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Abstract

A class of locally analytic transcendental functions suitable for nonlinear adaptive filtering and neural

network filtering is proposed. Since the stringent standard analyticity conditions prevent full exploitation

of nonlinear quaternionic models, we make use of local analyticity conditions to provide a framework for

a generic extension of nonlinear learning algorithms from the real and complex domain. In addition, it is

shown that the use of the proposed class of locally analytic transcendental functions in conjunction with

widely linear modelling allows to fully exploit the second-order information in the data. Simulations over a

range of noncircular synthetic, chaotic and real world three dimensional wind signals support the approach.

1 Introduction

Quaternions are proven to have great potential in three- and four-dimensional data modelling and have found
application across the areas of engineering, including computer graphics [1] and robotics [2], due to their
convenience over real valued vectorial models. In the statistical signal processing field, quaternions have been
employed in adaptive filtering, including Kalman filtering [3] and stochastic gradient type of algorithm, such
as the Quaternion Least Mean Square (QLMS) [4]. Despite gaining in popularity, they are still relatively
underexplored in nonlinear filtering, neural networks, and blind source separation communities, mainly because
of problems due to the lack of analytic nonlinear functions in H. The analyticity in H is governed by the
Cauchy-Riemann-Fueter (CRF) conditions [5] which do not permit a wide range of holomorphic functions in
the same way as their wide employment in R and C; the only globally analytic functions in H are linear functions
and constant values. To partially overcome this issue, a suboptimal solution in the form of “split” nonlinear
quaternion function that processes each channel separately in R instead of H through a real smooth nonlinearity
was employed in [6].

One of the first nonlinear learning algorithms to use the “split” nonlinear quaternion activation function
is the Quaternion Multilayer Perceptron (QMLP) [6], which benefitting from quaternion algebra, exhibited
enhanced performance over previous vector based algorithms [7] [8]. However, the QMLP neglects the non-
commutativity aspect of the quaternion algebra and thus does not exploit the full potential of the processing
in the quaternion domain; this issue was addressed with the Split Quaternion Nonlinear Adaptive Filtering
Algorithm (SQAFA) [9]. However, the nonlinearities used in SQAFA were still standard real activation functions
applied channelwise, thus prohibiting a fully capture of the cross-dynamics across the data channels.

It is important to notice that most practical learning algorithms are gradient descent based [6–9], the oper-
ating point moves at every sample interval, and therefore the nonlinearities used only require local analyticity.
In analogy to the complex domain, where so called fully complex nonlinearities (elementary transcendental
functions) provide means for generic extensions of real neural networks [10] [11], our aim is to show that the
class of elementary transcendental functions, such as tanh are also locally analytic in H. This is not possible to
achieve using the standard Cauchy-Riemann-Fueter (CRF) conditions [5], which are too restrictive, and to this
end we shall explore some recent results on local analyticity [12]. Due to a cumbersome derivation, we prove
analytically the possibility of building generic quaternion-valued nonlinear adaptive filters only for the most
commonly used tanh function. Since the derivation involves proving a local analyticity of exponential functions,
this makes other typical transcendental nonlinear activation functions in H also suitable for this purpose, as is
shown by simulations. This set of results opens possibilities to establish nonlinear learning architectures and
learning algorithms in H, in the same way they are established in R and C [10] [13–21].

∗This material is a part of the submission to IEEE Transactions on Neural Networks.

1



In this work, we propose a class of fully quaternion locally analytic nonlinear activation functions for nonlin-
ear adaptive filtering. For completeness, we also show that full statistical information in the quaternion domain
can be exploited by combining the proposed nonlinear models with so called augmented quaternion statistics
and the widely linear model [22]. The benefit of the local analytic conditions used in this work is that they are
suitable for polynomials, thus permitting Taylor series expansions, and giving the quaternion based algorithms
the same generic form as the corresponding algorithms in R and C. For simplicity, the analysis and deriva-
tion are provided for a single nonlinear perceptron and its widely linear counterpart. Extensions to large-scale
architectures can be achieved in the same way as in R and C, and are out of the scope of this work.

This paper is organized as follows. Section II introduces basic operations of quaternion algebra. Section III
reviews the basic concept behind augmented quaternion statistics. This is followed by a review of the analyticity
conditions in H along with the analysis of the quaternion exponential function and quaternion tanh function.
Section V derives the proposed QAFA and WLQAFA, whose convergence analysis is provided in Section VI.
In Section VII, the performances of QAFA and WLQAFA are compared against the standard models QFIR
and AASQAFA through simulations on both benchmark and real-world multidimensional data. The results are
analyzed and discussed in Section VIII. The paper concludes in Section IX.

