), (4.11)

where Equation (4.9) is solved inexactly by applying a prefixed number of iterations

of a gradient-based method using Adam optimizer. Equation (4.10) is solved directly since

it is a least-square minimization, and the last equation (Eq. (4.11)) simply updates the

dual variable λ.

The deep-learning-prior approach is evaluated using the pollen dataset described in

the previous section. For this experiment, z is a random vector sampled from a uniform

distribution. The structure of the network fθ(·) is a 2D-UNet, as proposed in previous

works [43], [63] for supervised learning for LFM.

In Figure 4.10, we show the results after solving Equation (4.8) iteratively. The

recovered volume has limited quality (PSNR=23.47) and suffers from reconstruction ar-

tifacts at different depths, for instance, at z = −2 and z = 9. These artifacts are not

the classic square-like artifacts close to the native object plane; they appear to be due to
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the structure of the network used. However, part of the volume structure is recovered at

specific depths, for instance, at z = −9 and z = −13. As shown in Appendix B, in the

same conditions our model-based ADMM achieves PSNR 31.32. Furthermore, note in Fig-

ure 4.10 that the light field image re-synthesised from the reconstruction is almost identical

to the input light field image (PSNR=56.62) since the problem is highly ill-posed. Hence,

the proposed priors and settings are not enough to avoid obtaining undesired solutions for

this particular experiment.

In addition, we would like to emphasize that this approach is highly demanding

in terms of computation since one artificial neural network must be “trained" for each

reconstruction. Specifically, to obtain the result shown in Figure 4.10, we fixed the number

of inner iterations to 100, and we ran 1000 iterations for the outer loop [76]. As mentioned

in the introduction, LFM usually seeks to reconstruct volume time series. Therefore,

reconstruction approaches for LFM should take computational complexity into account.

In our approach, we successfully achieved a balance between complexity and reconstruction

performance.

4.4 Summary

We have experimentally shown that in an ideal scenario, perfect reconstruction can be

achieved by using the pseudoinverse; however, this depends on the proper selection of the

template functions and shifts defining the shift-invariant subspace. Furthermore, we pro-

pose a new 3D reconstruction algorithm for light field microscopy with improved PSNR

and SSIM, fewer artifacts, and faster speed (lower computational complexity) than con-

ventional methods. This is achieved by incorporating additional priors and using a specific

algorithm based on ADMM. The improvement in computational time is due to the ex-

ploitation of the underlying low-rank property of the measurement matrix by either using

a specific SVD or assuming that the reconstructed volume lies in a SIS. Experimentation on

both synthetic and real data also demonstrate that our approach consistently outperforms

conventional volume reconstruction approaches.
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Chapter 5

Physics-based Deep Learning for

Imaging Neuronal Activity via

Two-photon and Light Field

Microscopy

S
TUDYING the rapid dynamics of hundreds of neurons in brain tissue poses a challenge

for conventional methods used in microscopy imaging. Typical optical techniques

struggle to achieve simultaneous 3D imaging of multiple neurons since they focus on a

single plane or point in space. Furthermore, brain tissue is scattering, which increases the

difficulty of capturing high-quality images of neurons.

Deep learning is a potential tool to enable efficient 3D imaging of large popula-

tion of neurons. In particular, it has shown potential to alleviate typical problems in

LFM [63], [43], [65]. However, current learning approaches for LFM are tested under ide-

alized settings that are difficult to achieve in many realistic situations. For instance, when

studying neuronal activity in mammalian brain tissue, the sample is highly scattering,

non-transparent and contains high background noise, which makes training artificial neu-

ral networks (ANN) challenging. On the other hand, model-based optimization approaches

have shown to be more robust under these adverse experimental conditions [59], [60].

This chapter proposes a novel multimodal imaging approach leveraging the respec-

tive strengths of 2P microscopy and LFM. We label neurons in the mouse brain tissue
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Figure 5.1: Overview of our approach. As shown in (a), we train our network using
a small dataset of 28 training pairs. We effectively collect a 28-slice focal stack of LF
images and the corresponding 2P 3D image of 80 depths for a single brain sample
labelled with the TdTomato fluorophore. In addition, we use unlabelled data for
training. We use three sequences of 80 frames each from 3 different samples for
training. These brain samples are labelled with the jGCaMP8f protein which encodes
calcium responses in the brain, which is an indirect measurement of electrical brain
activity. The architecture of our network is based on the unfolding of the ISTA
algorithm. We use a training loss that exploits the knowledge of the forward model
and an adversarial regularizer. The testing is performed on LF stacks from unseen
samples or LF sequences, and we produce one volume per frame from which we extract
neuronal activity, as shown in part (b).

using two types of fluorescent proteins: TdTomato and jGCaMP8f. TdTomato captures

the static neuron distribution in space, disregarding its activity. On the other hand, the

jGCaMP8f is an indicator of calcium concentration which indirectly measures electrical,

and therefore functional, activity in the brain. In our setting, we capture the distribution

of the neurons in a 400-µm-thick brain slice labelled with the TdTomato protein at high

resolution using 2P microscopy. Similarly, the LF microscope captures the corresponding

LF images for different focal depths. This approach gives us a labelled dataset. In addition,

multiple LF temporal sequences are captured from different brain samples using jGCaMP8f

protein. The small labelled dataset and a fraction of the LF temporal sequences are used

to train our network in a semi-supervised manner, as shown in Figure 5.1. After training,

our network can reconstruct volume time series from LF sequences with high accuracy and

speed, despite the temporal LF sequences being obtained with the jGCaMP8f protein, for

which we do not have the ground truth volume.

We achieve these results by introducing a physics-driven deep neural network whose

architecture is driven by precise modelling of the forward model in LFM and the fact that
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labelled neurons in tissue are sparse. We leverage the sparsity assumption to design the

architecture by unfolding the ISTA algorithm. Finally, a Generative Adversarial Network

(GAN) ensures achieving 2P level resolution in the reconstruction while exploiting the

knowledge of the forward model, as in model-based approaches. Overall, this approach

allows us to exploit the best of two optical techniques to achieve the accurate and fast

reconstruction of volume time series of neuronal activity in mammalian brain tissue.

5.1 Problem Formulation

As mentioned in Chapter 2, a LF microscope can be described as a linear operator. In

most cases, it is safe to ignore non-linear effects such as occlusion or non-constant refractive

indexes of the medium [51]. Therefore, after discretization, a monochromatic (plenoptic

1.0) LF microscope can be represented in matrix form as follows:

y = Hx, (5.1)

where matrix H ∈ Rm×n maps a vectorized volumetric input x ∈ Rn into a LF image

y ∈ Rm. The number n of voxels of the volume is usually much larger than the number

m of pixels of the LF image. In general, the size of H depends on the input and output

sampling intervals, which are commonly chosen to be T/s and T/N , respectively (assuming

unit lens magnification for simplicity). The constant T is the microlens pitch, s is an

arbitrarily chosen upsampling factor, and N is the number of pixels under each microlens

(per lateral axis).

The LF system is periodically shift-invariant per depth. If one shifts the input of the

system laterally by T , the output is shifted by N pixels, as shown in Figure 5.2 (a). This

behaviour only occurs for shifts which are multiple of T . Therefore, for a fixed depth, the

system can be modelled by using a filter bank, as in Figure 5.2 (d). Furthermore, the im-

pulse response is unique for each depth, which is the property that allows for localization of

sources at different depths, as shown in Figure 5.2 (b). Thus, to describe the whole system,

we need one different filter bank per depth, as shown in Figure 5.2 (c). The input volume

first passes through a slicing operator Si that selects the depth z = i for i = 1, 2, .., D,
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Figure 5.2: Filter bank representation of the LF forward model. When the input
of the system is shifted laterally by a multiple of T , the output is also shifted by T ,
as shown in (a). If the input is shifted along the z-axis, the output shows different
patterns per depth, as shown in (b). Thus, the output of a LF microscope y can be
described as the summation of the output of a group of filter banks. A slicing operator
Si chooses the respective i-th depth of the 3D volume, which is the input of the i-th
filter bank that outputs a LF image yi, as in (c). As shown in (d), each filter bank
has s× s branches, a downsampling factor of s and an upsampling factor of N for both
lateral dimensions, where s was chosen arbitrary when computing the measurement
matrix H, and N ×N is the number of pixels under each microlens.

where D is the number of depths. Then, each slice is the input to the corresponding filter

bank, i.e., for each z = i, the i -th filter bank outputs a LF image yi. The final output

of the microscope y is the summation of all the yi. Note that the structure of each filter

bank is related to the measurement matrix of the system. Suppose there are N ×N pixels

under each microlens and the volume sampling interval for both lateral dimensions is T/s,

in this case, the filter bank structure has s× s branches, the downsampling factor is s, and

the upsampling factor is N , as shown in Figure 5.2 (d). As explained in Chapter B, the

input and output filter of each branch can be obtained from the measurement matrix H.

Note that the convolutions and filters are two-dimensional. Similarly, the downsampling

factor s and upsampling factor N refer to both lateral dimensions.

In this chapter, we aim to solve the inverse problem derived from Equation (5.1) us-
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ing a deep-learning approach. Furthermore, studying the spatial and temporal behavior of

neurons in brain tissue requires a reconstruction method that performs fast 3D reconstruc-

tion from LF sequences. The reconstruction of a 3D volume x from a single LF image y

is traditionally solved using RL-like algorithms. Significant improvements in performance

and speed have been achieved with model-based reconstruction, e.g [62], [77]. However,

learning-based methods can potentially achieve better reconstruction quality and faster

speed when trained properly in controlled scenarios.

5.2 Efficient implementations of the forward model

As mentioned in Chapter 3, the LF system can be described by a linear CNN. This descrip-

tion is fundamental for the derivation and implementation of the reconstruction method

shown in this chapter. In this section, we convert the filter-bank model to efficient CNNs

architectures to accelerate the computation of the forward model. Due to memory and

computational-complexity constraints, it is useful to find efficient implementations of the

forward CNN.

In Chapter 3, we used a CNN with two convolutional layers to help map the for-

ward model to the filter banks. This description is shown in 5.3 (a). However, we can

find other alternative architectures that simplify the implementation. First, the 3D input

x is reshaped to obtain the new input xr, which has D × s × s channels, as shown in

Figure 5.3 (b). Then, one can replace the two convolutional layers in Figure 5.3 (a) with

a single convolutional layer, as shown in Figure 5.3 (b). Furthermore, we propose two

different simplifications of the architecture based on two observations:

(a) Convolutional layers with large filters can usually be well-approximated by a

sequence of convolutional layers with smaller filters. Therefore, it is realistic to describe

the original system with a series of convolutional layers, as shown in Figure 5.3 (d). We

ensure this architecture uses fewer parameters than the single convolution and also ensure

that the size of the equivalent filter is the same as the original one by choosing the filter

size l and the number of channels c accordingly. Note that the weights of the network can

be learned from the theoretical matrix H. We use this architecture when we need to apply

the forward CNN f(·) to a given input volume.
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h(·)

1

Figure 5.3: Forward model as a CNN. We show four different linear CNNs architec-
tures that transform a 3D input image x with D depths into a LF image y with N ×N
views, where N ×N is the number of pixels under each microlens. The model (a) is a
novel form to described the forward model without losing accuracy. Note that in (a)
the image x is input directly while in models (c)-(d) the input x is first reshaped to
obtain xr, as shown in (b). In (c) we use a single layer to describe the system. The
model in (a) can always be converted into the single convolutional layer shown in (c)
while in (d) we approximate the system by a sequence of convolutional layers with
filters of smaller size l. Finally, a second approximation is shown in (e), where the
first layer h(·), named compressed forward CNN, outputs V channels, and the second
layer recovers the N ×N views with filters of unit size. The notation Conv2D(·, ·, ·, ·, ·)
means a 2D convolutional layer with parameters ordered as follows: number of input
channels, number of output channels, the height of the filter, width of the filter, and
stride. If the stride is omitted, it means unit stride.

(b) The number of channel outputs greatly impacts the number of parameters. For

instance, in our setting N ×N = 19× 19. Therefore, we can reduce the number of views

to a smaller value V to reduce computational complexity. Then, to restore the original

number of views (N×N), we can add a linear convolutional layer with filters of unit size, as

shown in Figure 5.3 (e). Since the sub-aperture images are usually highly correlated, it is

feasible to perform this linear approximation without significantly impairing the accuracy

of the model. The definition of the compressed forward CNN h(·) in Figure 5.3 (e), is

relevant since it is connected to our reconstruction approach.

In the sequel we use f(·) to compute the forward model, while the compressed

forward CNN h(·) is used in the reconstruction network. This will be clarified in the
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following section.

5.3 3D Reconstruction

In this section, we design a CNN that considers the physics of the system to perform

the reconstruction. The architecture of our network is constructed using the unfolding

technique [78] and is obtained by unrolling sparsity-driven algorithms for reconstruction.

