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Abstract: The embedding dimension of normal and epileptic electroencephalogram (EEG) time series is analyzed by 
two different methods, Cao’s method and differential entropy method respectively. The results of the two methods 
indicate consistently that the embedding dimension of EEG signals during seizure changes and becomes different from 
that of normal EEG signals, and the embedding dimension varies intensively during seizure, whereas the embedding 
dimension of normal EEG signals keeps stable basically. The embedding dimension results also reflect the variation of 
freedom degree of human brain nonlinear dynamic system (NDS) during seizure. In addition, it is found based on the 
results of Cao’s method that normal EEG signals are of some degree of randomness, whereas epileptic EEG signals has 
determinism. [The Journal of Physiological Sciences 58(4), 2008, in press] 
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The electroencephalogram (EEG) is the most often used signal for the analysis of the epileptic seizure 
activity of the brain. Epilepsy, from which approximate 1% of the people in the world suffer, is a group of 
brain disorders characterized by the recurrent paroxysmal electrical discharges of the cerebral cortex, that 
result in irregular disturbances of the brain functions, which are associated with the significant changes of the 
EEG signal [1, 2]. The neuronal network composing the brain is spatially extended and thus EEG signals 
capture spatial local electrical activity in the brain [3], it is known that biological neurons can be modeled by 
a set of nonlinear differential equations. The minimal embedding dimension gives the upper number of 
nonlinear dynamic system (NDS) freedom degrees and the minimal number of differential equations 
demanded for mathematical modeling of NDS [4]. Therefore, the change of the structure of brain NDS 
during seizure can be shown by the change of embedding dimension of EEG signals if the human brain is 
considered as a nonlinear dynamic system. Study on EEG signals has drawn more and more attention [5–8]. 
In the past, many works have been already done in analyzing epileptic EEG based on nonlinear dynamic 
methods [9–14], for example, Xiaoli Li et al. (2006) proposed epileptic seizure prediction based on mutual 
information and Cao’s method [9], and L. Diambra et al. (1999) presented a technique for automatic 
detection of epileptic spikes based on an optimal embedding dimension [10]. All these methods can clearly 
show the difference between normal and epileptic EEG signals based on nonlinearity or statistical 
information; nevertheless they do not show the change of the structure of brain NDS during seizure. 

As the EEG signal is time-varying, dynamical measures should be computed within certain time scale, 
for which the local stationarity assumption is valid. If too long statistics to quantify the EEG are used, then 
the local information will be washed away, and most of the temporal characteristics will be deprived from 
their diagnostic values. 

In this paper, we will investigate the difference of embedding dimension between normal and epileptic 
EEG signals through the use of two methods, Cao’s method and differential entropy method [15, 16]. The 
reason why two kinds of methods are applied to analyze the embedding dimension of normal and epileptic 
EEG signals is that there has not been a criterion for determining the exact value of embedding dimension of 
a real-world time series up to now, and we hope to compare the results from two different methods for more 



The Journal of Physiological Sciences Advance Publication by J-STAGE 
doi:10.2170/physiolsci.RP004708 

This version is to be replaced by the final version after page-setting and proofing. 

2 

accuracy to avoid the influence of the method itself on the results. 

EEG TIME SERIES 

The raw EEG time series used in this paper were recorded by a Nihon Kohden EEG recorder (model 7310; 
Nihon Kohden Inc., Tokyo, Japan). The electrodes were placed on scalp to record 16 channels of EEG data 
according to the international standard 10–20 system. Data were digitized with a 12-bit analog-to-digital 
converter at a sampling rate of 200 Hz and stored on a computer hard disk. We recorded 80-second-long 
EEG data, thus 16,000 sample points for each channel. Two groups of EEG time series were obtained, both 
of which were collected from the same 39-year-old male patient. Volunteer was relaxed in an awake state 
with eyes closed. One group was recorded when the patient was normal, and the other group was recorded 
when the patient was during induced epileptic seizure. Some of the EEG signals used in this paper are shown 
in Fig. 1, (a) and (b). From Fig. 1 (b) it can be observed that epileptic EEG time series show epileptic 
characteristic such as spike discharge and slow waves. 

