EE1 and ISE1 Communications I

Pier Luigi Dragotti

Lecture fourteen

Lecture Aims

- To verify bandwidth calculations for FM using single tone modulating signals

Verification of FM bandwidth

- To verify Carson's rule

$$
B_{F M}=2(\Delta f+B)=2\left(\frac{k_{f} m_{p}}{2 \pi}+B\right)
$$

- Consider a single tone modulating sinusoid

$$
m(t)=\alpha \cos \omega_{m} t \quad a(t)=\int_{-\infty}^{t} m(\tau) d \tau=\frac{\alpha}{\omega_{m}} \sin \omega_{m} t
$$

- We can express the FM signal as

$$
\hat{\varphi}_{F M}(t)=A e^{j\left(\omega_{c} t+\frac{k_{f} \alpha}{\omega_{m}} \sin \omega_{m} t\right)}
$$

Verification of FM bandwidth

- The angular frequency deviation is $\Delta \omega=k_{f} m_{p}=\alpha k_{f}$
- Since the bandwidth of $m(t)$ is $B=f_{m} \mathrm{~Hz}$, the frequency deviation ratio (or modulation index) is

$$
\beta=\frac{\Delta f}{f_{m}}=\frac{\Delta \omega}{\omega_{m}}=\frac{\alpha k_{f}}{\omega_{m}}
$$

- Hence the FM signal becomes

$$
\hat{\varphi}_{F M}(t)=A e^{\left(j \omega_{c} t+j \beta \sin \omega_{m} t\right)}=A e^{j \omega_{c} t}\left(e^{j \beta \sin \omega_{m} t}\right)
$$

Verification of FM bandwidth

The exponential term $e^{j \beta \sin \omega_{m} t}$ is a periodic signal with period $2 \pi / \omega_{m}$ and can be expanded by the exponential Fourier series:

$$
e^{j \beta \sin \omega_{m} t}=\sum_{n=-\infty}^{\infty} C_{n} e^{j n \omega_{m} t}
$$

where

$$
C_{n}=\frac{\omega_{m}}{2 \pi} \int_{-\pi / \omega_{m}}^{\pi / \omega_{m}} e^{j \beta \sin \omega_{m} t} e^{-j n \omega_{m} t} d t
$$

Bessel functions

By changing variables $\omega_{m} t=x$, we get

$$
C_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{(j \beta \sin x-n x)} d x
$$

This integral is denoted as the Bessel function $J_{n}(\beta)$ of the first kind and order n. It cannot be evaluated in closed form but it has been tabulated.

Hence the FM waveform can be expressed as

$$
\hat{\varphi}_{F M}(t)=A \sum_{n=-\infty}^{\infty} J_{n}(\beta) e^{\left(j \omega_{c} t+j n \omega_{m} t\right)}
$$

and

$$
\varphi_{F M}(t)=A \sum_{n=-\infty}^{\infty} J_{n}(\beta) \cos \left(\omega_{c}+n \omega_{m}\right) t
$$

Bessel functions of the first kind

Bandwidth calculation for FM

The FM signal for single tone modulation is

$$
\varphi_{F M}(t)=A \sum_{n=-\infty}^{\infty} J_{n}(\beta) \cos \left(\omega_{c}+n \omega_{m}\right) t
$$

The modulated signal has 'theoretically' an infinite bandwidth made of one carrier at frequency ω_{c} and an infinite number of sidebands at frequencies $\omega_{c} \pm \omega_{m}, \omega_{c} \pm 2 \omega_{m}, \ldots, \omega_{c} \pm n \omega_{m}, \ldots$ However

- for a fixed β, the amplitude of the Bessel function $J_{n}(\beta)$ decreases as n increases. This means that for any fixed β there is only a finite number of significant sidebands.
- As $n>\beta+1$ the amplitude of the Bessel function becomes negligible. Hence, the number of significant sidebands is $\beta+1$.

This means that with good approximation the bandwidth of the FM signal is

$$
B_{F M}=2 n f_{m}=2(\beta+1) f_{m}=2(\Delta f+B)
$$

Example

Estimate the bandwidth of the FM signal when the modulating signal is the one shown in Fig. 1 with period $T=2 \times 10^{-4} \mathrm{sec}$, the carrier frequency is $f_{c}=100 \mathrm{MHz}$ and $k_{f}=2 \pi \times 10^{5}$.