Furthermore, our network is trained in a semi-supervised manner to alleviate the lack of

data which is a typical issue for applications in neuroscience.

5.3.1 Deep neural network architecture for volume reconstruction

Large distributions of labelled neurons can be modelled as compact cell bodies sparsely

distributed in brain tissue [1]. Therefore, to reconstruct high-quality 3D volumes, we can

consider the following optimization approach that promotes sparsity in the reconstruction:

argmin
x
∥Hx− y∥22 + ∥x∥1, (5.2)

where y is a given LF image, x is the reconstructed volume. This problem can be

solved using the Iterative Shrinkage-Thresholding Algorithm (ISTA) [79] by computing at

each iteration:

xk+1 = Tλ(xk −HTHxk +HTy), (5.3)

where Tλ is the soft-thresholding operator with parameter λ. One can interpret

each iteration of ISTA as a layer of a neural network with fixed weights. Therefore, it is

possible to design a neural network architecture based on ISTA. LISTA [78] (the learned

version of ISTA) is a neural network built such that each layer corresponds to one iteration

of ISTA. Effectively, each layer of LISTA implements the following step:

xk+1 = Tλ(xk −HT
1H2x

k +H3
Ty), (5.4)

where H1,H2 and H3 are matrices of same size and structure as H. These matrices

are the parameters of the network that can be learned using a proper loss function. Note

that, contrary to [78], we do not fuse the product HT
1H2 into a single matrix since we want
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Figure 5.4: CNN architecture. Our reconstruction network g(·) is composed of (1) a
compression layer c(·), which is a linear convolutional layer with N ×N input channels
and V output channels and (2) a LISTA network. At each layer of LISTA we use the
architecture of the compress forward CNN h(·) shown in Figure5.3 and the adjoint
operator hT (·). The LISTA network is composed of K layers.

to keep the structure of each factor. This version of LISTA uses the soft-thresholding as

the element-wise non-linearity due to the l1 constraint in Equation (5.2). However, ISTA

can be used with different types of non-linearities related to the prior imposed, as explained

in [80]. For instance, replacing Tλ with a rectified linear unit (Relu) imposes non-negativity,

and replacing it with a ReLU with a bias term imposes sparsity and non-negativity. In

our case, x is sparse and non-negative. Therefore, we propose a LISTA network that uses

a ReLU with a bias term as non-linearity:

xk+1 = ReLU(xk −HT
1
k
Hk

2x
k +HT

3
k
y + λk), (5.5)

where λk is a learnable bias. Furthermore, the custom {Hk
i }3i=1 for each unfolded iteration

k gives the network more capabilities without compromising its simplicity.

In many practical cases, the described LISTA network cannot be used directly to

solve the volume reconstruction problem. The size and structure of the matrix H make

it computationally prohibitive to perform matrix multiplications repeatedly. Therefore,

we propose using the compressed forward CNN h(·) proposed in Section 5.1 to reduce the

computational complexity. The final architecture of our network is, therefore, described as

follows:

xk+1 = ReLU(xk − hT1
k
(hk2(x

k)) + hT3
k
(c(y)) + λk), (5.6)

where we have replaced matrices Hk
i in Equation (5.5) with the linear mappings {hi}3i=1.
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Figure 5.5: Training of our GAN architecture. In (a), we show how the LISTA
network g(·) is trained using a content loss and an adversarial loss computed from a
critic D(·). The content loss is computed using a few labelled data pairs, unlabelled
LF data, and the known forward model f(·). In (b), we show the architecture of the
critic D(·) designed following typical techniques for 3D GANs [81].

The computation of all the {hi}3i=1 is determined by the architecture of the compressed

forward CNN derived from physics and explained in Section5.1. Note that the structure of

the adjoint operators (transpose) {hTi }3i=1 in Equation (5.6) can be easily computed from

the permutation of the weights of h(·). Furthermore, the input of the network is c(y) rather

than y. The mapping c(·) is defined as a single linear convolutional layer with N×N input

channels and V output channels and filters of unit size. By having V output channels, c(·)

is compatible with the input size of the operators {hTi }3i=1. For this compression step, we

found unit-size filters to be effective; however, filters of any size could be used. We highlight

that the coefficients of the compression layer c(·) are learned together with LISTA. The

end-to-end network g(·; θ), where θ represents the learnable parameters of the network, is

shown in Figure 5.4. If additional simplification is needed, some convolutional layers in

g(·) can be replaced by a sequence of convolutional layers with smaller filters.
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5.3.2 Training Strategy

We learn the parameters θ of our LISTA network g(·; θ) with a proper loss function and a

mixture of labelled and unlabelled datasets. In our scenario, a labelled dataset comprises

LF images and the corresponding 2P volumes. For many applications in LFM, capturing a

huge labelled dataset is too expensive or even unfeasible. For instance, when studying the

behavior of neurons in mammalian tissue, capturing a clean 3D label is challenging due to

the scattering media. Furthermore, using only synthetic data for training is problematic if

noise and other imperfections are not appropriately modelled.

In our setting, we propose acquiring a very small labelled training dataset. We

label neurons in a single brain sample using TdTomato fluorophore. The TdTomato allows

capturing the static distribution of the neurons in space using both 2P and LF modalities.

The 2P raster scanning modality provides the ground truth volume that can be paired with

the LF images acquired with the same fluorophore. Therefore, to train LISTA we exploit

the small labelled dataset, the large amount of unpaired LF images, and the knowledge of

the forward model. The training loss is stated as follows:

1

M

M∑

i=1

Lc1(xi, x̂i) +
1

K

K∑

j=1

Lc2(yj , ŷj) + Ladv(g(yj)), (5.7)

where xi is the 2P 3D image, x̂i is the network reconstruction, yi is a LF image,

M is the number of 3D samples, K is the number of LF samples and ŷi = f(g(yi)), where

f(·) is the known forward CNN. Notice that the operator f(·) is fixed since it is already

known and is based on the model [51]. The loss Lc1(·) is the 2P content loss computed

on the labelled dataset. The loss Lc2(·) is the LF content loss, which ensures that the

re-synthesized LF computed from the recovered volume is close to the original LF image.

The adversarial loss Ladv(·) makes the recovered volume look realistic. The adversarial

loss Ladv(·) is computed from a trainable critic D(·), which works as a regularizer. We

interpret this loss as a dynamic regularizer that is updated simultaneously with LISTA

parameters during training. Note that only Lc1(·) needs a labelled dataset, while Lc2(·)

and Ladv(·) need LF images and unpaired 2P data, respectively.

The type of loss shown in Equation (5.7) has been first proposed as a supervised-

learning technique for single image super-resolution [82]. Furthermore, learning regularizers
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to solve various standard inverse problems using stochastic gradient descent has been in-

vestigated in [83]. However, we highlight that our approach is a semi-supervised technique

compared to [82]. Furthermore, the critic, or regularizer, is not pre-trained, as opposed

to [83]. Here, the adversarial regularizer is learned simultaneously with the generator

(LISTA) by using the well-known adversarial training used for least squares GANs (LS-

GANs) [84], as depicted in Figure 5.5 (a). In the next section, we explicitly define the

training loss and the architecture of the critic used for the experiments.

5.4 Experiments and Results

In this section, we show the performance of our approach by imaging mouse brain tissue

with both LF and 2P modalities (see Appendix C). We compare the performance of our

method with state-of-the-art model-based and learning-based methods for reconstructing

structural and functional LF data.

5.4.1 Experimental Setup

The LF microscope is modelled as follows: numerical aperture =1, refractive index =1.33,

wavelength =514 nm for jGCaMP8f and 580 nm for TdTomato fluorophore, magnifica-

tion =25, microlens pitch =125 µm, microlens focal length = 1250 µm, tube lens focal

length = 0.18 m, pixels per microlens =19× 19.

We compare our method with two model-based approaches: ISRA, a variant of RL

algorithm [61] and the ADMM approach proposed in ChaperA. Furthermore, we evaluate

other learning-based approaches by adapting the LFMNet [43], HyLFM [65], and VCD-

Net [63] to work with our specifications based on the respective code made available online.

To train our network and to evaluate model-based approaches, we use the conventional the-

oretical forward model used for reconstruction proposed by Broxton et al. [51].

We imaged mouse brain slices expressing TdTomato fluorescent protein with a 2P

microscope to capture the spatial distribution of the network of neurons. The captured

stack contains 80 planes taken at steps of 2 µm. Then, we generate 28 volumes with 53

slices each. The first volume includes planes 1 to 53. The second one contains planes

2 to 54, and so on. Similarly, we capture the corresponding LF stack with 28 images.

Therefore, we have a training dataset with 28 training pairs taken from a single brain slice.
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For evaluation, we capture another dataset of the same size from a different brain sample.

In addition, we capture temporal LF sequences from samples labelled with geneti-

cally encoded calcium indicators (jGCaMP8f). We acquire 3 different temporal sequences

with 500 LF images each. We took the first 80 LF images from each one for training. This

additional training dataset only contains LF images without any 2P label. In our exper-

iments, the 2P data is acquired only once and is not updated when evaluating different

sample tissues.

Due to the dimensionality of the dataset, data augmentation is needed to alleviate

data over-fitting. Specifically, we perform data augmentation by using random reflections

on the x, y, and z-axis and axes swapping on the x, y dimension of the volume. We modify

the LF data accordingly as well. Furthermore, we use patch-based training to reduce

memory consumption.

5.4.2 Deep-learning Setup

To initialize the network, we pre-train it using only the labeled dataset. For this step, we

use only the first content loss Lc1(·) in Equation (5.7), which is chosen to be the normalized

mean square error loss as follows:

Lc1(x, x̂) =
∥∥∥∥

x

∥x∥2
− x̂

∥x̂∥2

∥∥∥∥
2

2

, (5.8)

where x is the 2P 3D image and x̂ is the 3D image reconstructed by the network.

Once the network is initialized, all the losses in Equation (5.7), including the pre-

vious Lc1(·) are considered in the minimization. The second content loss named Lc2(·) is

given by the following equation:

Lc2(y, ŷ) = ∥yn − ŷn∥22, (5.9)

where the subscript n represents mean normalization, which is performed as follows:

yn = y − Ed×d[y], (5.10)

where the notation Ed×d[·] means that the expected value is computed for regions of size
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d× d pixels in the spatial dimensions. Specifically, each sub-aperture image of the LF y is

divided into a grid of squares of size d×d pixels, then the expected value is subtracted from

each square to obtain yn. This normalization allows focusing on reconstructing details in

each sub-aperture image of the LF rather than background noise. In our experiments, the

value d is experimentally chosen to be 8. For those familiar with wavelets, this procedure

can be interpreted as subtracting the level 3 Haar approximation from each view in y.

Thus, the loss only considers the horizontal, vertical, and diagonal details of levels 1,2,

and 3.

The adversarial loss in Equation (5.7), Ladv(·) is determined by the discriminator

D(·). The discriminator tries to assign different scores to the real 3D data and to the

reconstruction from the network g(·). We name Pθ the probabilistic distribution of real

3D volumes and Pr the distribution of 3D reconstructions from the network. Then, the

adversarial loss is given by:

Ladv(x) = Ex∼Pθ
[(D(x)− a)2], (5.11)

where a = 1 and the architecture of D(·) is depicted in Figure 5.5 (b). The discriminator

was designed by following standard architectures used for 3D GANs [81]. The expected

value E[·] is approximated by computing the mean on a batch of volumes generated by

LISTA. Finally, the discriminator is trained by using the loss

Ex∼Pθ
[(D(x)− b)2] + Ex∼Pr [(D(x)− a)2], (5.12)

where a = 1, b = −1. As mentioned previously, the first expected value is computed on the

batch of volumes generated with LISTA. Similarly, the second expected value is computed

on batches of real data. Intuitively, the discriminator is trained to assign a 1 if the input

has the 2P quality and a −1 if the input is generated by g(·) and does not have 2P quality.