METHODS 

Cao’s method. To determine the embedding dimension of the time series Nxxx ,,, 21 L  by Cao’s method, 
firstly compute 

)(/)1()(1 dEdEdE +=  (1) 

and 

)(/)1()( **
2 dEdEdE +=  (2) 

secondly, plot )(1 dE  and )(2 dE  versus dimension d , and find the dimension 0d  where )(1 dE  stops 
changing from the plot, then 0d  is the minimum embedding dimension we look for; here, )(2 dE  is used 
to determine whether a time series is random or not. The steps and explanation in detail of Cao’s method are 
shown in Appendix 1. The delay time τ  which is needed for the computation of embedding dimension by 
Cao’s method is determined by mutual information method [17]. 

Differential entropy method. A method based on differential entropy for determining the optimal 
embedding parameters is introduced in Ref. [16], which employs a single criterion-the “entropy ratio” 
between the phase space representation of a signal and ensemble of its surrogates. The advantage of the 
differential entropy method is that it determines the embedding dimension m  and delay time τ  together, 
whereas other methods, for example, another method used in this paper—Cao’s method—need to determine 
the embedding dimension after the delay time is determined, if the delay time were too small to cover the 
minimal time span needed to capture the dynamics of a signal, the tap input length-embedding dimension 
would become rather large, resulting in an increased complexity of training; in turn, if delay time is greater 
than optimal, the nature of the resulting model becomes too discrete, resulting in a failure of the filter to 
capture the underlying signal dynamics, hence the need for an optimization method to jointly determining the 
embedding dimension and delay time [16]. 

The entropy ratio (ER) introduced in Ref. [16] is: 

)ln1)(,(),(
N

NmmImRent += ττ  (3) 

Plot ),( τmRent  versus m  and τ , then the minimum of the plot of the entropy ratio yields the optimal set 
of embedding parameters, namely optimal embedding dimension m  and delay time τ . The steps and 
explanation in detail of differential entropy method are shown in Appendix 2. 
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SIMULATIONS AND RESULTS 

How the simulations are organized. If the dynamic system is invariant, then the determination of 
embedding dimension can be made on any segment of the measured signal. This is not true in a time-varying 
environment. As the EEG time series are time-varying, they have to be divided into several small segments 
for computing embedding dimension as time evolves. The data we used here are 16-channel normal and 
epileptic EEG signals, the length of the signal is 80s for each channel, the sampling frequency is 200Hz, and 
therefore there are 16,000 points for each channel signal. Each channel signal is divided into 16 segments, 
namely 1621 ,,, SSS K , each segment )16,,2,1( K=iSi  is of 1,000 points. Thus we can obtain 16 
embedding dimension values for each channel signal. As for the 16 channels of normal or epileptic EEG time 
series, we can get a 16 × 16 matrix built by the embedding dimension values respectively. 

Results of Cao’s method. For this paper, as one plot will be produced corresponding to every EEG 
segment by Cao’s method to determine the embedding dimension, we cannot list all the plots here, we take 
the channel corresponding to scalp electrode F3 from 16-channel normal and epileptic EEG data respectively 
for example, and the embedding dimension plots produced by Cao’s method are shown in Fig. 2, in which 
the plots in the left side corresponds to normal EEG segments and the plots in the right side correspond to 
epileptic EEG segments. It can be observed from the first plot in the left side in Fig. 2 that 1E  curve is in a 
rising process before 10=d  and stops changing after 10=d  (i.e., after 10=d , 1E  curve becomes 
into a straight line), thus the corresponding embedding dimension of this segment is 10, and in a similar way 
the embedding dimension of the EEG segment corresponding to the first plot in the right side in Fig. 2 is 16. 

