EE1 and ISE1 Communications I

Pier Luigi Dragotti

Lecture four

Lecture Aims

- Trigonometric Fourier series
- Fourier spectrum
- Exponential Fourier series

Trigonometric Fourier series

• Consider a signal set

 $\{1, \cos \omega_0 t, \cos 2\omega_0 t, \dots, \cos n\omega_0 t, \dots, \sin \omega_0 t, \sin 2\omega_0 t, \dots, \sin n\omega_0 t, \dots\}$

- A sinusoid of frequency $n\omega_0$ is called the n^{th} harmonic of the sinusoid, where n is an integer.
- The sinusoid of frequency ω_0 is called the fundamental harmonic.
- This set is orthogonal over an interval of duration $T_0 = 2\pi/\omega_0$, which is the period of the fundamental.

Trigonometric Fourier series

The components of the set $\{1, \cos \omega_0 t, \cos 2\omega_0 t, ..., \cos n\omega_0 t, ..., \sin \omega_0 t, \sin 2\omega_0 t, ..., \sin n\omega_0 t, ...\}$ are orthogonal as

$$\int_{T_0} \cos n\omega_0 t \cos m\omega_0 t dt = \begin{cases} 0 & m \neq n \\ \frac{T_0}{2} & m = n \neq 0 \end{cases}$$

$$\int_{T_0} \sin n\omega_0 t \sin m\omega_0 t dt = \begin{cases} 0 & m \neq n \\ \frac{T_0}{2} & m = n \neq 0 \\ \int_{T_0} \sin n\omega_0 t \cos m\omega_0 t dt = 0 & \text{for all } m \text{ and } n \end{cases}$$

 \int_{T_0} means integral over an interval from $t = t_1$ to $t = t_1 + T_0$ for any value of t_1 .

Trigonometric Fourier series

This set is also *complete* in T_0 . That is, any signal in an interval $t_1 \le t \le t_1 + T_0$ can be written as the sum of sinusoids. Or

$$g(t) = a_0 + a_1 \cos \omega_0 t + a_2 \cos 2\omega_0 t + \dots + b_1 \sin \omega_0 t + b_2 \sin 2\omega_0 t + \dots$$
$$= a_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_0 t + b_n \sin n\omega_0 t$$

Series coefficients

$$a_n = \frac{\langle g(t), \cos n\omega_0 t \rangle}{\langle \cos n\omega_0 t, \cos n\omega_0 t \rangle} \qquad b_n = \frac{\langle g(t), \sin n\omega_0 t \rangle}{\langle \sin n\omega_0 t, \sin n\omega_0 t \rangle}$$

Trigonometric Fourier Coefficients

Therefore

$$a_n = \frac{\int_{t_1}^{t_1 + T_0} g(t) \cos n\omega_0 t dt}{\int_{t_1}^{t_1 + T_0} \cos^2 n\omega_0 t dt}$$

As
$$\int_{t_1}^{t_1+T_0} \cos^2 n\omega_0 t dt = T_0/2, \qquad \int_{t_1}^{t_1+T_0} \sin^2 n\omega_0 t dt = T_0/2.$$
 We get

We get

$$a_{0} = \frac{1}{T_{0}} \int_{t_{1}}^{t_{1}+T_{0}} g(t) dt$$

$$a_{n} = \frac{2}{T_{0}} \int_{t_{1}}^{t_{1}+T_{0}} g(t) \cos n\omega_{0} t dt \quad n = 1, 2, 3, \dots$$

$$b_{n} = \frac{2}{T_{0}} \int_{t_{1}}^{t_{1}+T_{0}} g(t) \sin n\omega_{0} t dt \quad n = 1, 2, 3, \dots$$

Compact Fourier series

Using the identity

$$a_n \cos n\omega_0 t + b_n \sin n\omega_0 t = C_n \cos(n\omega_0 t + \theta_n)$$

where

$$C_n = \sqrt{a_n^2 + b_n^2}$$
 $\theta_n = \tan^{-1}(-b_n/a_n).$

The trigonometric Fourier series can be expressed in compact form as

$$g(t) = C_0 + \sum_{n=1}^{\infty} C_n \cos(n\omega_0 t + \theta_n)$$
 $t_1 \le t \le t_1 + T_0$

For consistency, we have denoted a_0 by C_0 .