At the same time, g(·) tries to make D(·) to assign a 1 by improving the reconstruction

quality. This training procedure is part of a standard technique proposed in [84] to train

LSGANs.
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Figure 5.6: Reconstruction using real LF data from acute mouse brain slices expressing
TdTomato fluorophore. In part (a), the first three rows show the 2P 3D image used as
ground truth, and the reconstruction using two model-based approaches: ISRA and
ADMM, respectively. Furthermore, in the next two rows we evaluate the state-of-
the-art LFMNet proposed in [43] and we show our approach. We show several slices
for different depths. This reconstruction corresponds to the performance shown in
the first row in Table 5.1. In part (b), we show performance for a LF image with a
deeper focal depth, corresponding to the row 28 in Table 5.1. The performance of all
methods degrades when imaging deeper in the tissue. Note that our method achieves
the best performance in terms of both PSNR and SSIM. The shown PSNR and SSIM
are measured for the whole plane at each depth. Measures on the whole volume are
shown in Table 5.1. All the distances are measured in µm. The settings used to
capture both the LF image and 2P image are specified in Section 5.4.
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5.4.3 Reconstruction of Structural 3D images from Ligh Field images

In this section, we evaluate the performance of our method for reconstructing 3D images

from a single LF image. We use unseen samples to measure the reconstruction perfor-

mance by measuring the Peak Signal to Noise Ratio (PSNR) and Structural Similarity

Index Measure (SSIM). The neurons in this sample are labelled with the TdTomato flu-

orescent fluorophore. Since this fluorophore is bright every time it is illuminated, these

LF images only give structural information and do not show neuronal activity. As men-

tioned previously, we captured 28 LF images for training and 28 from a different sample

for testing. Each LF image corresponds to a focal depth ranging from 0 to 54µm. From

every LF image, we reconstruct a volume of size 321 × 321 × 53 voxels covering a range

533.3× 533.3× 104 µm3. The size of each LF image is 2033× 2033 pixels.

The number of iterations used for model-based reconstruction must be chosen prop-

erly to avoid noise amplification. As mentioned in previous works [2], [62], [19], a typical

empirical number of iterations used for ISRA is between 8 and 10. We fixed this value to

8 for both ISRA and ADMM. Our LISTA network comprises 6 unfolded iterations. Re-

markably, 6 unfolded iterations of LISTA are enough to outperform competing methods.

The LISTA network achieves better average performance than competing methods

in a focal depth range of 54 µm in terms of PSNR and SSIM. In Table 5.1 we show the

performance for LF images taken at different focal depths; they are taken at steps of 2µm.

The depth index in Table 5.1 increases as the depth increases. Note that all methods are

affected by scattering as the depth increases. Even though all learning methods outperform

model-based reconstruction approaches, our method achieves the best performance in both

PSNR and SSIM. The shown PSNR and SSIM are measured on the whole volume. In our

experiments, the LFMNet achieved better performance among competing methods. Since

the learning-based methods are trained with a very small dataset compared to the size of

the dataset used in [43], [65], [63], their performance may be affected. In contrast, our

method is more robust under this adverse condition. Furthermore, deep-learning methods

are much faster than model-based approaches. Table 5.2 shows the average computational

time to reconstruct a volume from a single LF image. All the methods were evaluated on

a GeForce GTX 1080 Ti.
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PSNR SSIM
Depth ISRA ADMM VCDNet HyLFM LFMNet Ours ISRA ADMM VCDNet HyLFM LFMNet OursIndex

1 28.78 29.55 30.84 31.48 31.02 34.19 0.61 0.62 0.65 0.67 0.64 0.82
2 28.84 30.16 32.09 32.04 30.98 34.34 0.60 0.68 0.72 0.70 0.64 0.82
3 27.32 28.32 31.09 31.89 30.53 33.88 0.55 0.61 0.66 0.68 0.62 0.79
4 26.22 28.54 29.99 32.89 29.98 33.20 0.50 0.63 0.62 0.74 0.60 0.75
5 24.95 27.54 29.82 32.67 29.64 33.18 0.46 0.59 0.61 0.73 0.60 0.75
6 25.37 26.67 28.79 33.00 29.95 32.99 0.48 0.57 0.57 0.75 0.60 0.74
7 26.36 27.56 28.94 31.68 31.18 33.33 0.51 0.58 0.57 0.68 0.65 0.76
8 26.58 27.90 29.35 29.97 31.57 33.62 0.53 0.58 0.59 0.61 0.67 0.78
9 26.08 28.07 29.69 30.09 32.41 33.84 0.51 0.60 0.61 0.62 0.71 0.80
10 25.14 27.47 29.77 30.22 31.16 33.38 0.48 0.56 0.61 0.62 0.65 0.77
11 25.49 27.70 31.12 30.27 30.94 33.29 0.49 0.60 0.68 0.62 0.65 0.77
12 24.95 26.77 30.24 29.38 29.03 32.65 0.47 0.55 0.63 0.58 0.56 0.73
13 25.06 26.43 30.03 29.79 31.36 32.25 0.48 0.55 0.63 0.60 0.67 0.72
14 25.08 27.65 29.80 29.96 30.17 31.77 0.47 0.59 0.61 0.60 0.61 0.68
15 25.41 27.68 29.51 29.26 29.11 31.48 0.48 0.60 0.60 0.57 0.57 0.67
16 24.88 27.48 29.19 28.13 28.39 31.10 0.47 0.58 0.58 0.52 0.53 0.65
17 24.50 27.11 28.20 27.12 28.54 30.69 0.45 0.56 0.53 0.48 0.54 0.63
18 23.91 26.71 29.76 26.94 28.75 31.54 0.43 0.55 0.60 0.48 0.55 0.67
19 22.63 25.42 25.93 26.09 27.28 28.89 0.39 0.50 0.44 0.44 0.49 0.56
20 22.28 25.03 27.54 27.45 27.85 31.53 0.38 0.49 0.50 0.49 0.51 0.66
21 20.80 23.57 25.86 27.00 27.31 30.08 0.33 0.45 0.43 0.47 0.49 0.60
22 21.19 23.06 26.74 26.86 27.89 31.42 0.34 0.45 0.47 0.47 0.51 0.66
23 21.60 23.37 25.80 26.15 28.32 30.00 0.35 0.44 0.43 0.44 0.52 0.60
24 21.43 23.51 25.36 26.42 27.74 30.31 0.35 0.44 0.42 0.45 0.50 0.61
25 20.21 23.32 26.28 26.02 27.92 30.54 0.31 0.47 0.45 0.43 0.51 0.62
26 20.46 23.19 27.35 25.47 27.88 28.99 0.32 0.46 0.49 0.41 0.50 0.56
27 19.80 22.62 27.80 24.58 26.70 30.66 0.30 0.43 0.50 0.38 0.45 0.62
28 19.30 22.09 26.26 25.05 27.16 31.06 0.28 0.42 0.44 0.39 0.47 0.63

Mean 24.09 26.25 28.68 28.85 29.31 31.94 0.44 0.54 0.56 0.56 0.57 0.69

Table 5.1: PSNR and SSIM for real lf data of neurons imaged using TdTomato fluo-
rophore.

Table 5.2: Computational time.

ISRA ADMM VCDNet HyLFM LFMNet Ours
Time (s) 234.69 237.63 0.022 0.195 0.111 0.026

As shown in Figure 5.6, the LISTA network achieves better qualitative reconstruc-

tion performance than other methods. In Figure 5.6 (a) and (b), we show visual results for

two different depths corresponding to index 1 and 28 in Table 5.1, respectively. ISRA in-

troduces square-like artifacts strongly present near the in-focus plane, approximately from

z = −8 µm to z = 8 µm in part (a) and from z = 48 µm to z = 64 µm in (b). The ADMM

can effectively remove these artifacts; however, both ISRA and ADMM are affected by

background noise and scattering. As one goes deeper into the tissue, the model-based

methods are more affected by scattering. It is notable that learning methods achieve bet-

ter performance than model-based approaches and are remarkably less affected by noise.

However, our approach is visually closer to the ground truth and achieves higher PSNR
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and SSIM than other learning methods. For instance, see plane z = 48 µm. Also, note in

z = 64 µm that the LFMNet incorrectly reconstructs neurons from neighbour depths.

5.4.4 Reconstruction of volume time series from LF images

In this section, we evaluate the performance of our method for reconstructing a temporal

sequence of 3D volumes from temporal sequences of LF images. The LF sequence captures

the activity of neurons labelled with the jGCaMP8f calcium indicator at different times

focused at a fixed focal depth. The jGCaMP8f is a fluorophore that increases its fluores-

cence intensity when the neurons fire. In this case, the ground truth data is unavailable

since it is impossible to capture the activity of many neurons in 3-D with scanning-based

techniques. We evaluate our approach on 3 LF sequences with 500 frames. As mentioned

previously, only the first 80 LF images per sequence were used for training (with no labels),

while the rest of LF images were unseen by the network.

Our LISTA network performs better than model-based approaches, while the state-

of-the-art neural networks fail to reconstruct volumes for jGCaMP8f-labelled brain tissues.

In Figure 5.7, we show the visual performance of ISRA, ADMM, and our method for

reconstruction of one frame of the sequence (300th frame). We show two different samples

in part (a) and (b). Even though the LFMNet [43] achieved satisfactory performance in the

previous section, it generalizes poorly to the reconstruction of the temporal sequence due to

the small training dataset. A more specific reason is that the use of a different fluorophore,

the jGCaMP8f, implies samples with different noise levels and light sources with different

wavelengths than those used for training. Figure 5.7 suggests that model-based methods are

more robust under these adverse conditions than learning-based approaches, as mentioned

in the introduction. However, model-based methods are heavily affected by scattering.

In addition, ISRA introduces strong artifacts near the plane z = 0. In our approach,

we exploit the knowledge of the forward model and the few available labels to achieve

remarkable reconstruction performance.

Our training loss is designed to avoid amplifying noise from scattering. In Figure 5.8,

we show the LF images synthesized from the reconstructed volumes. We display 3×3 views

per LF image from the total 19 × 19 views. The re-synthesized LF image from ADMM

shows that noise is reduced compared to the ISRA approach since the ADMM method
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Figure 5.7: Reconstruction using real LF data from acute mouse brain slices expressing
the calcium indicator jGCaMP8f. The indicator jGCaMP8f is suitable to perform
functional imaging of neurons. The labels (a) and (b) indicate two different samples.
The first row shows the 2P 3D image of the static tdTomato fluorophore used as a
reference since the ground truth (2P jGCaMP8f volume) is unavailable. We show
a particular reconstructed frame from a 500-frames sequence, see Section 5.4.4 for
details. We included the performance of the LFMNet [43] and two model-based
approaches for comparison: ISRA and ADMM. We show different slices corresponding
to different depths. All the distances are measured in µm. The settings used to
capture both the LF image and the 2P 3D image are specified in Section 5.4.
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Figure 5.8: Visual comparison of sub-aperture images. We show 9 different sub-
aperture images (views) for 4 different cases: views from the raw LF data, LF syn-
thesised from ISRA reconstruction, LF synthesised from ADMM method, and LF
synthesised from our LISTA approach. Both model-based methods reconstruct noisy
regions in the sub-aperture images that do not carry any meaningful information,
which translates into a noisy 3D reconstruction. On the other hand, our approach
can accurately reconstruct every neuron’s footprint while significantly reducing noise
from scattering.

imposes additional regularizers in the objective function. However, noise in the tissue

region is still significant. Our approach greatly reduces noise while reconstructing every

neuron footprint in the ground truth LF image. We achieve this remarkable performance

due to the adversarial regularizer and the specialized content losses used for training.

Our approach provides a new powerful tool to study fast temporal evolution of

neurons in mammalian brain tissue. In Figure 5.9, we show reconstruction of temporal

evolution of neurons. We show three brain samples in parts (a), (b), and (c). For this
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Figure 5.9: Reconstruction of the temporal evolution of neuron activity in brain
tissue. Our LISTA network allows fast reconstruction of volume time series from LF
data of mammalian brain tissue expressing the calcium indicator jGCaMP8f. The
labels (a), (b), and (c) indicate three different sample tissues. We show several slices
containing active neurons, the neuron of interest is marked in cyan. On top of each
slice, we show the temporal evolution of the neuron. The horizontal axis shows time
in seconds, the vertical axis shows the normalized intensity. The normalization is
performed per sample between the selected neurons. Our method reconstructs 500
frames (500 3D images) in this experiment, a computationally demanding task with
conventional model-based methods. The LF imaging rate is 50 Hz. All the distances
are measured in µm. Other additional settings are specified in Section 5.4.

experiment, we perform reconstruction from LF sequences of 500 frames. Therefore, we

reconstruct 500 3D volumes per LF sequence with the same size as in previous experiments.

Since the imaging rate is 50 Hz, we show 10 seconds of neuronal activity. Note how neurons

located at different positions in the 3D space show different activity.

5.5 Summary

We have introduced a physics-driven deep neural network to reconstruct 3D volumes from

LF sequences. The architecture of the network is based on the observation that labelled

neurons in tissues are sparse, which naturally leads to an architecture based on unfolding

the ISTA algorithm. Moreover, we show how the forward model of a LF microscope can be

described using CNNs, and this physics-driven architecture is also included in the network.
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Finally, we use GANs and exploit the theoretical forward model to train our network with

a small labelled dataset.