Cao’s method is applied to compute the embedding dimension of )16,,2,1( K=iSi . The results of 
embedding dimensions for normal and epileptic EEG time series obtained by Cao’s method are shown in 
Table 1, in which for each cell the upper number corresponds to the embedding dimension value of the 
epileptic EEG segment and the lower number corresponds to the embedding dimension value of the normal 
EEG segment. Let ijE ( 16,,2,1, K=ji ) stand for the value of the point of the matrix built by the 
embedding dimension values, whose coordinates are (i, j). The average values are computed for each row 
and line of the matrix. Let iAV  stand for the average value of the ith row of the matrix, namely 

16

16

1
∑
== j

ij

i

E
AV ; let jAV  stand for the average value of the jth line of the matrix, namely 

16

16

1
∑
== i

ij

j

E
AV , the 

results of iAV  and jAV  are shown in Table 1. Apparently, the value of iAV  stands for the embedding 

dimension of each channel of 16-channel EEG signals, and the value of jAV  stands for the embedding 
dimension of the 16-channel EEG signals at some corresponding time if the 16-channel EEG signals are 
regarded as a whole. The variances are computed for each row and line of the matrix as well, let iVar  and 

jVar  stand for the variance of the ith row and jth line of the matrix, respectively. As shown in Table 1, 
variances of embedding dimensions of epileptic EEG time series are much larger than those of normal EEG 
time series, which means that embedding dimension of EEG time series varies more fiercely during seizure 
than that of normal EEG time series. The average value of embedding dimension ( ED ) of EEG signals can 
be written as 

1616

16

1

16

1

×
=
∑∑
= =i j

ijE
ED , 

therefore it can be obtained that the average value of embedding dimension of the normal EEG signals is 
8=normalED  and the average value of embedding dimension of the epileptic EEG signals 17=epilepticED , 

namely the average value of embedding dimension of epileptic EEG signals is over 2 times larger than that 
of normal EEG signals. The RMSE (Root mean square error) is computed for the results of the embedding 
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dimensions of normal and epileptic EEG signals, the results are 1753.0=normalRMSE  
and 3091.0=epilepticRMSE , which also reflects that the embedding dimension of epileptic EEG signals 
varies more intensely during seizure than that of normal EEG signals does. 

Figure 3 is plotted based on the results of embedding dimension shown in Table 1. As shown in Fig.3, the 
curves constructed by the embedding dimension values of normal and epileptic EEG time series form two 
fluctuation belts, but the fluctuation belt corresponding to embedding dimensions of epileptic EEG time 
series is much wider than that corresponding to embedding dimensions of normal EEG time series, which 
implies that the embedding dimension of epileptic EEG signals has a bigger variation interval than normal 
EEG signals. The jAV  curves ( the curve marked by black points) corresponding to normal and epileptic 

both fluctuate around the ED  lines, but the jAV  curve corresponding to epileptic EEG signals fluctuates 
more violently than that corresponding to normal EEG signals, which also means that the embedding 
dimension of epileptic EEG signals varies more intensely during seizure than that of normal EEG signals 
does. 

Results of differential entropy method. An example about how to determine the optimal embedding 
parameters of an EEG segment is shown in Fig. 4. As the lowest point of the plot, whose X axis is 
embedding dimension m  and Y axis is delay time τ , appears at (2, 7), the optimal embedding parameters 
of this EEG segment can be determined as 2=optm  and 7=optτ . 

In a similar way with Cao’s method, differential entropy method is applied to compute the embedding 
dimension of EEG segments )16,,2,1( K=iSi . The results of the embedding dimension determined by 
differential entropy method are shown in Table 2, and Fig. 5 is plotted based on the results. Figure 5 shows 
the same rule with Fig. 3, which is plotted based on the results of Cao’s method, namely that the embedding 
dimension of epileptic EEG signals has a wider variation belt than that of normal EEG signals, the 
embedding dimension of epileptic EEG signals varies between 2 and 5 considerably, whereas the embedding 
dimension of normal EEG signals keeps constant basically. In Table 2, iAV  and jAV  are constant for the 
normal EEG signals, whose definitions are the same as those defined in “Results of Cao’s method” Section 
of this paper. iAV  and jAV  vary between 2 and 3 for epileptic EEG signals. iVar  and jVar  are also 
computed for the results of embedding dimension shown in Table 2. The RMSE obtained based on the results 
obtained by differential entropy method are 0132.0=normalRMSE  and 0562.0=epilepticRMSE . The 
results of variances and RMSE both indicate that the embedding dimension of EEG signals from an epileptic 
varies with time more intensely during seizure than that from a normal person does. The average value of 
embedding dimension of normal and epileptic EEG signals are 2=normalED  and 

3=epilepticED respectively. 