2 Quaternion Algebra

Quaternions are an algebra defined over R, where quaternion variable q is given by

q = [qa,q] = qa + qbı + qc + qdκ (1)

where qa, qb, qc, qd ∈ R and ı, , κ are both orthogonal unit vectors and imaginary units. These orthogonal unit
vectors are related by

ı = κ; κ = ı; κı = ;

ıκ = ı2 = 2 = κ2 = −1 (2)

The addition and subtraction operations in quaternion algebra are similar to those in complex algebra, however,
the multiplication and division operate quite differently. The multiplication is given as

wx = [wa,w][xa,x] = [waxa − w · x, wax + xaw + w × x] (3)

where the symbols “·” and “×” denote respectively to the dot-product and cross-product. The quaternion
multiplication is non-commutative due to the outer product between w and x. Owing to the non-commutativity
aspect of quaternion algebra, the definition of quaternion division is ambiguous; for consistency the quaternion
division considered in this work is given by

w

x
= wx−1 (4)

Similarly to the complex case, the conjugate of a quaternion q is

q∗ = [qa,q]∗ = [qa,−q] = qa − qbı − qc − qdκ (5)

and the norm square is
‖ q ‖2

2= qq∗ = q∗q = q2
a + q2

b + q2
c + q2

d (6)

The three quaternion involutions (self-inverse operators) are defined as

qı = −ıqı = qa + qbı − qc − qdκ

q = −q = qa − qbı + qc − qdκ

qκ = −κqκ = qa − qbı − qc + qdκ (7)

In the sequel, all the quantities are treated as quaternion valued, unless stated otherwise.

3 Augmented Quaternion Statistics

The concept of augmented statistics was first introduced to define the notion of second order noncircularity,
or improperness, for complex random normal vectors [23], and was subsequently extended to non-normal vec-
tors [24]. In the complex domain C, the second order characteristics of a complex random vector can be fully
characterized by its covariance Czz and pseudocovariance Pzz, defined as [23]

Czz = E(zzH) Pzz = E(zzT ) (8)

where (·)H and (·)T denote respectively the Hermitian and transpose vector operator, and z = x + yı where x

and y are real-valued. A complex random vector is termed “circular” if its probability distribution is rotation-
invariant. This implies that the real and imaginary components have equal variance and are not correlated,
that is, the pseudocovariance Pzz vanishes [10] [17].
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3.1 Cη-circular Quaternion Random Variables

The concept of augmented statistics was subsequently extended to the quaternion domain, with the restriction
that the rotation angle be around π/2 [25]. A quaternion random variable q that obeys this restriction is said
to be Cη-circular, and is defined as

q , eηθq, ∀θ (9)

for one and only one pure imaginary unit η, where η ∈ {ı, , κ}. The symbol , denotes equality in terms
of the probability distribution function (pdf) and the symbol θ represents the angle of rotation. For example,
a quaternion random variable q is considered to be Cı-circular if it has a circular probability distribution over
the real and ı-axis however its  and κ components are not necessarily uncorrelated. Similar definitions can be
given for C-circular and Cκ-circular quaternion random variables.

3.2 H-circular Quaternion Random Variables

The restriction over the angle of rotation for Cη-circular random variable proves too rigid in practical scenarios
and an improvement was proposed allowing for a pdf along any two arbitrary axis of rotation to be circular [26].
A quaternion random variable q that satisfies this condition is said to be H-circular, or Q-proper, and is defined
as

q , eηθq, ∀θ (10)

for all the pure imaginary units η ∈ {ı, , κ}. A H-circular quaternion random variable is circular in all its
dimensions, meaning that the real, ı,  and κ components are all circular with respect to each other.

3.3 Augmented Second-Order Statistics of Quaternion Random Vectors

To build a generic framework for second-order statistical analysis in the quaternion domain, similarly to the
complex case, it was shown that the covariance alone is not sufficient to fully describe the complete second-order
information within the quaternion random vector. In order to deal with H-improper signals, it is shown that
we also need to employ complementary covariance matrices [27]. These complementary covariance matrices are
termed the ı-covariance Cqı, -covariance Cq and κ-covariance Cqκ, and are given by [22]

Cqı = E{qqıH}; Cq = E{qqH}; Cqκ = E{qqκH} (11)

Thus, the complete second-order characteristics of the quaternion random vector can be captured by the aug-
mented covariance matrix Ca

q of an augmented vector qa = [qTqıT qT qκT ]T , given by

Ca
q = E{qaqaH} =









Cqq Cqı Cq Cqκ

CH
qı Cqıqı Cqıq Cqıqκ

CH
q Cqqı Cqq Cqqκ

CH
qκ Cqκqı Cqκq Cqκqκ









(12)

where the submatrices in (12) are calculated according to

Cδ = E{qδH} Cαβ = E{αβH}

δ ∈ {qı,q,qκ} α, β ∈ {q,qı,q,qκ} (13)