We show that our method achieves better reconstruction quality for reconstructing

temporal LF sequences imaged with the jGCaMP8f indicator than other state-of-the-art

methods. None of the competing learning-based methods can perform this task. Further-

more, we also showed better performance than standard model-based and learning-based

methods in terms of PSNR and SSIM for reconstructing structural 2P volume imaged us-

ing the TdTomato fluorophore. Although LFM cannot penetrate as deeeply into scattering

tissue as functional 2P imaging, our 2P-enhanced LFM strategy enables light-efficient vol-

ume acquisition at fast rates, essential to capturing neuronal dynamics transduced by fast

sensors such as jGCaMP8f [72].

This chapter describes a practical method to perform 3D reconstruction for LF

microscopy under adverse acquisition conditions when imaging mammalian brain tissue.

We believe that the proposed method could be helpful even beyond this specific scenario,

and it could inspire similar solutions for other types of inverse problems.
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Chapter 6

Conclusions

6.1 Summary of Thesis Achievements

In this thesis, we considered the problem of reconstructing 3D images from single light-

field images. We first studied methods for discretization based on generalized sampling

theory and proposed simplifying the forward model to accelerate computation. Then, we

examined aliasing-free reconstruction under ideal conditions. For real acquisition condi-

tions, we proposed a reconstruction method based on ADMM that achieves better quality

than conventional approaches. Furthermore, simplifying the forward model makes our

approach faster than conventional RL-based reconstruction. Finally, we proposed a deep-

learning method for reconstruction. Our method uses a multi-modal imaging approach

based on LFM and 2P microscopy, which is tested under adverse conditions when imaging

mammalian brain tissue. The network architecture is derived from the sparsity-based re-

construction algorithm named ISTA. In addition, we proposed a semi-supervised approach

that uses a few labelled data and exploits the knowledge of the forward model and GANs

for training.

In Chapter 3, we proposed a novel way to discretize the light-field system that allows

for more diverse sampling kernels and densities. Traditional reconstruction approaches use

a discretization method based on the computation of the system impulse response with re-

stricted sampling intervals, which is a special case of our framework. Our approach allows

diverse sampling kernels such as Dirac deltas, sinc functions, or splines, and the lateral

sampling intervals do not need to be a multiple of the microlens pitch. Furthermore, since
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periodic-shift invariance still holds after discretization, the system can be modelled using

filter banks. Specifically, the system is described using a custom filter bank per depth. The

filter-bank description also leads to a simplification method to accelerate the computation.

We found that the truncated SVD allows finding a set of optimal synthesis and analysis

filters that minimize the approximation error and can progressively approximate the sys-

tem. Due to the low-rank nature of the LF system, we can accelerate the computation

of the forward model without significantly impairing the accuracy. Finally, we propose a

novel method to compute the forward model by reshaping the filter-bank description into

a linear CNN. The CNN allows taking advantage of existing deep-learning software for

faster computation or calibration by exploiting deep-learning optimization algorithms.

In Chapter 4, we explored model-based reconstruction for LFM. In an ideal scenario,

perfect reconstruction (artifact-free) can be achieved by exploiting the shift-invariant sub-

space assumption and the pseudoinverse. However, perfect reconstruction depends on the

proper selection of the template functions and shifts defining the shift-invariant subspace.

Traditional approaches do not impose enough regularization to prevent the solution from

lying in the row space of the system matrix. The row space intrinsically generates square-

like artifacts in the native object plane. The shift-invariant subspace assumption ensures

that the reconstruction lies in a different subspace which implies artifacts-free reconstruc-

tion. However, this idea works under idealized settings that do not hold in practice due

to system imperfections and noise from scattering, which is common when imaging mam-

malian brain tissue. Therefore, we propose a new reconstruction algorithm that works

under real acquisition conditions. Our method allows artifacts-free reconstruction, higher

speed, and higher PSNR and SSIM than conventional methods. The improvement in

quality is achieved by incorporating additional priors to the optimization approach and

designing a specific algorithm based on ADMM. The improvement in computational time

is due to the exploitation of the underlying low-rank property of the measurement matrix

by either using our SVD approximation or assuming that the reconstructed volume lies

in a SIS. Numerical results on synthetic and real data demonstrate that our approach

consistently outperforms conventional volume reconstruction approaches based on the RL

algorithm.
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In Chapter 5, we presented efficient CNN architectures to describe the light field

system. Exploiting the periodically-shift invariance allows different CNN architectures

to reproduce the forward model or perform accurate approximations. Furthermore, they

allow solving the inverse problem using a deep unfolding network or enable efficient online

computation of the forward model when training the reconstruction network.

The architecture of the reconstruction network is designed from the unfolding of the

ISTA algorithm. Specifically, we exploit the assumption that 3D images of labelled neurons

in tissue are sparse and non-negative. We propose a semi-supervised learning approach to

avoid the need for huge datasets for training. Specifically, the proposed imaging setup

operating in two-photon modality allows capturing a small labelled dataset of 3D images,

which is complemented with the knowledge of the forward model to train the network.

The training strategy is based on the adversarial training proposed for LSGANs.

We experimentally showed that our method performs better than standard model-

based and deep-learning methods. Our method achieves better average performance in

terms of PSNR and SSIM for neurons tagged with the TdTomato fluorophore, which shows

structural information. Furthermore, the proposed CNN successfully reconstructs 3D vol-

ume time series of neuronal activity tagged with the GCAMP8 indicator. We found that

other deep-learning methods perform well for data similar to the one used in training (

emitting TdTomato fluorescence). However, they collapse when faced with LF data from

neurons with the GCAMP8 indicator. Lack of generalization is typical for deep-learning

approaches when trained with small datasets, while model-based approaches for LFM are

more robust under these challenging conditions. Our method offers more robustness and

better performance than typical reconstruction methods for fast 3D reconstruction from

LF images under adverse acquisition conditions when imaging mammalian brain tissue.

6.2 Future Work

6.2.1 Forward Model Calibration or Learning

In this thesis, we showed that the theoretical model proposed by Broxton et al. [51] al-

lows 3D reconstruction with both model-based and learning-based techniques even under

adverse conditions. However, this model assumes ideal optical devices to simplify compu-



6.2 Future Work 93

tation of equations which may lead to inaccuracies in the reconstruction. Therefore, one

interesting research direction is to use the proposed CNN architectures to calibrate the for-

ward model for a given microscope. This calibration requires labelled data for learning but

not necessarily data from neurons since the objective is to capture the impulse response of

the system. For instance, one can image fluorescent beads to create a small labelled dataset

for calibration. Furthermore, using a mixture of data created from the theoretical model

and real images may alleviate the need for huge amounts of real labelled data for training.

Another possible approach could be to simultaneously update the weights of the forward

model and the reconstruction network. However, this approach could lead to instabilities

in training, and the learned reconstruction may not be reliable due to uncertainty in the

learned forward model. In bio-imaging applications, reconstruction accuracy is critical. In

general, more precise modelling of the system may allow going beyond the results achieved

in this thesis.

6.2.2 Exploitation of temporal correlation in LF stacks

Our framework is proposed for the reconstruction of any LF stack. However, as mentioned

in this work, the main goal of LFM is to study the temporal evolution of biological samples.

Therefore, an interesting research direction is to exploit the temporal correlation between

LF frames to achieve better performance in the reconstruction of temporal sequences.

There are model-based reconstruction methods exploiting this correlation. However, they

are highly demanding in terms of computation [2]. A possible direction is to adjust either

the network architecture or the training loss to ensure temporal consistency. Regardless

the strategy, new reconstruction frameworks should consider computational complexity

since LFM is intended to perform the reconstruction of large LF stacks. Even though

reconstructing a high-quality 3D image from a single LF image is interesting, it is less

relevant than the reconstruction of volume time series since other optical techniques, such

as two-photon microscopy, can already perform accurate 3D imaging.

6.2.3 Design of discriminators

A specialized discriminator architecture for neuronal imaging may help to improve recon-

struction results. In our work, the discriminator is designed based on architectures pro-
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posed in previous works on 3D GANs. We show that using a simple architecture for the

discriminator allows enough regularization to perform satisfactory reconstruction results

without increasing computation complexity. However, other types of discriminator may

also give good regularization performance or improved stability in training. For instance,

a Cycle GAN used for deconvolution microscopy proposed in [85] is regularized using a

multi-patch-based discriminator that considers different scale levels for regularization. An

interesting research direction could be studying new architectures for the discriminator

based on model-based algorithms or studying the performance of other known discrimina-

tor architectures for bio-imaging.

6.2.4 Exploration of alternative LFM designs

The techniques proposed in this thesis are conceived for the original LF microscope pro-

posed in [45], known as Plenoptic 1.0. However, the ideas and methods presented here,

such as discretization, SVD-based simplifications, or CNN-based models, could potentially

be extended to other alternative optical configurations, such as Plenoptic 2.0 [86] and

Fourier LFM [87]. Furthermore, investigating more efficient optical methods for fast 3D

imaging is an interesting problem. Current hand-crafted optical designs such as plenoptic

1.0, plenoptic 2.0, or FLFM could be improved by incorporating data-driven approaches

in the design of the optical system. For instance, one could use deep-learning frameworks

to find an optimal optical architecture that allows 3D reconstruction with fewer artifacts

under real acquisition conditions.
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Appendix A

Chapter 2

A.1 Fresnel-Kirchhoff diffraction

A typical method used to find a solution to the Helmholtz Equation (2.6) is to make use

of the modified version of Green’s theorem from calculus [88]:

∫∫∫

V

(
U∇2G−G∇2U

)
dv =

∫∫

S

(
U
∂G

∂n
−G

∂U

∂n

)
ds, (A.1)

where U and G are two complex-valued scalar fields, S is a closed surface surrounding a

volume V and ∂
∂n is the partial derivative in the outward normal direction The fields U

and G and their partial derivatives must be continuous inside S and on S.

The integral theorem of Helmholtz and Kirchoff make use of Green’s Theorem in

Equation (A.1) to compute the field U0 at a point P0 in the space given its value on a close

surface S enclosing P0. See Figure A.1 (a). The field U0 can be computed as follows:

U0 =
1

4π

∫∫

S

(
G
∂U

∂n
− U

∂G

∂n

)
ds, (A.2)

where the same notation used in Equation (A.1) is still valid. The function G is usually a

Green function of the Helmholtz Equation (2.6). However, other strategies to choose G can

be used according to the scenario [88], as mentioned in the following paragraphs. A well-

known Green function of Equation (A.1) is the spherical wave satisfying the Sommerfeld’s

radiation conditions [88], [89]:

G(P1) =
exp(jkr01)

r01
, (A.3)
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Figure A.1: Scalar wave Optics. The integral theorem of Helmotz and Kirchoff
allows to compute the field U0 at any point P0 in the space, given the field over a
closed surface S,as shown in (a). A particular case of interest is the diffraction of a
wave over an aperture Σ. In (b), under some approximations, the knowledge of the
field over the aperture is sufficient to recover the field U0 at any point P0 in the space
with accuracy. The field U0 can be computed using the the Fresnel-Kirchoff diffraction
formula or the Raylegh-Sommerfeld solution.

where r01 is the distance between point P0 and point P1, P0 is the center of the spherical

wave and P1 is an arbitrary point.

An important case of study is the diffraction by a screen. See Figure A.1 (b). The

problem is to find the field U0 at a point P0 given that we know the field at the aperture Σ.

There are two well-known strategies using the integral theorem of Helmholtz and Kirchoff

to solve this problem.

A.1.1 Fesnel-Kirchoff diffraction formula

The Fesnel-Kirchoff diffraction formula computes the field as follows:

U0 =
1

4π

∫∫

Σ

(
G
∂U

∂n
− U

∂G

∂n

)
ds, (A.4)

where Σ is the aperture. As explained in [88], the Fesnel-Kirchoff diffraction formula

uses assumptions that are contradictory themselves. However, this formula is sufficiently

accurate to compute far fields.
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A.1.2 Rayleigh-Sommerfeld solutions

The Rayleigh-Sommerfeld solutions compute the same field in Equation (A.4) but solve

contradictions in the Fresnel-Kirchoff assumptions. The first Rayleigh-Sommerfeld solution

is described by the following equation:

U0 = −
1

2π

∫∫

Σ
U
∂G

∂n
ds, (A.5)

similarly the second Rayleigh-Sommerfeld solution is described as follows:

U0 =
1

2π

∫∫

Σ
G
∂U

∂n
ds. (A.6)

Both Rayleigh-Sommerfeld solutions can be derived using the integral theorem of

Helmholtz and Kirchoff by using a field G composed of a summation of an incoming and

outgoing spherical wave rather than a single spherical wave (Equation (A.3)). The first

Rayleigh-Sommerfeld solution assumes a field G that vanishes on the diffraction aperture,

while the second solution assumes a field G such that the normal derivative vanishes on the

aperture. Both solutions compute the same field, but one may be more convenient to use

than the other, depending on the scenario. More details are given in [88]. Furthermore,

the Rayleigh-Sommerfeld are more rigorous solutions of the Helmholtz Equation than the

Fresnel-Kirchoff diffraction formula.