DISCUSSIONS 

The results of the methods both show that the embedding dimension values of epileptic EEG signals vary 
intensively during seizure, whereas the embedding dimension values of normal EEG signals keep stable 
basically; the embedding dimension of EEG signals becomes much larger during seizure than that of normal 
EEG signals, the average value of embedding dimension of epileptic EEG signals is over 2 times larger than 
that of normal EEG signals based on the results of Cao’s method, the results of differential entropy method 
also show that the embedding dimension of epileptic EEG signals is larger than that of normal EEG signals. 
Although there is great difference between the results of the two methods, namely that the embedding 
dimension results obtained by differential entropy method are much lesser than those obtained by Cao’s 
method, the phenomena that the results of the two methods show are consistent, namely that the embedding 
dimension of EEG signals during seizure becomes larger than that of normal EEG signals, and the 
embedding dimension of EEG signals varies with time fiercely during seizure and has a bigger variation 
interval than that of normal EEG signals, whereas the embedding dimension of normal EEG signals keeps 
stable basically. 

An interesting phenomenon can be found in Fig. 2 that normal EEG signals are of randomness, whereas 
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epileptic EEG signals are of determinism, since based on Cao’s method, for random data, the future values 
are independent of the past values, thus )(2 dE  will be equal to 1 for any d  in this case, however, for 
deterministic data, )(2 dE  is related to d , as a result, it cannot be a constant for all d , in other words, 
there must exist some sd ' such that 1)(2 ≠dE [15]. For the left-hand plots corresponding to normal EEG 
signals in Fig. 2, except 2 or 3 plots in which )(2 dE  varies slightly around 1, others all show that after 
some slight variation at the beginning, )(2 dE  converges to 1 quickly, but we still cannot say that normal 
EEG signals are totally random, since )(2 dE  is not equal to 1 for all sd ; for the right-hand plots 
corresponding to epileptic EEG signals in Fig. 2, we can say that epileptic EEG signals are of strong 
determinism, since )(2 dE  in the right-hand plots keeps unequal to 1 and varies fiercely. The determinism 
of epileptic EEG time series implies that there exists some connection between future values and past values 
of epileptic EEG time series and the EEG time series during seizure can be predicted. At present, there still 
exist arguments on whether the EEG is random or deterministic, but the mainstream holds that the EEG is 
generated by a deterministic chaotic process [18]. The results of this paper verify that epileptic EEG time 
series are of determinism. Although the results of this paper show that normal EEG time series are of 
randomness, yet we cannot say that normal EEG time series are completely random, since different methods 
have different fitness for different conditions such as low or high-dimensional determinism [18] and )(2 dE  
corresponding to normal EEG time series is not always equal to 1 (see Fig. 2). Based on the results of this 
paper, we can only determine that epileptic EEG time series are of stronger determinism than normal EEG 
time series. Moreover, based on the results of this paper, a potential means for detecting epileptic seizure can 
also be found, that is, the difference of determinism between normal and epileptic EEG time series could be 
helpful for detection of epileptic seizure. 

If the human brain is considered as a NDS, the minimal embedding dimension gives the upper number of 
NDS freedom degrees and the minimal number of differential equations demanded for mathematical 
modeling of NDS. The results of embedding dimension show that epileptic EEG time series are of higher 
degree of freedom than normal EEG time series. Although we cannot obtain the accurate mathematical 
model of human brain NDS, there must be relationship between the NDS and its output, and the property of a 
NDS can be showed by its output. Normal and epileptic EEG time series have different embedding 
dimensions, which also indicates that normal and epileptic may correspond to different NDSs, i.e., the NDS 
of human brain changes during seizure, which is meaningful for mathematical modeling for EEG time series. 

The results of the two methods used in this paper are quite different; we didn’t discuss which method is 
more accurate, since the purpose of this paper is to study the difference of embedding dimension between 
normal and epileptic EEG signals. However, it is recommended to set the embedding dimension of epileptic 
EEG signals 17 and embedding dimension of normal EEG signals 8 for the general processing of EEG time 
series, we are apt to believe that the results obtained by Cao’s method are closer to the true values, since the 
embedding dimension represents the minimal number of differential equations demanded for mathematical 
modeling of NDS, the embedding dimension results of differential entropy method are mainly around 2 or 3, 
which seems too small for mathematical modeling of a real-world signal.  