An H-circular quaternion random variable has the property that q is not correlated with its quaternion involu-
tions qı, q and qκ, that is

E{qqıH} = 0; E{qqH} = 0; E{qqκH} = 0 (14)

giving the covariance matrix Ca
q in (12) of a H-circular random vector in the form1

Ca
q = E{qaqaH} =









Cqq 0 0 0

0 Cqıqı 0 0

0 0 Cqq 0

0 0 0 Cqκqκ









(15)

To exploit the complete second-order statistics of quaternion valued signals, a filtering model similar to the
widely linear model in C needs to be considered [10] [28]. The quaternion widely linear model is based on the
augmented basis that builds the matrix Ca

q (12), and can described by [22] [29]

y = waTxa = gTx + hT xı + uTx + vT xκ (16)

1Any other basis comprising four combinations out of {q, q
∗
,q

ı
, q


,q

κ} and their conjugates is equally valid. The basis proposed
in [22] and used here, q

a = [qT
q

ıT
q

T
q

κT ]T provides most convenient representation, as shown in the augmented covariance
structure for H-circular signals in (12).

3



where g(n), h(n), u(n) and v(n) are the weight vectors, x(n) is the input signal, xı(n), x(n) and xκ(n)
are respectively its ı,  and κ involutions, wa = [gT hT uT vT ]T is the augmented weight vector, and
xa = [xT xıT xT vκT ]T is the augmented random input vector.

4 Nonlinear Functions in H

In C, the analyticity of a complex function f(z) = u(x, y) + v(x, y)ı is governed by the Cauchy-Riemann (CR)
equations, given by

∂u

∂x
=

∂v

∂y
;

∂v

∂x
= −

∂u

∂y
(17)

that is, for a complex function f(z) to be analytic in C , the derivatives along the real and imaginary axis have
to be equal, that is

∂f

∂x
+

∂f

∂y
ı = 0 ⇔

∂f

∂z∗
= 0 (18)

where z = x + yı. By continuity, the analyticity in the quaternion domain can be defined by the Generalized
Cauchy-Riemann (GCR) conditions, given by [30]

∂f

∂qa
= −

∂f

∂qb
ı;

∂f

∂qa
= −

∂f

∂qc
;

∂f

∂qa
= −

∂f

∂qd
κ (19)

where q = qa + qbı+ qc+ qdκ. Fueter further modified these conditions to propose the Cauchy-Riemann-Fueter
(CRF) condition given by [5]

∂f

∂qa
+

∂f

∂qb
ı +

∂f

∂qc
 +

∂f

∂qd
κ = 0 ⇔

∂f

∂q∗
= 0 (20)

It can be shown that only linear quaternion functions and constant quaternion values satisfy the CRF condi-
tion [5]; limiting the scope for nonlinear adaptive filtering in H which requires holomorphic nonlinear functions.
To further relax the quaternion analyticity condition in H, a “local” analyticity condition was proposed in [12],
by using a complex representation of a quaternion to give

∂f

∂qa
= −

∂f

∂α
ζ̂ (21)

where ζ̂ and α are given by

ζ̂ =
qbı + qc + qdκ

α
(22)

α =
√

q2
b + q2

c + q2
d (23)

The term “local” here refers to the fact that this representation uses “imaginary” unit ζ̂ which depends on the
values of qb, qc and qd [12].

4.1 Fully Quaternion Functions

Before introducing fully- (as opposed to split-) quaternion nonlinearities, recall that due to adaptive filters
producing time varying outputs and therefore nonlinearities applied to them require only local analyticity. It
is desirable that such functions share some properties of fully complex nonlinearities, suitable for nonlinear
filtering applications, given by [31]:

• f(z) = u(x, y) + v(x, y)ı is nonlinear in x and y;

• f(z) has no singularities and is always bounded for all values of z;

• The partial derivatives ∂u
∂x , ∂v

∂y , ∂v
∂x and ∂u

∂y are continuous and bounded;

• ∂u
∂x

∂v
∂y 6= ∂v

∂x
∂u
∂y to ensure continuous learning.

The so called fully complex activation functions satisfy locally all the characteristics above [11]. Notice that
fulfilling the third and fourth characteristics is equivalent with fulfilling the CR conditions (18). To address
the possibility of finding fully quaternion nonlinearities in H in order to provide a rigorous basis for nonlinear
quaternion-valued adaptive filtering, the class of functions that satisfies the local analyticity condition in (21) is
termed a fully quaternion nonlinearity in the sense of local analyticity. We shall now employ the local analyticity
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condition in (21) to evaluate the analyticity of a function at a given point. We begin by analysing the local

derivative within the ζ̂-plane (with ζ̂ fixed) to obtain the relationship [12]