A.2 Angular Spectrum Representation

A simple but powerful idea to simplify the analysis of the field propagation is to study the

Fourier transform of the scalar field rather than the field directly. The angular spectrum

of a scalar field is:

Û(kx, ky, z) =

∫∫ +∞

−∞
U(x, y, z)e−j(kxx+kyy)dxdy, (A.7)

which is simply the 2D Fourier transform of the field with fixed z. It is possible to show

that the angular spectrum of a scalar field satisfying the Helmholtz Equation (2.6) also
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satisfies a simple relationship [48]:

Û(kx, ky, z) = Û(kx, ky, 0)Ĝ (kx, ky; z) , (A.8)

where Ĝ (kx, ky; z) = ejkzz, which shows that the propagation can be described as a linear

shift-invariant system with a transfer function Ĝ(kx, ky; z). We clarify that kz is a function

of kx and ky as follows:

kz =
√
k2 − k2x − k2y ≈ k −

(k2x + k2y)

2k
, (A.9)

where k = 2π/λ is the angular wavenumber, and λ is the wavelength. The last approxi-

mation is called paraxial approximation, which is useful to find a close form of the impulse

response G(x, y) of the propagation process as follow:

G(x, y; z) ≈ ejkz

jλz
e

jk
2z

(x2+y2). (A.10)

The Fourier pair of the shown impulse response is:

Ĝ (kx, ky; z) ≈ ejkze−
jz
2k

(k2x+k2y). (A.11)

Therefore, the propagation of a scalar field along the z-axis can be computed from a convo-

lution with the propagation kernel G(x, y; z) or a multiplication with the transfer function

Ĝ (kx, ky; z) in the Fourier domain. We note that the constant factors in Equations (A.10)

and (A.11) can be safely ignored in many applications.

A.3 Lenses

A.3.1 Simple Lens

The effect of a lens over the light field is usually modelled by using the concept of trans-

mittance. The transmittance is a function that models the relationship between the field

just after the lens and the incident field. As shown in [50], the transmittance of a lens can

be expressed as:

t(x, y) = P (x, y)e
jk(x2+y2)

2f , (A.12)
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Figure A.2: Microlens Arrays. In part (a), a circular-shaped and square-packed
microlens array is shown. This configuration is defined by the microlens pitch D.
In (b), a hexagonal shaped and hexagonal packed microlens array is shown. This
microlens type can be characterized by the maximal radius r.

where the function P (x, y) is the pupil function, and f is the focal length of the lens. The

pupil function defines the physical size and the shape of the lens. In simple models, the

pupil function is always real and non-negative. However, it can be a complex function to

model aberrations [50].

A particular type of lens is the microlens array. A microlens array is a set of typically

thousands of tiny lenses packaged together. Two diagram of different microlens arrays are

shown in Figure A.2. Note that they can be arranged in different ways, mainly rectangular,

squared and hexagonal [90]. The whole array can be seen as a lens. Therefore, it is possible

to compute its transmittance Φ(x, y) as follows:

Φ(x, y) = t(x, y) ∗∆(x, y), (A.13)

where the operator ∗ represents a 2D convolution, t(x, y) is the transmittance of a single

microlens, modelled as in Equation (A.12) and ∆(x, y) is a 2D function that indicates the

location of the microlens centers. Specifically, ∆(x, y) is a set of Dirac functions centered

at the center of each microlens. For instance, it could be a 2D comb function, as in [51].

Note that the shape of each microlens is modelled with the transmittance t(x, y), while

the packing of the array is modelled with the function ∆(x, y). For instance, one can have
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Figure A.3: 4F system diagram. A 4f system replicates the input field U1 located
at the native object plane into the Native image plane U3(x3, y3) = U1(−x1M,−y1M),
where M is the magnification factor M = f1/f2, f1 and f2 are the focal length of lens
1 and lens 2 , respectively. At the intermediate plane (Fourier Plane), the field U2 is
the Fourier transform of the input U1 (up to a constant factor).

a squared-packed array of circular-shaped lens, as shown in Figure A.2.

A.3.2 4f System

A 4f-system is an array of two lens in cascade. The distance between the first and the

second lens is equal to the sum of the focal length of both lenses f1 + f2, as shown in

Figure (A.3). The field in the intermediate focal plane (at f1 after the first lens), is defined

by the Fourier transform as follows:

U2(x, y) =
ej2kf1

jλf1
Û1 (kx/f1, ky/f1) , (A.14)

where Û1 (kx, ky) = F{U1(x, y)}, F{·} is the Continuous Time Fourier Transform (CTFT).

Similarly, the field measured at the output focal plane U3(x, y) is given by the CTFT of

U2(x, y). Therefore, it holds that:

U3(x, y) = −Mej2k(f1+f2)U1(−xM,−yM), (A.15)

where M = f1/f2 is the magnification factor. A detailed derivation of Equation (A.14) is

shown in [50]. The derivation uses the Fresnel diffraction formula and assumes the pupil

function is uniform and of infinite extent. The properties of the Fourier transform allow to

go from Equation (A.14) to Equation (A.15). Note that to deal with lenses of finite extent

one can use Raylegh-Sommerfeld solutions, as explained in Chapter 2.
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Even though microscope objectives use more complex optical systems, they can still

be modelled with a simple 4f system. An important element in a microscopic objective is

a telecentric stop placed in the Fourier plane, as mentioned in [45]. The telecentric stop

ensures that the system is object space telecentric, which helps Equation (A.15) to hold in

practice.

A.4 Sampling the WDF

This section aims to find the relationship between the measured intensity at the sensor

plane (SP) and the WDF computed at the microlens array (NIP). For this derivation, we

follow an analysis similar to [57]. However, we propose a more direct approach that avoids

the use of the slope-form WDF and we give more details not specified in [57]. For simplic-

ity, we ignore one spatial dimension. We focus on the field modulated by single microlens

located at the position s. Then, the intensity at the SP can be computed by multiplica-

tion with the microlens transmittance followed by convolution due to propagation. See

Figure 2.8 for clarification. Therefore, the field intensity at the SP is:

Îf (s, x̂) =

∣∣∣∣
∫ +∞

−∞
Ui(x)Tc(x− s)ejk(x̂−x)2/2zdx

∣∣∣∣
2

, (A.16)

where Tc is the complex transmittance of a single microlens, s is the location of the mi-

crolens, z is the distance between the microlens and the sensor plane, and Ui(x) is the field

just before the microlens. Note that constant factors of the propagation transfer function

in Equation (A.10) can be safely ignored. By manipulating Equation (A.16), it follows

that:

Îf (s, x̂) =

∣∣∣∣
∫ +∞

−∞
Ui(x)e

jkx2/2zTc(x− s)e−jkx̂x/zdx

∣∣∣∣
2

. (A.17)

Then, we can name Uic(x) the factor Ui(x)e
−jkx2/2z for simplicity. Furthermore, Equa-

tion (A.17) can be written as:

Îf (s, x̂) =

∫∫ +∞

−∞
Uic(x1)Tc(x1 − s)e−jkx̂x1/zU∗

ic(x2)T
∗
c (x2 − s)ejkx̂x2/zdx1dx2. (A.18)
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The factors in the integral can be reordered as follows:

Îf (s, x̂) =

∫∫ +∞

−∞
Uic(x1)U

∗
ic(x2)Tc(x1 − s)T ∗

c (x2 − s)e−j(k/z)x̂(x1−x2)dx1dx2. (A.19)

We can redefine the integration variables x1 := x1 + x2/2,x2 := x1 − x2/2 as follows:

Îf (s, x̂) =

∫∫ +∞

−∞
Uic(x1 + x2/2)U

∗
ic(x1 − x2/2)

Tc(x1 + x2/2− s)T ∗
c (x1 − x2/2− s)e−j2π x̂

λz
x2dx2dx1.

(A.20)

Note that the integral over x2 is simply a Fourier transform evaluated at x̂
λz . Thus, we

can use the definition of WDF and the fact that multiplication in one domain is equal to

multiplication in the Fourier conjugate to write the following equation:

Îf (s, x̂) =

∫ +∞

−∞
WUic(x1,

x̂

λz
)⊛x̂ WTc(x1 − s,

x̂

λz
)dx1, (A.21)

where ⊛x̂ means convolution along the second variable. The remaining integral is also a

convolution. Therefore, we have a 2D dimensional convolution as follows:

Îf (s, x̂) = WUic(s,
x̂

λz
)⊛WTc(−s,

x̂

λz
). (A.22)

Now, we can split again the field Uic(x) into two factors using the definition Uic(x) =

Ui(x)e
−jkx2/2z. The WDF of a field Ui(x) modulated by a complex exponential e−jkx2/2z

translates to a shearing in the WDF domain [55]. Therefore, we have that:

Îf (s, x̂) = WUi(s,
x̂

λz
− s

λz
)⊛WTc(−s,

x̂

λz
)

= WUi(s,
x̂− s

λz
)⊛WTc(−s,

s+ (x̂− s)

λz
).

(A.23)

Note that the quantity (x̂ − s) is the relative location of a point in the sensor plane with

respect to the microlens location s. This relative location is the variable used to describe

the light field captured with a camera or microscope. Based on this observation, the
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captured light field L(s, u) can be defined as follows:

L(s, u) = WTc(−s,
s

λz
+ u)⊛WUi(s, u), (A.24)

where u = x̂−s
λz . Since the transmittance of a single microlens is Tc(x) =

T (x)e−j(x2)/λ2f , the effect of the exponential can be simplified by performing a shearing in

the WDF domain. Furthermore, since the distance between the MLA and the sensor z is

the same as the focal length of the microlens array for a plenoptic 1.0 design, the shearing

in Equation (A.24) cancels out with the effect of the microlens leading to the following

equation:

L(s, u) = WT (−s, u)⊛WUi(s, u). (A.25)

Note that now WT (·, ·) is simply the WDF of T (x), which is an indicator function that is

one inside the lens and zero outside the microlens. Finally, the sampling process of the

pixels in the sensor can be modelled with a convolution with a kernel P (·) followed by

sampling. Also, note that the shown derivation can be easily extended to the case with

three dimensions in the object space. Therefore, we have that:

L[m,n, p, q] = L(mTs, nTt, pTu, qTv), (A.26)

where L(s, t, u, v) = K(s, t, u, v)⊛WUi(s, t, u, v), K(s, t, u, v) = WT (−s,−t, u, v)⊛P (u, v),

P (u, v) is an indicator function describing each pixel in the sensor, similarly T (x, y) is the

indicator function describing a single microlens. The discrete light field L[m,n, p, q] is

simply a rearrangement of the aquired 2D image. This is always true if there is no over-

lapping from light passing through different microlenses, which is ensured if the microlens

and objective numerical apertures are matched by design [30], [45]. The sampling intervals

Ts = Tt are usually equal to the microlens pitch T , and Tu and Tv are related to the pixel

pitch as follows: Tu = Tv = T
Nλf ,where N is the one-dimensional number of pixels under

each microlens. Note that T
N is the pixel pitch. In LFM, if the numerical apertures are

matched, it also holds that Tu = Tv = 2NA
MλN , where NA is the numerical aperture of the
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microscope and M is the magnification factor.
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Appendix B

Chapter 4

B.1 Stopping Criteria

In Section 4.3, we proposed to run the reconstruction method for a fixed number of itera-

tions. However, the algorithm can also be stopped using any other stopping criterion based

on the computation of the objective function since it is an optimization-based approach.

In this section, we investigate using the fidelity term of the objective function to monitor

the convergence of the algorithm. The fidelity term measures the error between the input

LF image and the synthesised LF image from the reconstructed volume. Thus, when the

SIS assumption is not used, the fidelity term is:

LF = ∥Hδf − g∥2. (B.1)

Similarly, using the SIS assumption, we have that:

LF = ∥HδSφAφf − g∥2. (B.2)

We propose to stop the algorithm when the fidelity term is close to stabilizing. Therefore,

we can stop the algorithm when Lkf −Lk−1
f < τ , where k is the current iteration, and τ is

a pre-defined threshold.

To exemplify this idea, we use the pollen dataset. We fixed the threshold τ to 0.1

and ran our ADMM reconstruction methods. In this experiment, the volume is resized to

336× 336× 92 voxels, and the corresponding light field image is of size 399× 399 pixels to

simplify the computation.
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Figure B.1: Fidelity loss. To the left we shown the fidelity loss (error between input
light field image and synthesized light field image) of 4 iterative method: ISRA, ISRA
with total variation [2], (artifact-free) ISRA [62], ADMM without SIS assumption,
and ADMM with SIS assumption. Both ADMM methods where run until the first
difference of the loss achieves the pre-set threshold value τ = 0.1. The ISRA methods
where run for 700 iterations for a fair comparison. To the right we show the first
difference of the loss (the logarithm is used for better visualization).