For the EEG data we used, not all the embedding dimension values of epileptic EEG segments are larger 
than those of normal EEG segments. We obtained 256 pairs of embedding dimension values of normal and 
epileptic EEG segments for the two methods respectively; we compared each pair of embedding dimension 
values ijE ( 16,,2,1, K=ji ) (the definition of ijE  can be found in “Results of Cao’s method” Section in 

this paper) that are of the same indices i  and j , and it is found that for the results of Cao’s method, there 
are 237 pairs normalepileptic EDED > , 9 pairs normalepileptic EDED =  and 10 pairs normalepileptic EDED < . In a 
similar way, for the results of differential entropy method, the statistical results are 96, 152 and 8 respectively 
(the embedding dimension values in detail obtained by the two methods are shown in Table 1 and Table2 
respectively). There exists the phenomenon that normalepileptic EDED <  for both the methods, however, it is 
thought that this phenomenon cannot prevent us from getting the impression that the embedding dimension 
of EEG time series during seizure becomes larger than that of normal EEG time series, since only 3.91% and 
3.13% out of 256 pairs of embedding dimension values show normalepileptic EDED <  for Cao’s method and 
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differential entropy method respectively. 

Based on the results of this paper, normal and epileptic EEG time series show different embedding 
dimensions and degree of determinism, therefore, we consider that embedding dimension, and even degree 
of determinism, have potential application value in clinical diagnosis of epilepsy through further research. In 
future work, we will further investigate the difference of embedding dimensions among EEG data from 
different types of seizure and different monitored subjects (including different age, sex etc). 

CONCLUSIONS 

Cao’s method and differential entropy method were applied to compute the minimum embedding dimension 
of normal and epileptic EEG time series respectively. The phenomena that the results of the two methods 
show are consistent: the embedding dimension of epileptic EEG signals is much larger than that of normal 
EEG signals, even up to 2 times according to the results of Cao’s method; the embedding dimension of EEG 
signals varies fiercely during seizure, whereas the embedding dimension of normal EEG signals keeps stable 
basically; and the embedding dimension of epileptic EEG signals has a bigger variation interval than that of 
normal EEG signals. The variation of the embedding dimension of EEG signals during seizure also means 
the variation of the freedom degree of the human brain NDS, namely that the freedom degree of human brain 
NDS increases during seizure. In addition, based on the results of Cao’s method, it is found that normal EEG 
signals are of some degree of randomness, whereas epileptic EEG signals are of strong determinism, which 
implies that epileptic EEG signals can be predicted well. Therefore, it is proposed that the embedding 
dimension can be a supplementary parameter for the epileptic seizure characterization. 

APPENDIX 

1. Cao’s method 

Suppose that Nxxx ,,, 21 L  is a time series, the embedding dimension can be determined by Cao’s method 
as follows: 

Reconstruct the time series like time delay vectors in phase space: 

[ ]
τ

τττ
)1(,,2,1i        

,))1((,),2(),(),()(
−−=

−+++=
dN

dixixixixdYi

L

L
 (A.1) 

where d  is the embedding dimension and τ  is the time delay. )(dYi is the ith reconstructed vector and 

)(dY NN
i  as the nearest neighbor of )(dYi  in embedding dimension d  as follows: 

[ ]))1((,),2(),(),()( τττ −+++= dixixixixdY NNNNNNNNNN
i L  (A.2) 

Define 

)()(

)1()1(
),(2 dYdY

dYdY
dia

NN
ii

NN
ii

−

+−+
= (A.3) 

where ⋅  is the Euclidian distance and is given by the maximum norm here. )(dYi  is the ith reconstructed 

vector and )1( +dY NN
i  is its nearest neighbor in embedding dimension 1+d . The mean value of all 

),(2 dia ’s is defined as: 

∑
−

=−
=

τ

τ

dN

i
dia

dN
dE

1
2 ),(1)(  (A.4) 

)(dE  is only dependent on the dimension d  and lag τ . To investigate its variation from d  to 1+d , 
define 
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)(/)1()(1 dEdEdE +=  (A.5) 

)(1 dE  will stop changing when d  is greater than some value 0d , which is the minimum embedding 
dimension we look for. In Section 4.2, we take the first plot in the left side in Fig. 2 as an example for 
explaining how to determining the embedding dimension value of a time series by Cao’s method, at this time 
the embedding dimension value of the EEG signal segment is 100 =d . 

