EE1 and ISE1 Communications I

Pier Luigi Dragotti

Lecture four

Lecture Aims

- Trigonometric Fourier series
- Fourier spectrum
- Exponential Fourier series

Trigonometric Fourier series

- Consider a signal set

$$
\left\{1, \cos \omega_{0} t, \cos 2 \omega_{0} t, \ldots, \cos n \omega_{0} t, \ldots, \sin \omega_{0} t, \sin 2 \omega_{0} t, \ldots, \sin n \omega_{0} t, \ldots\right\}
$$

- A sinusoid of frequency $n \omega_{0}$ is called the $n^{t h}$ harmonic of the sinusoid, where n is an integer.
- The sinusoid of frequency ω_{0} is called the fundamental harmonic.
- This set is orthogonal over an interval of duration $T_{0}=2 \pi / \omega_{0}$, which is the period of the fundamental.

Trigonometric Fourier series

The components of the set $\left\{1, \cos \omega_{0} t, \cos 2 \omega_{0} t, \ldots, \cos n \omega_{0} t, \ldots, \sin \omega_{0} t, \sin 2 \omega_{0} t, \ldots, \sin n \omega_{0} t, \ldots\right\}$ are orthogonal as

$$
\begin{aligned}
& \int_{T_{0}} \cos n \omega_{0} t \cos m \omega_{0} t d t=\left\{\begin{array}{cl}
0 & m \neq n \\
\frac{T_{0}}{2} & m=n \neq 0
\end{array}\right. \\
& \int_{T_{0}} \sin n \omega_{0} t \sin m \omega_{0} t d t=\left\{\begin{array}{cc}
0 & m \neq n \\
\frac{T_{0}}{2} & m=n \neq 0
\end{array}\right. \\
& \int_{T_{0}} \sin n \omega_{0} t \cos m \omega_{0} t d t=0 \quad \text { for all } m \text { and } n
\end{aligned}
$$

$\int_{T_{0}}$ means integral over an interval from $t=t_{1}$ to $t=t_{1}+T_{0}$ for any value of t_{1}.

Trigonometric Fourier series

This set is also complete in T_{0}. That is, any signal in an interval $t_{1} \leq t \leq t_{1}+T_{0}$ can be written as the sum of sinusoids. Or

$$
\begin{aligned}
g(t) & =a_{0}+a_{1} \cos \omega_{0} t+a_{2} \cos 2 \omega_{0} t+\ldots+b_{1} \sin \omega_{0} t+b_{2} \sin 2 \omega_{0} t+\ldots \\
& =a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n \omega_{0} t+b_{n} \sin n \omega_{0} t
\end{aligned}
$$

Series coefficients

$$
a_{n}=\frac{\left\langle g(t), \cos n \omega_{0} t\right\rangle}{\left\langle\cos n \omega_{0} t, \cos n \omega_{0} t\right\rangle} \quad b_{n}=\frac{\left\langle g(t), \sin n \omega_{0} t\right\rangle}{\left\langle\sin n \omega_{0} t, \sin n \omega_{0} t\right\rangle}
$$

Trigonometric Fourier Coefficients

Therefore

$$
a_{n}=\frac{\int_{t_{1}}^{t_{1}+T_{0}} g(t) \cos n \omega_{0} t d t}{\int_{t_{1}}^{t_{1}+T_{0}} \cos ^{2} n \omega_{0} t d t}
$$

As

$$
\int_{t_{1}}^{t_{1}+T_{0}} \cos ^{2} n \omega_{0} t d t=T_{0} / 2, \quad \int_{t_{1}}^{t_{1}+T_{0}} \sin ^{2} n \omega_{0} t d t=T_{0} / 2
$$

We get

$$
\begin{aligned}
& a_{0}=\frac{1}{T_{0}} \int_{t_{1}}^{t_{1}+T_{0}} g(t) d t \\
& a_{n}=\frac{2}{T_{0}} \int_{t_{1}}^{t_{1}+T_{0}} g(t) \cos n \omega_{0} t d t \quad n=1,2,3, \ldots \\
& b_{n}=\frac{2}{T_{0}} \int_{t_{1}}^{t_{1}+T_{0}} g(t) \sin n \omega_{0} t d t \quad n=1,2,3, \ldots
\end{aligned}
$$

Compact Fourier series

Using the identity

$$
a_{n} \cos n \omega_{0} t+b_{n} \sin n \omega_{0} t=C_{n} \cos \left(n \omega_{0} t+\theta_{n}\right)
$$

where

$$
C_{n}=\sqrt{a_{n}^{2}+b_{n}^{2}} \quad \theta_{n}=\tan ^{-1}\left(-b_{n} / a_{n}\right)
$$

The trigonometric Fourier series can be expressed in compact form as

$$
g(t)=C_{0}+\sum_{n=1}^{\infty} C_{n} \cos \left(n \omega_{0} t+\theta_{n}\right) \quad t_{1} \leq t \leq t_{1}+T_{0}
$$

For consistency, we have denoted a_{0} by C_{0}.