Periodicity of the Trigonometric series

We have seen that an arbitrary signal g(t) may be expressed as a trigonometric Fourier series over any interval of T_0 seconds.

What happens to the Trigonometric Fourier series outside this interval?

Answer: The Fourier series is periodic of period T_0 (the period of the fundamental harmonic). Proof:

$$\phi(t) = C_0 + \sum_{n=1}^{\infty} C_n \cos(n\omega_0 t + \theta_n) \quad \text{for all } t$$

and

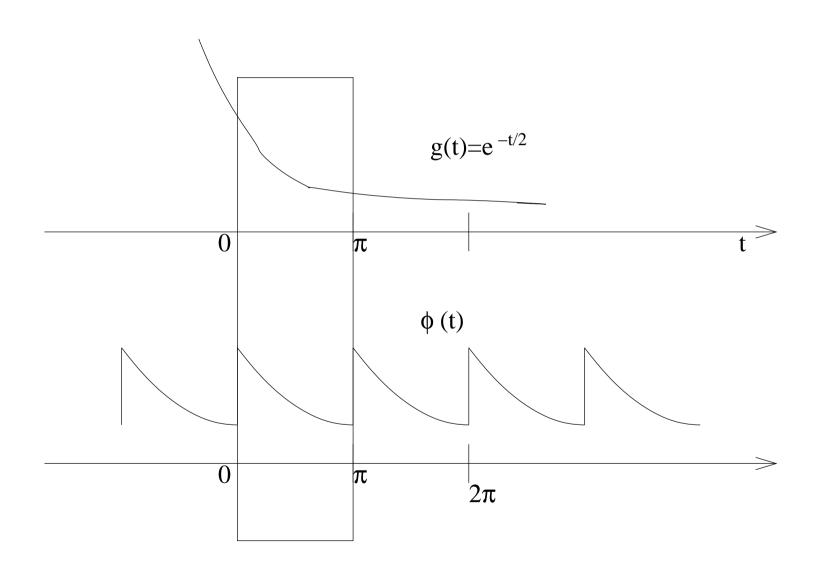
$$\phi(t+T_0) = C_0 + \sum_{n=1}^{\infty} C_n \cos[n\omega_0(t+T_0) + \theta_n]$$

= $C_0 + \sum_{n=1}^{\infty} C_n \cos(n\omega_0 t + 2n\pi + \theta_n)$
= $C_0 + \sum_{n=1}^{\infty} C_n \cos(n\omega_0 t + \theta_n)$
= $\phi(t)$ for all t

Properties of trigonometric series

- The trigonometric Fourier series is a periodic function of period $T_0 = 2\pi/\omega_0$.
- If the function g(t) is periodic with period T_0 , then a Fourier series representing g(t) over an interval T_0 will also represent g(t) for all t.

Example



Example

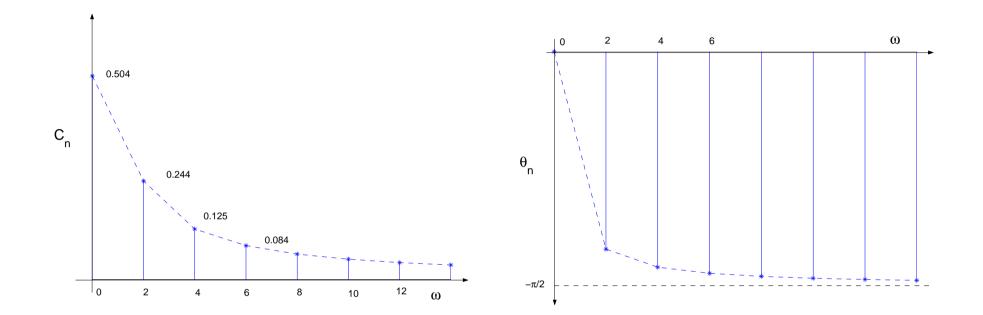
$$\omega_0=2\pi/T_0=2 \text{ rad/s.}$$

We can plot

- the amplitude C_n versus ω this gives us the **amplitude spectrum**
- the phase θ_n versus ω (phase spectrum).