Another quantity is defined to distinguish deterministic signals from stochastic signals. Let 

∑
−

=

+−+
−

=
τ

ττ
τ

dN

i

NN dixdix
dN

dE
1

* )()(1)(  (A.6) 

)(/)1()( **
2 dEdEdE +=  (A.7) 

)(1 dE  is calculated for determining the minimum embedding dimension of time series, and )(2 dE  for 
distinguishing deterministic data from random data. 

2. Differential entropy method 

The differential entropy method can be summarized as below: 

a) For the given signal ),,2,1)(( Nttx L= , generate its sN surrogates Nitx is ,,1),(, L=  by 
performing a random permutation of the time samples. 

b) The Kozachenko-Leonenko estimates for the time delay embedded versions of the original time series 
),,( τmxH  and its surrogates ),,( , τmxH is  are computed using Eq.8 for increasing m  and τ . 

∑
=

++=
N

j
Ej CNxH

1
2ln)ln()( ρ  (A.8) 

c) Minimize the ratio 

iis mxH
mxHmI

),,(
),,(),(

, τ
ττ =  (A.9) 

to determine the optimal embedding parameters, where 
i

⋅ denotes the average 

over i . 

d) To penalize for higher embedding dimensions, the minimum description length (MDL) method is 
superimposed, yielding the entropy ratio (ER): 

)ln1)(,(),(
N

NmmImRent += ττ  (A.10) 

where N  is the number of delay vectors. 

e) The minimum of the plot of the entropy ratio yields the optimal set of embedding parameters, namely 
optimal embedding dimension m  and delay time τ . 
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Table 1. Embedding dimension results obtained by Cao’s method. 
Embedding dimension SE 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 
AVi Vari 

