Communications I

Problem Sheet One

1. Find the mean value (time average) and the power for the following signals
(a) $v(t)=3 \cos \left(2 \pi 10^{3} t\right)$,
(b) $v(t)=3$,

$$
[3,9]
$$

(c) $v(t)=3 \sin (40 t)+4 \cos \left(\pi 10^{4} t\right)$.
2. (a) Find the energy of the signal

$$
g(t)=\left\{\begin{array}{l}
\sin t \quad \text { for } 0 \leq t \leq 2 \pi \\
0 \quad \text { otherwise }
\end{array}\right.
$$

(b) Comment on the effect on energy of sign change or time shifting. What is the effect on the enegy if the signal is multiplied by k ?
3. Find the power for the following periodic signal.

Problem Sheet Two

1. Find the energy E_{x} and E_{y} of the signals $x(t)$ and $y(t)$ shown in Figure 1. Find the correlation coefficient between $x(t)$ and $y(t)$. Sketch the signal $x(t)+y(t)$ and show that the energy of this signal is equal to $E_{x}+E_{y}$. (Why?)

Figure 1:
2. Repeat the procedure for the signal pair shown in Figure 2. That is, compute:

- Signal energies.
- Correlation coefficient.
- Energy of the signal $z(t)=x(t)+y(t)$. (Is $E_{z} \neq E_{x}+E_{y}$? Why?)

Figure 2:
3. If a periodic signal satisfies certain symmetry conditions, the evaluation of the Fourier series component is somewhat simplified. Show that:
(a) If $g(t)=g(-t)$ (even symmetry), then all the sine terms in the trigonometric Fourier series vanish $\left(b_{n}=0\right)$.
(b) If $g(t)=-g(-t)$ (odd symmetry), then the dc and all the cosine terms in the Fourier series vanish $\left(a_{0}=a_{n}=0\right)$.
4. Show that the trigonometric Fourier series of the signal shown below is

$$
x(t)=\frac{4}{\pi}\left(\cos \frac{\pi t}{2}-\frac{1}{3} \cos \frac{3 \pi t}{2}+\frac{1}{5} \cos \frac{5 \pi t}{2}-\frac{1}{7} \cos \frac{7 \pi t}{2}+\cdots\right)
$$

Problem Sheet Three

1. Show that the Fourier transform of $g(t)$ may be expressed as

$$
G(\omega)=\int_{-\infty}^{\infty} g(t) \cos \omega t d t-j \int_{-\infty}^{\infty} g(t) \sin \omega t d t
$$

Hence, show that

- if $g(t)$ is a real and even function of t, then $G(\omega)$ is real and even.
- if $g(t)$ is a real and odd function of t, then $G(\omega)$ is imaginary and odd.

2. Using the definition of the Fourier transform:

$$
G(\omega)=\int_{-\infty}^{\infty} g(t) e^{-j \omega t} d t
$$

show that if $g(t)$ is real then $G^{*}(\omega)=G(-\omega)$.
(An important consequence of the above property is that if $g(t)$ is real then $|G(\omega)|$ is an even function of ω and $\angle G(\omega)$ is an odd function of $\omega)$.
3. From the definition of the Fourier transform, find the Fourier transform of $\operatorname{rect}(t-5)$.
4. Using time shift property, compute again the Fourier transform of rect $(t-5)$ and compare the two results.