This two plots together are the **frequency spectra** of g(t).

Amplitude and phase spectra



Exponential Fourier Series

Consider a set of exponentials

$$e^{jn\omega_0 t}$$
 $n = 0, \pm 1, \pm 2, \dots$

The components of this set are orthogonal.

A signal g(t) can be expressed as an exponential series over an interval T_0 :

$$g(t) = \sum_{n=-\infty}^{\infty} D_n e^{jn\omega_0 t} \qquad D_n = \frac{1}{T_0} \int_{T_0} g(t) e^{-jn\omega_0 t} \mathrm{d}t$$

Trigonometric and exponential Fourier series

Trigonometric and exponential Fourier series are related. In fact, a sinusoid in the trigonometric series can be expressed as a sum of two exponentials using Euler's formula.

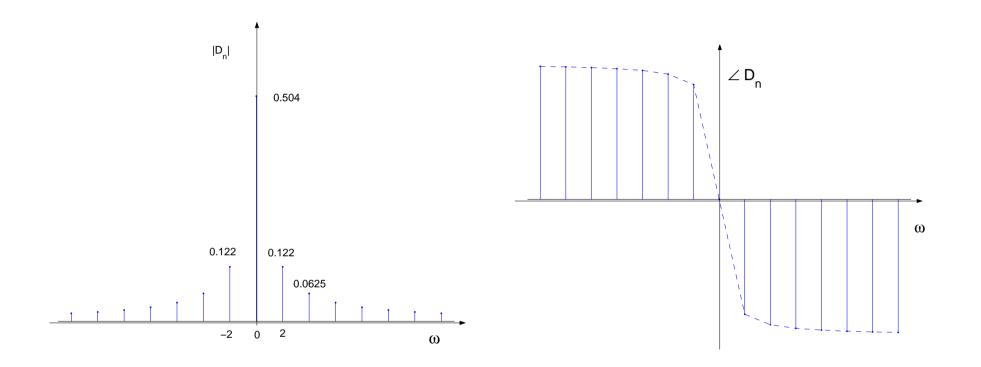
$$C_n \cos(n\omega_0 t + \theta_n) = \frac{C_n}{2} [e^{j(n\omega_0 t + \theta_n)} + e^{-j(n\omega_0 t + \theta_n)}]$$

$$= \left(\frac{C_n}{2} e^{j\theta_n}\right) e^{jn\omega_0 t} + \left(\frac{C_n}{2} e^{-j\theta_n}\right) e^{-jn\omega_0 t}$$

$$= D_n e^{jn\omega_0 t} + D_{-n} e^{-jn\omega_0 t}$$

$$D_n = \frac{1}{2} C_n e^{j\theta_n} \qquad D_{-n} = \frac{1}{2} C_n e^{-j\theta_n}$$

Amplitude and phase spectra. Exponential case



Parseval's Theorem

Trigonometric Fourier series representation $g(t) = C_0 + \sum_{n=1}^{\infty} C_n \cos(n\omega_0 t + \theta_n)$. The power is given by

$$P_g = C_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} C_n^2.$$

Exponential Fourier series representation $g(t) = \sum_{n=-\infty}^{\infty} D_n e^{jn\omega_0 t}$. Power for the exponential representation

$$P_g = \sum_{n=-\infty}^{\infty} |D_n|^2$$

Conclusions

- Trigonometric Fourier series
- Exponential Fourier series
- Amplitude and phase spectra
- Parseval's theorem