Figure B.1 shows that the ADMM methods are close to convergence after approxi-

mately 700 iterations, which is when the term Lkf −Lk−1
f achieves the threshold τ . Notice

that even though the fidelity loss from the artifact free ISRA stabilizes faster, its value is

very high compare to other methods. Our ADMM with the SIS assumption achieves the

smaller error after ∼ 700 iterations followed by our second ADMM method.

In Figure B.2, we show a visual comparison of our methods and RL-based methods.

The RL methods were evaluated running 700 iterations for a fair comparison. Our experi-

ments show that the ADMM methods perform better than RL-based methods qualitatively

and quantitatively. As shown in Figure B.2, the highest PSNR and SSIM were achieved by

our ADMM methods. In particular, the highest PSNR is achieved by our ADMM method

with the SIS assumption. Notice that our methods can significantly reduce artifacts while

ISRA, and TV-ISRA introduce square-like artifacts near z = 0. Furthermore, the artifact-

free RL is over-smoothing the solution giving a poor performance (PSNR=24.70), which

coincides with the behaviour of the loss curve. In addition, recall that our methods have

an additional advantage that allow faster computation than RL methods, as described in
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Section 4.3.

Finally, we remark that in real applications of LFM, volume reconstruction methods

are not run for a large number of iterations since it is computationally demanding when

working with large datasets. Therefore, limiting the number of iterations of reconstruction

methods is a useful criterion in practice, as proposed in previous works [2], [62], [19].
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Figure B.2: Reconstruction using a loss-based stopping criterion. Top, we show the
in-focus plane, one xz, and one yz slice of the ground truth volume, the reconstruction
using ISRA, ISRA with total variation [2], artifact-free (AF) ISRA [62], ADMM with-
out SIS assumption, and ADMM with SIS assumption. All distances are measured
in µm. Furthermore, below, we show additional slices for different depths. The shown
PSNR and SSIM correspond to the whole volume. The data is from the Lilium Longi-
florum Pollen [67] dataset. The light field images were created synthetically from the
3D volumes.
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Appendix C

Chapter 5

C.1 Experimental Setup

We performed multimodal light field and two-photon imaging of mouse live brain slices in

which layer 2/3 excitatory neurons were co-transfected with the fluorophores jGCaMP8f

(calcium indicator) and tdTomato (static, morphology label). Imaging was performed

with a custom-built microscope featuring coaligned light-field and two-photon imaging

paths. Specifically, imaging was performed with a custom-built epifluorescence microscope

with an MLA (125 µm pitch, ff/10, RPC Photonics) placed at the imaging plane of a

25×, numerical aperture (NA) =1.0 water immersion objective lens (XLPLN25XSVMP,

Olympus), and 180-mm tube lens (TTL180-A, Thorlabs). The MLA was imaged onto a

scientific complementary metal-oxide-semiconductor (sCMOS) camera (ORCA Flash 4 V2

with Camera Link, 2048 × 2048 pixels, 6.5 µm pixel size, Hamamatsu) with a 1:1 relay

macro lens (Nikon 60 mm f2.8 D AF Micro Nikkor Lens). The MLA was aligned following

the advice in [91]. TdTomato fluorescence was excited with a 530 nm LED, and jGCaMP8f

fluorescence was excited by a 470 nm LED, both powered by an OptoLED current driver

(P1110/002/000, Cairn Research). Light-field images were collected at 50−100 frames per

second using Micromanager 2.0-gamma [91].

C.1.1 Light-field modality specifications

Imaging was performed with a custom-built epifluorescence microscope with an MLA

(125µm pitch, ff/10, RPC Photonics) placed at the imaging plane of a 25×, numerical

aperture (NA) =1.0 water immersion objective lens (XLPLN25XSVMP, Olympus), and
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180-mm tube lens (TTL180-A, Thorlabs). The MLA was imaged onto a scientific com-

plementary metal-oxide-semiconductor (sCMOS) camera (ORCA Flash 4 V2 with Camera

Link, 2048×2048 pixels, 6.5 µm pixel size, Hamamatsu) with a 1:1 relay macro lens (Nikon

60 mm f2.8 D AF Micro Nikkor Lens). The MLA was aligned following the advice in [91].

TdTomato fluorescence was excited with a 530 nm LED, and jGCaMP8f fluorescence was

excited by a 470 nm LED, both powered by an OptoLED current driver (P1110/002/000,

Cairn Research). Light-field images were collected at 50 − 100 frames per second using

Micromanager 2.0-gamma [91].

C.1.2 Two-photon modality specifications

The two-photon imaging laser (Coherence Monaco 1035-40-40, central wavelength

1035 nm, pulse frequency 10 MHz) was introduced between the light-field imaging system

objective and tube lens with a dichroic mirror (DI03-R785-T3 25× 36× 3 mm, Semrock).

The laser was focused by a f=30 mm scan lens, f=300 mm tube lens, and the common

objective lens (XLPLN25XSVMP, Olympus). The laser was scanned laterally (x,y) by two

3 mm mirrors (6M2003S-S, Cambridge Technologies) driven by high power servo electron-

ics (671315K-1HP, Cambridge Technologies). The plane of focus was adjusted by moving

the objective with a stepper motor (SliceScope, Scientifica). tdTomato fluorescence was

collected by a 50 × 70 × 2 mm dichroic mirror (T750lpxrxt-UF2, Chroma) positioned di-

rectly above the objective back aperture only during two-photon imaging. The objective

back pupil was conjugated and demagnified onto the active area of a photomultiplier tube

with integrated transimpedance amplifier (PMT, Hamamatsu H10722-20-10MHz). The td-

Tomato fluorescence passed through a 750 nm shortpass filter (Semrock FF01-750/SP-25)

before the PMT. A National Instruments PCI-6110 drove the scan mirrors and digitized

the PMT/amplifier output through ScanImage version 3.8 software.

C.1.3 Fluorophore transfection

Mouse layer 2/3 cortical neurons were transfected via in-utero electroporation (IUE) with

soma-targetedw [92] jGCaMP8f [72] (pAAV-CAG-RiboGCaMP8f) and tdTomato (pCAG-

tdTomato [93], Addgene). On embryonic day (E)15.5 timed-pregnant female CD-1 mice

(Charles River UK) mice were deeply anaesthetized with 2% isoflurane. Uterine horns were
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exposed and periodically rinsed with warm sterile PBS. Plasmid DNA, 1-2 µg total at a

final concentration of 1 µg/µl (a 6:1 ratio of jGCaMP8f:tdTomato) diluted in sterile PBS

was injected into the lateral ventricle of one cerebral hemisphere of an embryo. Five voltage

pulses (50V , 50ms duration, 1Hz) were delivered using 5-mm round plate electrodes (ECM

830 electroporator, Harvard Apparatus), with the anode or cathode placed on top of the

skull to target the cortex or hippocampus, respectively. Electroporated embryos were

placed back into the dam, and allowed to mature to delivery. Brain slices were prepared

from electroporated mice at postnatal day (P)12-P30.

C.1.4 Brain slice preparation

This study was carried out in accordance with the recommendations of the UK Animals

(Scientific Procedures) Act 1986 under Home Office Project and Personal Licenses (project

license 70/9095). 400-µm slices were prepared from 12 − 30 day old mice Slices were cut

in choline chloride cutting solution containing (in mM): 110 choline-Cl, 25 NaHCO3, 20

glucose, 2.5 KCl, 1.25 NaH2PO4, 0.5 CaCl2 and 7 MgSO4. After cutting, the slices were

transferred to a solution containing (in mM) 125 NaCl, 25 NaHCO3, 20 glucose, 2.5 KCl,

1.25 NaH2PO4, 2 MgSO4, 2 CaCl2, adjusted 300 to 310 mOsm/kg, pH 7.3 to 7.4 with HCl

at 36◦C. All solutions were oxygenated with 95%O2/5%CO2.



111

Bibliography

[1] N. C. Pegard, H.-Y. Liu, N. Antipa, M. Gerlock, H. Adesnik, and L. Waller,

“Compressive light-field microscopy for 3D neural activity recording,” Optica, vol. 3,

no. 5, pp. 517–524, May 2016. [Online]. Available: http://www.osapublishing.org/

optica/abstract.cfm?URI=optica-3-5-517

[2] T. Nöbauer, O. Skocek, A. P.-A. J., L. Weilguny, F. M. Traub, M. I. Molodtsov, and

A. Vaziri, “Video rate volumetric ca2+ imaging across cortex using seeded iterative

demixing (sid) microscopy,” Nature Methods, vol. 14, p. 811, 2017. [Online]. Available:

https://doi.org/10.1038/nmeth.4341

[3] K. P. Lillis, A. Eng, J. A. White, and J. Mertz, “Two-photon imaging of spatially

extended neuronal network dynamics with high temporal resolution,” Journal of neu-

roscience methods, vol. 172, no. 2, pp. 178–184, 2008.

[4] A. J. Sadovsky, P. B. Kruskal, J. M. Kimmel, J. Ostmeyer, F. B. Neubauer, and J. N.

MacLean, “Heuristically optimal path scanning for high-speed multiphoton circuit

imaging,” Journal of neurophysiology, vol. 106, no. 3, pp. 1591–1598, 2011.

[5] R. Schuck, M. A. Go, S. Garasto, S. Reynolds, P. L. Dragotti, and S. R. Schultz,

“Multiphoton minimal inertia scanning for fast acquisition of neural activity signals,”

Journal of neural engineering, vol. 15, no. 2, p. 025003, 2018.

[6] K. N. S. Nadella, H. Roš, C. Baragli, V. A. Griffiths, G. Konstantinou, T. Koimtzis,

G. J. Evans, P. A. Kirkby, and R. A. Silver, “Random-access scanning microscopy for

3D imaging in awake behaving animals,” Nature methods, vol. 13, no. 12, p. 1001,

2016.

http://www.osapublishing.org/optica/abstract.cfm?URI=optica-3-5-517
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-3-5-517
https://doi.org/10.1038/nmeth.4341


Bibliography 112

[7] S. J. Yang, W. E. Allen, I. Kauvar, A. S. Andalman, N. P. Young, C. K. Kim, J. H.

Marshel, G. Wetzstein, and K. Deisseroth, “Extended field-of-view and increased-

signal 3d holographic illumination with time-division multiplexing,” Optics express,

vol. 23, no. 25, pp. 32 573–32 581, 2015.

[8] A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau, “Simul-

taneous two-photon calcium imaging at different depths with spatiotemporal multi-

plexing,” Nature methods, vol. 8, no. 2, p. 139, 2011.

[9] P. Quicke, S. Reynolds, M. Neil, T. Knöpfel, S. R. Schultz, and A. J. Foust, “High

speed functional imaging with source localized multifocal two-photon microscopy,”

Biomedical optics express, vol. 9, no. 8, pp. 3678–3693, 2018.

[10] M. Ducros, Y. G. Houssen, J. Bradley, V. de Sars, and S. Charpak, “Encoded multisite

two-photon microscopy,” Proceedings of the National Academy of Sciences, vol. 110,

no. 32, pp. 13 138–13 143, 2013.

[11] M. L. Castanares, V. Gautam, J. Drury, H. Bachor, and V. R. Daria, “Efficient multi-

site two-photon functional imaging of neuronal circuits,” Biomedical optics express,

vol. 7, no. 12, pp. 5325–5334, 2016.

[12] V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste,

“SLM microscopy: scanless two-photon imaging and photostimulation using spatial

light modulators,” Frontiers in neural circuits, vol. 2, p. 5, 2008.

[13] S. Bovetti, C. Moretti, S. Zucca, M. Dal Maschio, P. Bonifazi, and T. Fellin, “Simul-

taneous high-speed imaging and optogenetic inhibition in the intact mouse brain,”

Scientific reports, vol. 7, no. 1, p. 40041, 2017.

[14] P. Pozzi, D. Gandolfi, M. Tognolina, G. Chirico, J. Mapelli, and E. D’Angelo, “High-

throughput spatial light modulation two-photon microscopy for fast functional imag-

ing,” Neurophotonics, vol. 2, no. 1, p. 015005, 2015.

[15] R. Prevedel, A. J. Verhoef, A. J. Pernia-Andrade, S. Weisenburger, B. S. Huang,

T. Nöbauer, A. Fernández, J. E. Delcour, P. Golshani, A. Baltuska et al., “Fast vol-



Bibliography 113

umetric calcium imaging across multiple cortical layers using sculpted light,” Nature

methods, vol. 13, no. 12, p. 1021, 2016.