Problem Sheet Four

1. Find the Power Spectral Density $S_{g}(\omega)$ of the power signal $g(t)=\cos \omega_{0} t$. (Hint: Compute the autocorrelation function first, and then use the property $\left.\mathcal{R}_{g}(\tau) \Longleftrightarrow S_{g}(\omega)\right)$.

$$
\left[\frac{\pi}{2}\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]\right]
$$

2. Find the power of the output signal $y(t)$ of the $R C$ circuit shown below with $R C=1$ if the input PSD $S_{g}(\omega)$ is given by:
(a) $\operatorname{rect}(\omega / 2)$
(b) $\delta(\omega+1)+\delta(\omega-1)$
(Hint: recall that $S_{y}(\omega)=|H(\omega)|^{2} S_{g}(\omega)$ and that $P_{y}=1 / 2 \pi \int_{-\infty}^{\infty} S_{y}(\omega) d \omega$)

$[1 / 4,1 / 2 \pi]$

Problem Sheet Five

1. Consider the two baseband signals $x_{1}(t)=\cos 2000 t$ and $x_{2}(t)=\cos 1900 t$. Plot the magnitude spectrum of the signal $s(t)=x_{1}(t) \cos 10000 t+x_{2}(t) \cos 20000 t$.
(a) The signal $s(t)$ is multiplied by $\cos 10000 t$ and fed to the filter with frequency response

$$
H(\omega)= \begin{cases}1 & \text { for }|\omega| \leq 2050 \mathrm{rad} / \mathrm{s} \\ 0 & \text { otherwise }\end{cases}
$$

Plot the magnitude spectrum of the output time waveform $y(t)$ (see Figure 3)

Figure 3: DSB-SC receiver
(b) What happens if $s(t)$ is multiplied by $\cos 20000 t$ and fed to the same filter? Plot the amplitude spectrum of this new output.
2. The signals $m_{1}(t)=\frac{2}{\pi} \operatorname{sinc}(2 t)$ and $m_{2}(t)=\frac{4}{\pi^{2}} \operatorname{sinc}^{2}(2 t)$ are to be transmitted simultaneously over a channel. Call $y(t)=\left(m_{1}(t)+x(t)\right) \cos (1000 t)$ the signal transmitted over the channel, where $x(t)=m_{2}(t) \cos 6 t$.
(a) Sketch the spectra of $x(t)$ and $y(t)$ [Hint: recall that a product in the time domain is equivalent to a convolution in the frequency domain).
(b) What is the bandwidth of $m_{1}(t)+x(t)$? [5/ $\left.\pi \mathrm{Hz}\right]$
(c) Can $m_{1}(t)$ and $m_{2}(t)$ be recovered from $y(t)$?
(d) Design (only the block diagram) a sycronous receiver to recover $m_{2}(t)$.

Problem Sheet Six

1. Consider the amplitude modulated signal $s(t)=(A+m(t)) \cos \omega_{c} t$, where $A=2, \omega_{c}=10000 \mathrm{rad} / \mathrm{s}$ and $m(t)=\cos 100 t+\sin 100 t$. Compute:
(a) the peak amplitude m_{p} of $m(t)$.
(Hint: use the identity $a \cos \omega_{0} t+b \sin \omega_{0} t=c \cos \left(\omega_{0} t+\theta\right)$ with $c=$ $\sqrt{a^{2}+b^{2}}$ and $\theta=\tan ^{-1}(-b / a)$.
(b) Compute the modulation index $\mu=\frac{m_{p}}{A}$.
(c) Compute the power efficiency $\eta=\frac{P_{s}}{P_{c}+P_{s}}$
2. The output signal from an AM modulator is

$$
u(t)=5 \cos (1800 \pi t)+20 \cos (2000 \pi t)+5 \cos (2200 \pi t) .
$$

Determine:
(a) the modulating signal $m(t)$ and the carrier $c(t)$,
(b) the modulation index,
(c) the ratio of the power in the sidebands to the power in the carrier.
3. Consider the modulating signal $m(t)=\cos 100 t$.
(a) Sketch the spectrum of $m(t)$
(b) Find and sketch the spectrum of the DSB-SC signal $\phi(t)=2 m(t) \cos 1000 t$
(c) From the spectrum of $\phi(t)$, suppress the LSB spectrum to obtain the USB spectrum.
(d) From the USB spectrum, write the expression of $\phi_{U S B}(t)$.