Fp1 22 
6 

20 
7 

11 
11 

15 
8 

16
5

19 
10 

14 
12 

13
10

12
4

10
7

12
5

10
11

17
9

18
13

19
10

12 
7 

15 
8 

14 
7 

F3 16 
10 

23 
9 

17 
12 

10 
6 

28
6

18 
7 

25 
13 

23
11

25
11

17
9

11
5

22
7

25
6

12
14

21
7

16 
7 

19 
9 

30 
7 

C3 22 
5 

15 
8 

13 
8 

14 
6 

21
5

20 
11 

22 
11 

25
7

15
7

10
8

21
10

24
6

16
7

19
7

29
8

25 
8 

19 
8 

26 
3 

P3 20 
5 

15 
13 

13 
7 

18 
10 

13
11

18 
8 

23 
4 

16
5

10
10

15
7

15
9

12
14

12
7

21
5

10
10

15 
7 

15 
8 

14 
8 

O1 16 
5 

13 
10 

18 
9 

16 
7 

15
8

18 
5 

13 
6 

13
10

18
7

12
6

12
5

11
5

11
14

17
12

13
11

14 
9 

14 
8 

6 
7 

F7 25 
12 

17 
7 

14 
5 

19 
6 

25
11

24 
6 

19 
5 

17
10

17
5

28
8

11
8

15
7

24
11

23
5

16
7

14 
9 

19 
8 

24 
5 

T3 20 
7 

15 
6 

15 
7 

16 
8 

19
8

14 
6 

22 
9 

24
5

21
10

25
5

25
8

12
9

26
10

23
14

16
11

21 
7 

20 
8 

19 
5 

T5 24 
5 

16 
7 

18 
5 

12 
4 

17
8

15 
5 

21 
10 

10
7

11
7

12
9

12
8

13
6

15
7

23
5

14
7

12 
5 

15 
7 

18 
3 

Fp2 24 
4 

13 
10 

11 
9 

19 
4 

12
9

21 
7 

14 
13 

19
6

16
10

7
7

8
14

11
7

14
9

16
16

14
10

15 
9 

15 
9 

20 
10 

F4 28 
13 

29 
6 

22 
11 

22 
9 

18
10

23 
7 

28 
7 

21
7

15
6

22
7

17
5

16
9

16
9

20
16

27
3

19 
9 

21 
8 

21 
10 

C4 16 
9 

19 
12 

14 
7 

16 
8 

12
11

28 
5 

25 
11 

25
8

19
7

23
05

15
8

20
13

27
7

20
13

16
10

16 
10 

19 
9 

23 
6 

P4 14 
7 

14 
11 

10 
6 

11 
5 

20
10

20 
5 

20 
11 

14
8

16
11

9
10

14
12

12
8

16
7

10
18

17
10

21 
12 

15 
9 

15 
10 

O2 18 
7 

14 
5 

14 
6 

13 
9 

17
7

17 
8 

17 
5 

12
7

14
14

15
5

12
11

12
10

18
5

17
7

15
7

15 
6 

15 
7 

5 
6 

F8 18 
11 

18 
04 

13 
09 

14 
06 

11
14

25 
11 

15 
09 

14
11

11
07

17
07

11
10

10
05

22
08

22
06

18
15

14 
6 

16 
9 

19 
10 

T4 21 
3 

25 
4 

23 
14 

10 
10 

20
14

11 
9 

15 
9 

16
13

16
11

29
9

14
12

14
10

27
3

15
9

16
7

29 
8 

19 
9 

38 
12 

T6 16 
13 

15 
10 

11 
10 

11 
5 

13
5

12 
8 

12 
8 

10
7

11
7

15
11

10
11

10
9

13
13

10
10

11
16

15 
10 

12 
10 

4 
9 

AVj 
20 
8 

18 
8 

15 
9 

15 
7 

17
9

19 
7 

19 
9 

17
8

15
8

17
8

14
9

14
9

19
8

18
11

17
9

17 
8   

Varj 
15 
10 

21 
7 

14 
6 

12 
3 

23
8

21 
4 

24 
8 

27
5

16
7

47
3

18
8

19
7

31
7

19
19

26
10

22 
3   

Note: SE is short for scalp electrode. For each cell of the table, the upper number 
corresponds to epileptic EEG time series and the lower number corresponds to normal 
EEG time series. AVi stands for the average value of ith row embedding dimensions 
and AVj stands for the average value of the jth line embedding dimensions. Vari stands 
for the variance of ith row embedding dimensions and Varj stands for the variance of 
the jth line embedding dimensions. 
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Table 2. Embedding dimension results obtained by differential entropy method. 
Embedding dimension SE 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 
AVi Vari 