[16] A. J. Foust, V. Zampini, D. Tanese, E. Papagiakoumou, and V. Emiliani, “Computer-

generated holography enhances voltage dye fluorescence discrimination in adjacent

neuronal structures,” Neurophotonics, vol. 2, no. 2, p. 021007, 2015.

[17] D. Tanese, J.-Y. Weng, V. Zampini, V. de Sars, M. Canepari, B. J. Rozsa, V. Emiliani,

and D. Zecevic, “Imaging membrane potential changes from dendritic spines using

computer-generated holography,” Neurophotonics, vol. 4, no. 3, p. 031211, 2017.

[18] F. Anselmi, C. Ventalon, A. Bègue, D. Ogden, and V. Emiliani, “Three-dimensional

imaging and photostimulation by remote-focusing and holographic light patterning,”

Proceedings of the National Academy of Sciences, vol. 108, no. 49, pp. 19 504–19 509,

2011.

[19] R. Prevedel, Y. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. SchrÃ¶del,

R. Raskar, M. Zimmer, E. S. Boyden, and A. Vaziri, “Simultaneous whole-animal 3D

imaging of neuronal activity using light-field microscopy,” Nature methods, vol. 11,

no. 7, p. 727, 2014.

[20] S. R. Schultz, C. S. Copeland, A. J. Foust, P. Quicke, and R. Schuck, “Advances in

two-photon scanning and scanless microscopy technologies for functional neural circuit

imaging,” Proceedings of the IEEE, vol. 105, no. 1, pp. 139–157, 2017.

[21] S. Weisenburger and A. Vaziri, “A guide to emerging technologies for large-scale and

whole brain optical imaging of neuronal activity,” Annual review of neuroscience,

vol. 41, p. 431, 2018.

[22] H. Miyazawa, K. Okumura, K. Hiyoshi, K. Maruyama, H. Kakinuma, R. Amo,

H. Okamoto, K. Yamasu, and S. Tsuda, “Optical interrogation of neuronal circuitry

in zebrafish using genetically encoded voltage indicators,” Scientific reports, vol. 8,

no. 1, pp. 1–10, 2018.



Bibliography 114

[23] M. Inoue, A. Takeuchi, S. Manita, S.-i. Horigane, M. Sakamoto, R. Kawakami, K. Ya-

maguchi, K. Otomo, H. Yokoyama, R. Kim et al., “Rational engineering of xcamps, a

multicolor geci suite for in vivo imaging of complex brain circuit dynamics,” Cell, vol.

177, no. 5, pp. 1346–1360, 2019.

[24] S. Weisenburger, F. Tejera, J. Demas, B. Chen, J. Manley, F. T. Sparks, F. M. Traub,

T. Daigle, H. Zeng, A. Losonczy et al., “Volumetric ca2+ imaging in the mouse brain

using hybrid multiplexed sculpted light microscopy,” Cell, vol. 177, no. 4, pp. 1050–

1066, 2019.

[25] T. Knöpfel and C. Song, “Optical voltage imaging in neurons: moving from technology

development to practical tool,” Nature Reviews Neuroscience, vol. 20, no. 12, pp. 719–

727, 2019.

[26] L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang,

and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval

zebrafish (danio rerio),” Elife, vol. 6, 2017.

[27] S. Aimon, T. Katsuki, L. Grosenick, M. Broxton, K. Deisseroth, T. Sejnowski, and

R. Greenspan, “Fast whole brain imaging in adult drosophila during response to stimuli

and behavior,” Doi. Org, vol. 33803, 2017.

[28] D. G. Dansereau, “Plenoptic signal processing for robust vision in field robotics,” Ph.D.

dissertation, 2014.

[29] D. G. Dansereau, O. Pizarro, and S. B. Williams, “Decoding, calibration and

rectification for lenselet-based plenoptic cameras,” in 2013 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Australian Centre for Field

Robot., Mech. Mechatron. Eng. Univ. of Sydney, Sydney, NSW, Australia. Los

Alamitos, CA, USA: IEEE Computer Society, 23-28 June 2013 2013, pp. 1027–34,

t3: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[Online]. Available: http://dx.doi.org/10.1109/CVPR.2013.137

http://dx.doi.org/10.1109/CVPR.2013.137


Bibliography 115

[30] R. Ng, M. Levoy, M. B. ’edif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field

photography with a hand-held plenoptic camera,” Tech. Rep., apr 2005. [Online].

Available: http://graphics.stanford.edu/papers/lfcamera/

[31] M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of the

23rd Annual Conference on Computer Graphics and Interactive Techniques, ser.

SIGGRAPH ’96. New York, NY, USA: ACM, 1996, pp. 31–42. [Online]. Available:

http://doi.acm.org/10.1145/237170.237199

[32] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The lumigraph,” in

Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive

Techniques, ser. SIGGRAPH ’96. New York, NY, USA: ACM, 1996, pp. 43–54.

[Online]. Available: http://doi.acm.org/10.1145/237170.237200

[33] I. Ihrke, J. Restrepo, and L. Mignard-Debise, “Principles of light field imaging: Briefly

revisiting 25 years of research,” IEEE Signal Processing Magazine, vol. 33, no. 5, pp.

59–69, 2016.

[34] Y. Zhang, H. Lv, Y. Liu, H. Wang, X. Wang, Q. Huang, X. Xiang, and Q. Dai, “Light-

field depth estimation via epipolar plane image analysis and locally linear embedding,”

IEEE Transactions on Circuits and Systems for Video Technology, vol. 27, no. 4, pp.

739–747, 2017.

[35] R. C. Bolles, H. H. Baker, and D. H. Marimont, “Epipolar-plane image analysis: An

approach to determining structure from motion,” International Journal of Computer

Vision, vol. 1, no. 1, pp. 7–55, 1987.

[36] S. Wanner and B. Goldluecke, “Variational light field analysis for disparity estimation

and super-resolution,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 36, no. 3, pp. 606–619, 2014.

[37] S. Heber and T. Pock, “Shape from light field meets robust pca,” in European Con-

ference on Computer Vision. Springer, 2014, pp. 751–767.

http://graphics.stanford.edu/papers/lfcamera/
http://doi.acm.org/10.1145/237170.237199
http://doi.acm.org/10.1145/237170.237200


Bibliography 116

[38] R. Farrugia and C. Guillemot, “Light field super-resolution using a low-rank

prior and deep convolutional neural networks,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, p. 1, Jan 18, 2019. [Online]. Available:

https://ieeexplore.ieee.org/document/8620368

[39] B. GoldlÃ¼cke, O. Klehm, S. Wanner, and E. Eisemann, Plenoptic Cameras, ser.

Digital Representations of the Real World: How to Capture, Model, and Render

Visual Reality. Natick, MA, USA: A. K. Peters, Ltd, 2015.

[40] D. Lanman, R. Raskar, A. Agrawal, and G. Taubin, “Shield fields: modeling and

capturing 3d occluders,” ACM Transactions on Graphics (TOG), vol. 27, no. 5, pp.

1–10, 2008.

[41] A. Manakov, J. Restrepo, O. Klehm, R. Hegedus, E. Eisemann, H.-P. Seidel, and

I. Ihrke, “A reconfigurable camera add-on for high dynamic range, multispectral, po-

larization, and light-field imaging,” ACM Transactions on Graphics, vol. 32, no. 4, pp.

47–1, 2013.

[42] A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” in 2009 IEEE Inter-

national Conference on Computational Photography (ICCP), 2009, pp. 1–8.

[43] J. Page, F. Saltarin, Y. Belyaev, R. Lyck, and P. Favaro, “Learning to reconstruct

confocal microscope stacks from single light field images,” 2020.

[44] T. Georgiev and A. Lumsdaine, “Resolution in plenoptic cameras,” in Frontiers

in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics & Photonics Technical

Digest. Optica Publishing Group, 2009, p. CTuB3. [Online]. Available: http:

//opg.optica.org/abstract.cfm?URI=COSI-2009-CTuB3

[45] M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,”

ACM Transactions on Graphics, vol. 25, no. 3, pp. 924–34, 2006. [Online]. Available:

http://dx.doi.org/10.1145/1141911.1141976

[46] Z. Xue, “Sampling models in light fields,” Ph.D. dissertation, 2016.

https://ieeexplore.ieee.org/document/8620368
http://opg.optica.org/abstract.cfm?URI=COSI-2009-CTuB3
http://opg.optica.org/abstract.cfm?URI=COSI-2009-CTuB3
http://dx.doi.org/10.1145/1141911.1141976


Bibliography 117

[47] M. Born and E. Wolf, Principles of Optics, 7th ed. Cambridge,UK: Cambridge

University Press, 2003.

[48] L. Novotny, “Lecture notes on electromagnetic fields and waves,” Switzerland: ETH

Zurich, pp. 82–83, 2013.

[49] J. W. Goodman, Introduction to Fourier Optics 2nd Edition. New York: McGraw-

Hill, 1998.

[50] M. Gu, Advanced optical imaging theory. Berlin; London: Springer, 2000.

[51] M. Broxton, L. Grosenick, S. Yang, A. A. N. Cohen and, K. Deisseroth, and M. Levoy,

“Wave optics theory and 3-d deconvolution for the light field microscope,” Optics

express, vol. 21, no. 21, pp. 25 418–25 439, 2013.

[52] M. Testorf, B. Hennelly, and J. Ojeda-Castañeda, Phase-space optics: fundamentals

and applications. McGraw-Hill Education, 2010.

[53] M. J. Bastiaans, “Application of the wigner distribution function to partially

coherent light,” Journal of the Optical Society of America A, vol. 3, no. 8,

pp. 1227–1238, 1986, j2: J. Opt. Soc. Am. A. [Online]. Available: http:

//josaa.osa.org/abstract.cfm?URI=josaa-3-8-1227

[54] H. Liu, E. Jonas, L. Tian, J. Zhong, B. Recht, and L. Waller, “3D

imaging in volumetric scattering media using phase-space measurements,” Optics

express, vol. 23, no. 11, pp. 14 461–14 471, Jun 2015. [Online]. Available:

http://www.opticsexpress.org/abstract.cfm?URI=oe-23-11-14461

[55] A. Papoulis, “Ambiguity function in fourier optics∗,” J.Opt.Soc.Am., vol. 64, no. 6,

pp. 779–788, Jun 1974. [Online]. Available: http://www.osapublishing.org/abstract.

cfm?URI=josa-64-6-779

[56] D. Dragoman, “Applications of the wigner distribution function in signal processing,”

EURASIP J.Adv.Signal Process, vol. 2005, pp. 1520–1534, 2005. [Online]. Available:

https://doi.org/10.1155/ASP.2005.1520

http://josaa.osa.org/abstract.cfm?URI=josaa-3-8-1227
http://josaa.osa.org/abstract.cfm?URI=josaa-3-8-1227
http://www.opticsexpress.org/abstract.cfm?URI=oe-23-11-14461
http://www.osapublishing.org/abstract.cfm?URI=josa-64-6-779
http://www.osapublishing.org/abstract.cfm?URI=josa-64-6-779
https://doi.org/10.1155/ASP.2005.1520


Bibliography 118

[57] Z. Zhang and M. Levoy, “Wigner distributions and how they relate to the light field,”

pp. 1–10, 2009.

[58] Z. Lu, J. Wu, H. Qiao, Y. Zhou, T. Yan, Z. Zhou, X. Zhang, J. Fan,

and Q. Dai, “Phase-space deconvolution for light field microscopy,” Opt.Express,

vol. 27, no. 13, pp. 18 131–18 145, Jun 2019. [Online]. Available: http:

//www.opticsexpress.org/abstract.cfm?URI=oe-27-13-18131

[59] P. Quicke, C. L. Howe, P. Song, H. V. Jadan, C. Song, T. Knöpfel, M. Neil, P. L.

Dragotti, S. R. Schultz, and A. J. Foust, “Subcellular resolution three-dimensional

light-field imaging with genetically encoded voltage indicators,” Neurophotonics,

vol. 7, no. 3, p. 035006, 2020.

[60] C. L. Howe, P. Quicke, P. Song, H. V. Jadan, P. L. Dragotti, and A. J. Foust, “Compar-

ing volumetric reconstruction algorithms for light field imaging of high signal-to-noise

ratio neuronal calcium transients,” bioRxiv, 2020.

[61] M. E. Daube-Witherspoon and G. Muehllehner, “An iterative image space reconstruc-

tion algorthm suitable for volume ect,” IEEE transactions on medical imaging, vol. 5,

no. 2, pp. 61–66, 1986.

[62] A. Stefanoiu, J. Page, P. Symvoulidis, G. G. Westmeyer, and T. Lasser, “Artifact-free

deconvolution in light field microscopy,” Opt. Express, vol. 27, no. 22, pp.