Problem Sheet Seven

1. Over an interval $0 \leq t \leq 1$, an angle modulated signal is given by

$$
\phi(t)=10 \cos 13000 t
$$

The carrier frequency is $\omega_{c}=10000$.
(a) If this were a PM signal with $k_{p}=1000$, determine $m(t)$ over $0 \leq t \leq 1$.
(b) If this were an FM signal with $k_{f}=1000$, determine $m(t)$ over $0 \leq$ $t \leq 1$.
2. An angle modulated signal has the form $u(t)=100 \cos \left[2 \pi f_{c} t+4 \sin (2000 \pi t)\right]$ where $f_{c}=10 \mathrm{MHz}$.
(a) Determine the average transmitted power.
(b) Is this an FM or PM signal? Expain.
(c) Determine the frequency deviation Δf. $[4000 \mathrm{~Hz}]$
(d) Using Carson's rule, find the bandwidth of the modulated signal. [10kHz]
3. The message signal $m(t)=10 \operatorname{sinc}(400 \pi t)$ frequency modulates the carrier $c(t)=100 \cos \left(2 \pi f_{c} t\right)$. The modulation index is $\beta=6$.
(a) Write an expression for the modulated signal $u(t)$. [Hint: you need to find the value of k_{f}]
(b) What is the maximum frequency deviation of the modulation signal? [1200Hz]
(c) Using Carson's rule, find the bandwidth of the modulated signal. [2800Hz]

Problem Sheet Eight

1. Consider the FM signal

$$
\varphi(t)=10 \cos \left[2 \pi f_{0} t+k_{f} \int_{-\infty}^{t} x(\alpha) d \alpha\right]
$$

where $k_{f}=10 \pi$. The message $x(t)$ is given by

$$
x(t)=\sum_{n=0}^{2} m_{n}(t)
$$

with

$$
m_{n}(t)=\frac{2^{n}}{\pi} \operatorname{sinc}(t) \cos (2 n t)
$$

(a) Sketch and dimension the Fourier transform of $m_{1}(t)$.
(b) Sketch and dimension the Fourier transform of $x(t)$.
(c) Using Carson's rule, determine the bandwidth of $\varphi(t)$.

$$
[75 / \pi \mathrm{Hz}]
$$

(d) Assume now that $x(t)=A e^{-10 t} u(t)$. Using Carson's rule, the bandwidth of $\varphi(t)$ is 50.4 Hz . Find the amplitude A of $x(t)$. Select the bandwidth, B, of the baseband message $x(t)$ so that it contains 95% of the signal energy.

$$
[A=1]
$$

Problem Sheet Nine

1. A 50Ω line is connected to a 75Ω line with a matched termination, and a sine wave of 1.0 V amplitude propagating in the former is incident on the junction. Find the voltage and the current amplitudes of the reflected and transmitted wave. Show how a resistor R connected at the junction can eliminate this reflection and find its value. [$0.2 \mathrm{~V},-4 \mathrm{~mA}, 1.2 \mathrm{~V}, 16 \mathrm{~mA}, 150 \Omega$]
2. Three lines of identical length, characteristic impedance and phase velocity are connected in series as shown in Figure 4, one with an open circuit termination, one with a short circuit termination and the third with a matched termination. The three transmission lines have $L_{0}=0.25 \mu \mathrm{H} / \mathrm{m}$ and $C_{0}=100 \mathrm{pF} / \mathrm{m}$.

Figure 4: The circuit with three transmission lines.
(a) Determine the characteristic impedance and the phase velocity of the three lines.
(b) The circuit of Figure 4 is now driven by a signal $v_{s}(t)=V_{0} \exp \left(j 2 \pi f_{0} t\right)$ with $V_{0}=5 \mathrm{~V}, f_{0}=1 \mathrm{MHz}$ and internal resistance $R=50 \Omega$. Find the shortest length L for which the combined steady-state impedance of the three lines, as measured at terminals a-b, will be 50Ω.