Figure 1: The modulating signal $m(t)$
Repeat the problem when the amplitude of $m(t)$ is doubled.

Example

- Peak amplitude of $m(t)$ is $m_{p}=1$.
- Signal period is $T=2 \times 10^{-4}$, hence fundamental frequency is $f_{0}=5 \mathrm{kHz}$.
- We assume that the essential bandwidth of $m(t)$ is the third harmonic. Hence the modulating signal bandwidth is $B=15 \mathrm{kHz}$.
- The frequency deviation is:

$$
\Delta f=\frac{1}{2 \pi} k_{f} m_{p}=\frac{1}{2 \pi}\left(2 \pi \times 10^{5}\right)(1)=100 \mathrm{kHz}
$$

- Bandwidth of the FM signal:

$$
B_{F M}=2(\Delta f+B)=230 \mathrm{kHz}
$$

Example

- Doubling amplitude means that $m_{p}=2$.
- The modulating signal bandwidth remains the same, i.e., $B=15 \mathrm{kHz}$.
- The new frequency deviation is:

$$
\Delta f=\frac{1}{2 \pi} k_{f} m_{p}=\frac{1}{2 \pi}\left(2 \pi \times 10^{5}\right)(2)=200 \mathrm{kHz}
$$

- The new bandwidth of the FM signal is:

$$
B_{F M}=2(\Delta f+B)=430 \mathrm{kHz}
$$

Example

Now estimate the bandwidth of the FM signal if the modulating signal is time expanded by a factor 2 .

- The time expansion by a factor 2 reduces the signal bandwidth by a factor 2 . Hence the fundamental frequency is now $f_{0}=2.5 \mathrm{kHz}$ and $B=7.5 \mathrm{kHz}$.
- The peak value stays the same, i.e., $m_{p}=1$ and

$$
\Delta f=\frac{1}{2 \pi} k_{f} m_{p}=\frac{1}{2 \pi}\left(2 \pi \times 10^{5}\right)(1)=100 \mathrm{kHz}
$$

- The new bandwidth of the FM signal is:

$$
B_{F M}=2(\Delta f+B)=2(100+7.5)=215 \mathrm{kHz}
$$

Second Example

An angle modulated signal with carrier frequency $\omega_{c}=2 \pi \times 10^{5} \mathrm{rad} / \mathrm{s}$ is given by:

$$
\varphi_{F M}(t)=10 \cos \left(\omega_{c} t+5 \sin 3000 t+10 \sin 2000 \pi t\right)
$$

- Find the power of the modulated signal
- Find the frequency deviation Δf
- Find the deviation ration $\beta=\frac{\Delta f}{B}$
- Estimate the bandwidth of the FM signal.

Second Example

- The carrier amplitude is 10 therefore the power is $P=10^{2} / 2=50$.
- The signal bandwidth is $B=2000 \pi / 2 \pi=1000 \mathrm{~Hz}$.
- To find the frequency deviation we find the instantaneous frequency:

$$
\omega_{i}=\frac{d}{d t} \theta(t)=\omega_{c}+15,000 \cos 3000 t+20,000 \pi \cos 2000 \pi t
$$

The angle deviation is the maximum of $15,000 \cos 3000 t+20,000 \pi \cos 2000 \pi t$. The maximum is: $\Delta \omega=15,000+20,000 \pi \mathrm{rad} / \mathrm{s}$. Hence, the frequency deviation is

$$
\Delta f=\frac{\Delta \omega}{2 \pi}=12,387.32 \mathrm{~Hz}
$$

- The modulation index is

$$
\beta=\frac{\Delta f}{B}=12.387
$$

- The bandwidth of the FM signal is: $B_{F M}=2(\Delta f+B)=26,774.65 \mathrm{~Hz}$.

Conclusions

- Verified bandwidth calculation for FM using single tone modulating signal.
- Examined Bessel functions and their properties.
- Examined two examples and calculated FM bandwidths.

