EE1 and ISE1 Communications I

Pier Luigi Dragotti

Lecture seven

Lecture Aims

- To introduce linear systems,
- To introduce convolution,
- To examine signal transmission through a linear system,
- To give examples of real and ideal filters.

Linear Systems

Linear Systems (continued)

- A system is a *black box* that converts an input signal g(t) in an output signal y(t).
- Assume the output of a signal $g_1(t)$ is $y_1(t)$ and the output of $g_2(t)$ is $y_2(t)$. The system is linear if the output of $g_1(t) + g_2(t)$ is $y_1(t) + y_2(t)$.
- A system is time invariant if its properties do not change with the time. That is, if the response to g(t) is y(t), then the response to $g(t-t_0)$ is going to be $y(t-t_0)$

Unit impulse response of a LTI system

Consider a linear time invariant (LTI) system. Assume the input signal is a Dirac function $\delta(t)$. Call the observed output h(t).

- h(t) is called the **unit impulse response** function.
- With h(t), we can relate the input signal to its output signal through the convolution formula:

$$y(t) = h(t) * g(t) = \int_{-\infty}^{\infty} h(\tau)g(t-\tau)d\tau.$$

Intuitive explanation of the convolution formula

- g(t) can be approximated as $g(t) \simeq \sum_{n} g(n\Delta\tau)\Delta\tau\delta(t-n\Delta\tau).$
- In the limit as $\Delta \tau \rightarrow 0$ this approximation approaches the true function g(t).
- The response $\hat{y}(t)$ of the LTI system to the input $\sum_{n} g(n\Delta\tau)\Delta\tau\delta(t-n\Delta\tau)$ is going to be $\sum_{n} g(n\Delta\tau)h(t-n\Delta\tau)\Delta\tau$.
- Thus, $y(t) = \lim_{\Delta \tau \to 0} \sum_{n} g(n\Delta \tau) h(t n\Delta \tau) \Delta \tau = \int_{-\infty}^{\infty} g(\tau) h(t \tau) d\tau.$

Convolution in the frequency domain

The convolution of two functions g(t) and h(t), denoted by g(t) * h(t), is defined by the integral

$$y(t) = h(t) * g(t) = \int_{-\infty}^{\infty} h(x)g(t-x)dx.$$

If $g(t) \iff G(\omega)$ and $h(t) \iff H(\omega)$ then the convolution reduces to a product in the Fourier domain

$$y(t) = h(t) * g(t) \iff Y(\omega) = H(\omega)G(\omega).$$

 $H(\omega)$ is called the system transfer function or the system frequency response or the spectral response.

Notice that, for symmetry, a product in the time domain corresponds to a convolution in frequency domain. That is

$$g_1(t)g_2(t) \iff \frac{1}{2\pi}G_1(\omega) * G_2(\omega).$$

Bandwidth of the product of two signals

If $g_1(t)$ and $g_2(t)$ have bandwidths B_1 and B_2 Hz, respectively.

The bandwidth of $g_1(t)g_2(t)$ is $B_1 + B_2$ Hz.

Ideal Low-Pass Filter

Ideal low-pass filter response

$$H(\omega) = rect\left(\frac{\omega}{2w}\right)e^{-j\omega t_d}$$

Ideal low-pass filter impulse response

$$h(t) = \frac{w}{\pi} sinc[(t - t_d)]$$

Ideal High-Pass and Band-pass filters

Figure 2: Ideal band-pass filter

Practical filters

- The filters in the previous examples are ideal filters.
- They are not realizable since their unit impulse responses are everlasting (Think of the sinc function).
- Physically realizable filter impulse response h(t) = 0 for t < 0.
- Therefore, we can only obtain approximated version of the ideal low-pass, high-pass and band-pass filters.

Example of a linear system: RC circuit

Example: RC circuit (continued)

$$H(\omega) = \frac{1/j\omega C}{R + (1/j\omega C)} = \frac{1}{1 + j\omega RC} = \frac{a}{a + j\omega}$$
$$a = \frac{1}{RC}$$

 and

$$|H(\omega)| = \frac{a}{\sqrt{a^2 + \omega^2}} \Rightarrow |H(0)| = 1, \lim_{\omega \to \infty} |H(\omega)| = 0.$$
$$\theta_h(\omega) = -tan^{-1}\frac{\omega}{a}$$

Therefore, this circuit behaves as a low-pass filter.

Summary

- Linear time invariant systems
- Unit impulse response function
- Convolution formula: $y(t) = h(t) * g(t) = \int_{-\infty}^{\infty} h(\tau)g(t-\tau)d\tau$
- Low-pass, high-pass and band-pass filters