EE1 and ISE1 Communications I

Pier Luigi Dragotti

Lecture eight

Lecture Aims

- To introduce Energy spectral density (ESD),
- Input and Output Energy spectral densities,
- To introduce Power spectral density (PSD),
- Input and Output Power spectral densities.

Signal Energy, Parseval's Theorem

Consider an energy signal $g(t)$, Parseval's Theorem states that

$$
E_{g}=\int_{-\infty}^{\infty}|g(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|G(\omega)|^{2} d \omega
$$

Proof:

$$
\begin{aligned}
E_{g} & =\int_{-\infty}^{\infty} g(t) g^{*}(t) d t=\int_{-\infty}^{\infty} g(t)\left[\frac{1}{2 \pi} \int_{-\infty}^{\infty} G^{*}(\omega) e^{-j \omega t} d \omega\right] d t \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} G^{*}(\omega)\left[\int_{-\infty}^{\infty} g(t) e^{-j \omega t} d t\right] d \omega \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} G(\omega) G^{*}(\omega) d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|G(\omega)|^{2} d \omega
\end{aligned}
$$

Example

Consider the signal $g(t)=e^{-a t} u(t)(a>0)$.
Its energy is

$$
E_{g}=\int_{-\infty}^{\infty} g^{2}(t) d t=\int_{0}^{\infty} e^{-2 a t} d t=\frac{1}{2 a}
$$

We now determine E_{g} using the signal spectrum $G(\omega)$ given by

$$
G(\omega)=\frac{1}{j \omega+a}
$$

It follows

$$
E_{g}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|G(\omega)|^{2} d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{1}{\omega^{2}+a^{2}} d \omega=\frac{1}{2 \pi a}\left[\tan ^{-1} \frac{\omega}{a}\right]_{-\infty}^{\infty}=\frac{1}{2 a}
$$

which verifies Parseval's theorem.

Energy Spectral Density

- Parseval's theorem can be interpreted to mean that the energy of a signal $g(t)$ is the result of energies contributed by all spectral components of a signal $g(t)$.
- The contribution of a spectral component of frequency ω is proportional to $|G(\omega)|^{2}$.
- Therefore, we can interpret $|G(\omega)|^{2}$ as the energy per unit bandwidth of the spectral components of $g(t)$ centered at frequency ω.
- In other words, $|G(\omega)|^{2}$ is the energy spectral density of $g(t)$

Energy Spectral Density (continued)

The energy spectral density (ESD) $\psi(t)$ is thus defined as

$$
\Psi(\omega)=|G(\omega)|^{2}
$$

and

$$
E_{g}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \Psi(\omega) d \omega
$$

Thus, the ESD of the signal $g(t)=e^{-a t} u(t)$ of the previous example is

$$
\Psi(\omega)=|G(\omega)|^{2}=\frac{1}{\omega^{2}+a^{2}}
$$

Energy of modulated signals (important)

Let $g(t)$ be a baseband energy signal with energy E_{g}.
The energy of the modulated signal $\varphi(t)=g(t) \cos \omega_{0} t$ is half the energy of $g(t)$. That is,

$$
E_{\varphi}=\frac{1}{2} E_{g} .
$$

Proof: See attached notes.
The same applies to power signals. That is, if $g(t)$ is a power signal then

$$
P_{\varphi}=\frac{1}{2} P_{g} .
$$

(You will use this result when computing the efficiency of a Full AM system).

Time Autocorrelation Function and ESD

For a real signal the autocorrelation function $\psi_{g}(t)$ is defined as

$$
\psi_{g}(\tau)=\int_{\infty}^{\infty} g(t) g(t+\tau) d t
$$

Do you remember the correlation of two signals (lecture three)? The autocorrelation function measure the correlation between $g(t)$ and all its translated versions.
Notice

$$
\psi_{g}(\tau)=\psi_{g}(-\tau)
$$

and

$$
g(\tau) * g(-\tau)=\psi_{g}(\tau)
$$

But, most important...

Time Autocorrelation Function and ESD

...the Fourier transform of the autocorrelation function is the Energy Spectral Density! That is

$$
\psi_{g}(\tau) \Longleftrightarrow \Psi(\omega)=|G(\omega)|^{2}
$$

Proof:

$$
\begin{aligned}
\mathcal{F}\left[\psi_{g}(\tau)\right] & =\int_{-\infty}^{\infty} e^{-j \omega \tau}\left[\int_{-\infty}^{\infty} g(t) g(t+\tau) d t\right] d \tau \\
& =\int_{-\infty}^{\infty} g(t)\left[\int_{-\infty}^{\infty} g(\tau+t) e^{-j \omega \tau} d \tau\right] d t
\end{aligned}
$$

The Fourier transform of $g(\tau+t)$ is $G(\omega) e^{j \omega t}$. Therefore,

$$
\mathcal{F}\left[\psi_{g}(\tau)\right]=G(\omega) \int_{-\infty}^{\infty} g(t) e^{j \omega t} d t=G(\omega) G(-\omega)=|G(\omega)|^{2}
$$

ESD of the Input and the Output

If $g(t)$ and $y(t)$ are the input and the corresponding output of a LTI system, then

$$
Y(\omega)=H(\omega) G(\omega) .
$$

Therefore,

$$
|Y(\omega)|^{2}=|H(\omega)|^{2}|G(\omega)|^{2} .
$$

This shows that

$$
\Psi_{y}(\omega)=|H(\omega)|^{2} \Psi_{g}(\omega) .
$$

Thus, the output signal ESD is $|H(\omega)|^{2}$ the input signal ESD.

Signal Power and Power Spectral Density

The power P_{g} of a real signal $g(t)$ is given by

$$
P_{g}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2} g^{2}(t) d t
$$

All the results for energy signals can be extended to power signals. Call $S_{g}(\omega)$ the Power Spectral Density (PSD) of $g(t)$. Thus,

$$
P_{g}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{g}(\omega) d \omega
$$

$S_{g}(\omega)$ can be found using the autocorrelation function.

Time autocorrelation Function of Power Signals

The (time) autocorrelation function $\mathcal{R}_{g}(\tau)$ of a real deterministic power signal $g(t)$ is defined as

$$
\mathcal{R}_{g}(\tau)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2} g(t) g(t+\tau) d t
$$

We have that

$$
\mathcal{R}_{g}(\tau) \Longleftrightarrow S_{g}(\omega)
$$

If $g(t)$ and $y(t)$ are the input and the corresponding output of a LTI system, then

$$
S_{y}(\omega)=|H(\omega)|^{2} S_{g}(\omega) .
$$

Thus, the output signal PSD is $|H(\omega)|^{2}$ the input signal PSD.

Conclusions

We learned about

- Energy and Power Spectral Densities,
- Time autocorrelation functions,
- Input and output energies and powers.