Fp1 2 
2 

2 
3 

3 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

3 
2 

3 
2 

3 
2 

4 
2 

3 
2 

3 
2 

3 
2 

3 
2 

3 
2 

0.4
0.1

F3 2 
2 

2 
2 

2 
2 

5 
3 

3 
2 

4 
2 

4 
2 

4 
2 

4 
2 

4 
2 

4 
2 

4 
2 

5 
2 

2 
2 

4 
2 

2 
2 

3 
2 

1 
0.1

C3 2 
2 

2 
2 

2 
2 

2 
2 

4 
2 

4 
2 

4 
2 

4 
2 

4 
2 

4 
2 

4 
2 

4 
2 

4 
2 

3 
2 

4 
2 

2 
2 

3 
2 

0.9
0 

P3 2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

3 
2 

2 
2 

2 
2 

2 
2 

2 
2 

0.1
0 

O1 3 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

3 
2 

2 
2 

0.1
0 

F7 2 
2 

2 
2 

2 
3 

4 
2 

3 
2 

3 
2 

3 
2 

3 
3 

3 
2 

4 
2 

4 
2 

4 
2 

4 
2 

2 
2 

5 
2 

2 
2 

3 
2 

0.9
0.1

T3 2 
2 

2 
2 

2 
2 

4 
2 

4 
2 

4 
2 

3 
2 

3 
2 

4 
2 

3 
2 

3 
2 

4 
2 

3 
2 

3 
2 

4 
2 

4 
3 

3 
2 

0.6
0.1

T5 2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
3 

4 
2 

2 
2 

2 
2 

3 
2 

2 
2 

0.3
0.1

Fp2 2 
2 

2 
3 

3 
2 

2 
3 

2 
2 

2 
2 

2 
2 

2 
2 

2 
3 

4 
2 

3 
2 

3 
2 

4 
2 

3 
2 

2 
2 

3 
2 

3 
2 

0.5
0.2

F4 2 
2 

2 
2 

2 
3 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

4 
2 

2 
2 

2 
2 

5 
2 

3 
2 

5 
2 

2 
2 

3 
2 

1 
0.1

C4 2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

4 
2 

2 
2 

5 
2 

4 
2 

2 
2 

5 
2 

3 
2 

3 
2 

1 
0 

P4 2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

0 
0 

O2 2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
3 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

0 
0.1

F8 2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

4 
3 

3 
2 

3 
2 

4 
2 

4 
2 

2 
2 

2 
2 

4 
2 

2 
2 

5 
2 

3 
2 

3 
2 

1 
0.1

T4 2 
2 

2 
2 

3 
2 

2 
2 

2 
2 

4 
2 

4 
2 

4 
2 

4 
2 

4 
2 

4 
2 

4 
2 

3 
2 

2 
2 

4 
2 

4 
2 

3 
2 

0.9
0 

T6 2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

3 
2 

2 
2 

2 
2 

2 
2 

3 
2 

2 
2 

2 
2 

2 
2 

2 
2 

0.1
0 

AVj 
2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

3 
2 

3 
2 

3 
2 

3 
2 

3 
2 

3 
2 

3 
2 

3 
2 

2 
2 

3 
2 

3 
2 

Varj 
0.1 
0 

0 
0.1 

0.2 
0.1 

0.9 
0.1 

0.5 
0 

0.8 
0.1 

0.6 
0 

0.6
0.1

0.8
0.1

0.9
0 

0.7
0 

1 
0.1

0.9
0 

0.2
0 

1 
0 

0.5 
0.1 

Note: SE is short for scalp electrode. For each cell of the table, the upper number 
corresponds to epileptic EEG time series and the lower number corresponds to normal 
EEG time series. AVi stands for the average value of ith row embedding dimensions and 
AVj stands for the average value of the jth line embedding dimensions. Vari stands for the 
variance of ith row embedding dimensions and Varj stands for the variance of the jth line 
embedding dimensions. 
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Fig.1. EEG signal examples, (a) Normal EEG (b) Epileptic EEG. 
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                 (a)                              (b) 

Fig. 2. Embedding dimension results of EEG segments corresponding to scalp electrode F3 by 
Cao’s method, (a) Normal EEG (b) Epileptic EEG. (Note: the title of each plot F3-Si (I =1,2,3,…,16) 
means the ith EEG segment corresponding to scalp electrode F3.) 
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Fig. 3. Scheme of variation with time of EEG’s embedding dimensions obtained by Cao’s method. 
 

The 16 dash curves are plotted by the embedding dimension values 
of 16-channel epileptic EEG signals. The upper curve marked by 
black points and the straight line are plotted by jAV  (shown in 
Table 1) and ED  values of epileptic EEG time series. 

The 16 dot curves are plotted by the embedding dimension values of 
16-channel normal EEG signals. The lower curve marked by black 
points and the straight line are plotted by jAV  (shown in Table 1) 
and ED  values of normal EEG time series. 



The Journal of Physiological Sciences Advance Publication by J-STAGE 
doi:10.2170/physiolsci.RP004708 

This version is to be replaced by the final version after page-setting and proofing. 

16 

2
4

6
8

10

0 

3
5 

7

10
1

1.05

1.1

1.15

mτ

R
en

t

 

Fig. 4. An example for determining the optimal embedding parameters by differential entropy 
method. The minimum of the plot indicated by an open circle yields 2=optm  and 7=optτ . 
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Fig. 5. Scheme of variation with time of EEG’s embedding dimensions obtained by differential 
entropy method. (Note: The curves marked by black points are constructed by jAV  values shown 
in Table 2). 
 