31 644–31 666, Oct 2019. [Online]. Available: http://www.opticsexpress.org/abstract.

cfm?URI=oe-27-22-31644

[63] Z. Wang, L. Zhu, H. Zhang, G. Li, C. Yi, Y. Li, Y. Yang, Y. Ding, M. Zhen, S. Gao

et al., “Real-time volumetric reconstruction of biological dynamics with light-field

microscopy and deep learning,” Nature Methods, vol. 18, no. 5, pp. 551–556, 2021.

[64] Z. Wang, H. Zhang, Y. Yang, Y. Li, S. Gao, and P. Fei, “Deep learning light

field microscopy for rapid four-dimensional imaging of behaving animals,” bioRxiv,

p. 432807, 2018. [Online]. Available: http://biorxiv.org/content/early/2018/10/02/

432807.1.abstract

http://www.opticsexpress.org/abstract.cfm?URI=oe-27-13-18131
http://www.opticsexpress.org/abstract.cfm?URI=oe-27-13-18131
http://www.opticsexpress.org/abstract.cfm?URI=oe-27-22-31644
http://www.opticsexpress.org/abstract.cfm?URI=oe-27-22-31644
http://biorxiv.org/content/early/2018/10/02/432807.1.abstract
http://biorxiv.org/content/early/2018/10/02/432807.1.abstract


Bibliography 119

[65] N. Wagner, F. Beuttenmueller, N. Norlin, J. Gierten, J. C. Boffi, J. Wittbrodt,

M. Weigert, L. Hufnagel, R. Prevedel, and A. Kreshuk, “Deep learning-enhanced

light-field imaging with continuous validation,” Nature Methods, vol. 18, no. 5, pp.

557–563, 2021.

[66] N. Chacko, M. Liebling, and T. Blu, “Discretization of continuous convolution op-

erators for accurate modeling of wave propagation in digital holography,” JOSA A,

vol. 30, no. 10, pp. 2012–2020, 2013.

[67] A. Carpenter, “Drosophila melanogaster kc167 cell.” [Online]. Available: http:

//cellimagelibrary.org/images/21766

[68] X. Li, H. Qiao, J. Wu, Z. Lu, T. Yan, R. Zhang, X. Zhang, and Q. Dai,

“DeepLFM: Deep learning-based 3D reconstruction for light field microscopy,” pp.

NM3C–2, 04/14 2019, j2: NTM; T3: The Optical Society. [Online]. Available:

http://www.osapublishing.org/abstract.cfm?URI=NTM-2019-NM3C.2

[69] M. Eberhart, “Efficient algorithm for calculating transposed psf matrices for 3d light

field deconvolution,” arXiv e-prints, pp. arXiv–2003, 2020.

[70] L. Donati, E. Soubies, and M. Unser, “Inner-loop-free ADMM for cryo-em,” in 2019

IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), 2019, pp.

307–311.

[71] L. Madisen, A. R. Garner, D. Shimaoka, A. S. Chuong, N. C. Klapoetke, L. Li, A. Van

Der Bourg, Y. Niino, L. Egolf, C. Monetti et al., “Transgenic mice for intersectional

targeting of neural sensors and effectors with high specificity and performance,” Neu-

ron, vol. 85, no. 5, pp. 942–958, 2015.

[72] Y. Zhang, M. Rózsa, D. Bushey, J. Zheng, D. Reep, Y. Liang, G. J. Broussard,

A. Tsang, G. Tsegaye, R. Patel, S. Narayan, J.-X. Lim, R. Zhang, M. B. Ahrens,

G. C. Turner, S. S.-H. Wang, K. Svoboda, W. Korff, E. R. Schreiter, J. P. Hasseman,

I. Kolb, and L. L. Looger, “jgcamp8 fast genetically encoded calcium indicators,”

12 2020. [Online]. Available: https://janelia.figshare.com/articles/online_resource/

jGCaMP8_Fast_Genetically_Encoded_Calcium_Indicators/13148243

http://cellimagelibrary.org/images/21766
http://cellimagelibrary.org/images/21766
http://www.osapublishing.org/abstract.cfm?URI=NTM-2019-NM3C.2
https://janelia.figshare.com/articles/online_resource/jGCaMP8_Fast_Genetically_Encoded_Calcium_Indicators/13148243
https://janelia.figshare.com/articles/online_resource/jGCaMP8_Fast_Genetically_Encoded_Calcium_Indicators/13148243


Bibliography 120

[73] Y. Qian, D. M. O. Cosio, K. D. Piatkevich, S. Aufmkolk, W.-C. Su, O. T. Celiker,

A. Schohl, M. H. Murdock, A. Aggarwal, Y.-F. Chang et al., “Improved genetically

encoded near-infrared fluorescent calcium ion indicators for in vivo imaging,” PLoS

Biology, vol. 18, no. 11, p. e3000965, 2020.

[74] Y. Qian, K. D. Piatkevich, B. Mc Larney, A. S. Abdelfattah, S. Mehta, M. H. Murdock,

S. Gottschalk, R. S. Molina, W. Zhang, Y. Chen et al., “A genetically encoded near-

infrared fluorescent calcium ion indicator,” Nature methods, vol. 16, no. 2, pp. 171–174,

2019.

[75] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” in Proceedings of the

IEEE conference on computer vision and pattern recognition, 2018, pp. 9446–9454.

[76] P. Cascarano, A. Sebastiani, M. C. Comes, G. Franchini, and F. Porta, “Combining

weighted total variation and deep image prior for natural and medical image restora-

tion via admm,” arXiv preprint arXiv:2009.11380, 2020.

[77] H. Verinaz-Jadan, P. Song, C. L. Howe, A. J. Foust, and P. L. Dragotti, “Shift-

invariant-subspace discretization and volume reconstruction for light field microscopy,”

IEEE Transactions on Computational Imaging, vol. 8, pp. 286–301, 2022.

[78] K. Gregor and Y. LeCun, “Learning fast approximations of sparse coding,” in Pro-

ceedings of the 27th international conference on international conference on machine

learning, ser. ICML’10. Madison, WI, USA: Omnipress, 2010, pp. 399–406.

[79] I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm for

linear inverse problems with a sparsity constraint,” Communications on Pure and

Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical

Sciences, vol. 57, no. 11, pp. 1413–1457, 2004.

[80] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear

inverse problems,” SIAM Journal on Imaging Sciences, vol. 2, no. 1, pp. 183–202,

2009. [Online]. Available: https://doi.org/10.1137/080716542

https://doi.org/10.1137/080716542


Bibliography 121

[81] G. Kwon, C. Han, and D.-s. Kim, “Generation of 3D brain mri using auto-encoding

generative adversarial networks,” in International Conference on Medical Image Com-

puting and Computer-Assisted Intervention. Springer, 2019, pp. 118–126.

[82] C. Ledig, L. Theis, F. HuszÃ¡r, J. Caballero, A. Cunningham, A. Acosta, A. Aitken,

A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image super-resolution

using a generative adversarial network,” in 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2017, pp. 105–114.

[83] S. Lunz, O. Öktem, and C.-B. Schönlieb, “Adversarial regularizers in inverse prob-

lems,” in Advances in Neural Information Processing Systems, S. Bengio, H. Wallach,

H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., vol. 31. Curran

Associates, Inc., 2018.

[84] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley, “Least squares

generative adversarial networks,” in Proceedings of the IEEE international conference

on computer vision, 2017, pp. 2794–2802.

[85] S. Lim, H. Park, S.-E. Lee, S. Chang, B. Sim, and J. C. Ye, “Cyclegan with a blur kernel

for deconvolution microscopy: Optimal transport geometry,” IEEE Transactions on

Computational Imaging, vol. 6, pp. 1127–1138, 2020.

[86] H. Li, C. Guo, and S. Jia, “High-resolution light-field microscopy,” in Frontiers in

Optics 2017. Optical Society of America, 2017, p. FW6D.3. [Online]. Available:

http://www.osapublishing.org/abstract.cfm?URI=FiO-2017-FW6D.3

[87] C. Guo, W. Liu, X. Hua, H. Li, and S. Jia, “Fourier light-field microscopy,”

Opt. Express, vol. 27, no. 18, pp. 25 573–25 594, Sep 2019. [Online]. Available:

http://www.opticsexpress.org/abstract.cfm?URI=oe-27-18-25573

[88] J. Goodman, Introduction to Fourier Optics, ser. McGraw-Hill physical and

quantum electronics series. W. H. Freeman, 2005. [Online]. Available: https:

//books.google.co.uk/books?id=ow5xs_Rtt9AC

http://www.osapublishing.org/abstract.cfm?URI=FiO-2017-FW6D.3
http://www.opticsexpress.org/abstract.cfm?URI=oe-27-18-25573
https://books.google.co.uk/books?id=ow5xs_Rtt9AC
https://books.google.co.uk/books?id=ow5xs_Rtt9AC


Bibliography 122

[89] E. Soubies, T.-A. Pham, and M. Unser, “Efficient inversion of multiple-scattering

model for optical diffraction tomography,” Opt. Express, vol. 25, no. 18, pp.

21 786–21 800, Sep 2017. [Online]. Available: http://opg.optica.org/oe/abstract.cfm?

URI=oe-25-18-21786

[90] D. Daly, Microlens Arrays, ser. Microlens Arrays. Taylor & Francis, 2000. [Online].

Available: https://books.google.co.uk/books?id=xCWONq0kmr0C

[91] A. D. Edelstein, M. A. Tsuchida, N. Amodaj, H. Pinkard, R. D. Vale, and N. Stuur-

man, “Advanced methods of microscope control using µmanager software,” Journal of

biological methods, vol. 1, no. 2, 2014.

[92] Y. Chen, H. Jang, P. W. Spratt, S. Kosar, D. E. Taylor, R. A. Essner, L. Bai, D. E.

Leib, T.-W. Kuo, Y.-C. Lin et al., “Soma-targeted imaging of neural circuits by ribo-

some tethering,” Neuron, vol. 107, no. 3, pp. 454–469, 2020.

[93] M. Pathania, J. Torres-Reveron, L. Yan, T. Kimura, T. V. Lin, V. Gordon, Z.-Q. Teng,

X. Zhao, T. A. Fulga, D. Van Vactor et al., “mir-132 enhances dendritic morphogenesis,

spine density, synaptic integration, and survival of newborn olfactory bulb neurons,”

PloS one, vol. 7, no. 5, p. e38174, 2012.

http://opg.optica.org/oe/abstract.cfm?URI=oe-25-18-21786
http://opg.optica.org/oe/abstract.cfm?URI=oe-25-18-21786
https://books.google.co.uk/books?id=xCWONq0kmr0C

	Declaration of Originality
	Copyright Declaration
	Abstract
	Acknowledgment
	Abbreviations
	Notations
	Contents
	List of Figures
	List of Tables
	Chapter  Introduction
	Motivation and Objectives
	Original contribution and outline of thesis
	Publications

	Chapter  Background
	Imaging Neural Activity
	The concept of light field and light field devices
	Ray-Optics Perspective
	Scalar-Wave-Optics Perspective
	Phase-Space-Optics Perspective

	Computational methods for 3D volume reconstruction from LFM Data
	Model-based methods
	Learning-based methods


	Chapter  Shift-Invariant-Subspace Discretization and Model Simplification 
	Forward Model Analysis
	A general discretization framework
	Filter-Bank Description and Model Simplification
	Experiments and Results

	Forward model as a linear CNN
	4D representation of Light Field
	Linear CNN

	Summary

	Chapter  Model-Based Reconstruction for LFM
	Ideal reconstruction under shift-invariant-subspace assumption
	Experiments

	General Scenario and Additional priors
	Experiments and Results
	Synthetic Data
	Additional Datasets
	Real Data

	Summary

	Chapter  Physics-based Deep Learning for Imaging Neuronal Activity via Two-photon and Light Field Microscopy
	Problem Formulation
	Efficient implementations of the forward model
	3D Reconstruction
	Deep neural network architecture for volume reconstruction
	Training Strategy

	Experiments and Results
	Experimental Setup
	Deep-learning Setup
	Reconstruction of Structural 3D images from Ligh Field images
	Reconstruction of volume time series from LF images 

	Summary

	Chapter  Conclusions
	Summary of Thesis Achievements
	Future Work
	Forward Model Calibration or Learning
	Exploitation of temporal correlation in LF stacks
	Design of discriminators
	Exploration of alternative LFM designs


	Appendix  Chapter 2
	Fresnel-Kirchhoff diffraction
	Fesnel-Kirchoff diffraction formula
	Rayleigh-Sommerfeld solutions

	Angular Spectrum Representation
	Lenses
	Simple Lens
	4f System

	Sampling the WDF

	Appendix  Chapter 4
	Stopping Criteria

	Appendix  Chapter 5
	Experimental Setup
	Light-field modality specifications
	Two-photon modality specifications
	Fluorophore transfection
	Brain slice preparation


	Bibliography