Periodicity of the Trigonometric series

We have seen that an arbitrary signal $g(t)$ may be expressed as a trigonometric Fourier series over any interval of T_{0} seconds.
What happens to the Trigonometric Fourier series outside this interval?
Answer: The Fourier series is periodic of period T_{0} (the period of the fundamental harmonic).
Proof:

$$
\phi(t)=C_{0}+\sum_{n=1}^{\infty} C_{n} \cos \left(n \omega_{0} t+\theta_{n}\right) \quad \text { for all } t
$$

and

$$
\begin{aligned}
\phi\left(t+T_{0}\right) & =C_{0}+\sum_{n=1}^{\infty} C_{n} \cos \left[n \omega_{0}\left(t+T_{0}\right)+\theta_{n}\right] \\
& =C_{0}+\sum_{n=1}^{\infty} C_{n} \cos \left(n \omega_{0} t+2 n \pi+\theta_{n}\right) \\
& =C_{0}+\sum_{n=1}^{\infty} C_{n} \cos \left(n \omega_{0} t+\theta_{n}\right) \\
& =\phi(t) \quad \text { for all } t
\end{aligned}
$$

Properties of trigonometric series

- The trigonometric Fourier series is a periodic function of period $T_{0}=2 \pi / \omega_{0}$.
- If the function $g(t)$ is periodic with period T_{0}, then a Fourier series representing $g(t)$ over an interval T_{0} will also represent $g(t)$ for all t.

Example

Example

$\omega_{0}=2 \pi / T_{0}=2 \mathrm{rad} / \mathrm{s}$.

$$
g(t)=C_{0}+\sum_{n=1}^{\infty} C_{n} \cos \left(2 n t+\theta_{n}\right)
$$

n	0	1	2	3	4
C_{n}	0.504	0.244	0.125	0.084	0.063
θ_{n}	0	-75.96	-82.87	-85.84	-86.42

We can plot

- the amplitude C_{n} versus ω this gives us the amplitude spectrum
- the phase θ_{n} versus ω (phase spectrum).

This two plots together are the frequency spectra of $g(t)$.

Amplitude and phase spectra

Exponential Fourier Series

Consider a set of exponentials

$$
e^{j n \omega_{0} t} \quad n=0, \pm 1, \pm 2, \ldots
$$

The components of this set are orthogonal.
A signal $g(t)$ can be expressed as an exponential series over an interval T_{0} :

$$
g(t)=\sum_{n=-\infty}^{\infty} D_{n} e^{j n \omega_{0} t} \quad D_{n}=\frac{1}{T_{0}} \int_{T_{0}} g(t) e^{-j n \omega_{0} t} \mathrm{~d} t
$$

Trigonometric and exponential Fourier series

Trigonometric and exponential Fourier series are related. In fact, a sinusoid in the trigonometric series can be expressed as a sum of two exponentials using Euler's formula.

$$
\begin{aligned}
& C_{n} \cos \left(n \omega_{0} t+\theta_{n}\right)=\frac{C_{n}}{2}\left[e^{j\left(n \omega_{0} t+\theta_{n}\right)}+e^{-j\left(n \omega_{0} t+\theta_{n}\right)}\right] \\
&=\left(\frac{C_{n}}{2} e^{j \theta_{n}}\right) e^{j n \omega_{0} t}+\left(\frac{C_{n}}{2} e^{-j \theta_{n}}\right) e^{-j n \omega_{0} t} \\
&=D_{n} e^{j n \omega_{0} t}+D_{-n} e^{-j n \omega_{0} t} \\
& D_{n}=\frac{1}{2} C_{n} e^{j \theta_{n}} \quad D_{-n}=\frac{1}{2} C_{n} e^{-j \theta_{n}}
\end{aligned}
$$

Amplitude and phase spectra. Exponential case

Parseval's Theorem

Trigonometric Fourier series representation $g(t)=C_{0}+\sum_{n=1}^{\infty} C_{n} \cos \left(n \omega_{0} t+\theta_{n}\right)$. The power is given by

$$
P_{g}=C_{0}^{2}+\frac{1}{2} \sum_{n=1}^{\infty} C_{n}^{2}
$$

Exponential Fourier series representation $g(t)=\sum_{n=-\infty}^{\infty} D_{n} e^{j n \omega_{0} t}$. Power for the exponential representation

$$
P_{g}=\sum_{n=-\infty}^{\infty}\left|D_{n}\right|^{2}
$$

Conclusions

- Trigonometric Fourier series
- Exponential Fourier series
- Amplitude and phase spectra
- Parseval's theorem