∂f

∂α
=

∂qb

∂α

∂f

∂qb
+

∂qc

∂α

∂f

∂qc
+

∂qd

∂α

∂f

∂qd

α
∂f

∂α
= qb

∂f

∂qb
+ qc

∂f

∂qc
+ qd

∂f

∂qd
(24)

Using the relationship defined in (24) along with ζ̂ in (22) and α in (23), the right hand side of the analyticity
condition in (21) is expanded along the orthogonal-axis vectors ı,  and κ as

−

(

∂f

∂α

)(

ζ̂

)

= −

(

qb

α

∂f

∂qb
+

qc

α

∂f

∂qc
+

qd

α

∂f

∂qd

)(

qbı + qc + qdκ

α

)

(25)

Therefore, by continuity, the characteristics of a fully quaternion locally analytic nonlinearity suitable for
gradient based learning are given by

• f(q) = u(qa, α) + v(qa, α)ζ̂ is nonlinear in qa and α;

• f(q) has no singularities and is always bounded for all values of q;

• The partial derivatives ∂u
∂qa

, ∂v
∂α , ∂v

∂qa
and ∂u

∂α are continuous and bounded;

• ∂u
∂qa

∂v
∂α 6= ∂v

∂qa

∂u
∂α to ensure continuous learning.

We shall now examine the analyticity of the quaternion exponential function eq, as it serves as a building block
to construct other transcendental nonlinear quaternion functions.

4.2 Quaternion Exponential Function

To examine the analyticity of eq, we first need to extend the notion of exponential function into H; this is not
straightforward, due to the non-commutativity of the quaternion product. There exist several definitions of the
quaternion exponential function [32]; for convenience, we consider the following exponential function (p.9 [33])

eq = eqa+qbı+qc+qdκ = eqaeqbı+qc+qdκ (26)

Expanding the term eq term using the Euler formula leads to

eq = eqa

(

cos(α) + sin(α)ζ̂

)

(27)

= eqa

(

cos(α) +
qb sin(α)ı

α
+

qc sin(α)

α
+

qd sin(α)κ

α

)

(28)

where α and ζ̂ are defined in (23) and (22). To examine whether such quaternion exponential function satisfies
the analyticity condition in (21), we first differentiate (28) with respect to qa to give the left hand side of (21),
that is

∂eq

∂qa
= eqa

(

cos(α) + sin(α)ζ̂

)

(29)

Next, (28) is differentiated with respect to α to obtain the right hand side of (21) as

−
∂eq

∂α
ζ̂ = −

(

qb

α

∂eq

∂qb
+

qc

α

∂eq

∂qc
+

qd

α

∂eq

∂qd

)(

qbı + qc + qdκ

α

)

(30)

The result of such differentiation is given by (see Appendix A for a full derivation)

−
∂eq

∂α
ζ̂ = eqa

(

cos(α) + sin(α)ζ̂

)

(31)

A comparison of (29) and (31) shows that the exponential function defined in (26) satisfies the local analyticity
condition (21). It is now straightforward to introduce the local derivative of the exponential function, given as

∂eq

∂q
=

∂eq

∂qa
= eq (32)

Observe that, as desired, this result is a generic extension of the real and complex exponential function deriv-
atives. In addition, as gradient based learning algorithms are local, this result provides a basis for introducing
other common nonlinearities, such as the elementary transcendental functions, and a vehicle for a class of fully
quaternion nonlinear adaptive filters.
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4.3 Local Analyticity of the Quaternion tanh Function

Similarly to the complex domain, tanh(q) in H can be defined as

tanh(q) =
e2q − 1

e2q + 1
(33)

Proceeding in a similar manner as when determining the analyticity of eq, we shall first expand tanh(q) in (33)
using the Euler formula, leading to (full derivation is given in Appendix B)

tanh(q) =
e4qa − 1 + 2e2qa sin(2α)

e4qa + 2e2qa cos(2α) + 1
(34)

To prove the local analyticity, the left hand side of (21) is obtained by differentiating (34) with respect to qa

and, the right hand side of (21) is obtained by differentiating (34) with respect to α, resulting in (detailed
derivations are given in Appendix C)

∂ tanh(q)

∂qa
=

4e6qa cos(2α) + 8e4qa + 4e2qa cos(2α)
(

e4qa + 2e2qa cos(2α) + 1
)2 +

(

4e2qa sin(2α) − 4e6qa sin(2α)
)

(

e4qa + 2e2qa cos(2α) + 1
)2 ζ̂ (35)

= −
∂ tanh(q)

∂α
ζ̂ (36)

and illustrating that tanh(q) is a locally analytic quaternion function. The expression for a local derivative of
tanh(q), is obtained analogously to the complex case; to this end we shall first define sech(q) as

sech(q) =
2

eq + e−q
(37)

By expanding (37) into its Euler form and then squaring (full derivation can be found in Appendix D), we have

sech2(q) =
4e6qa cos(2α) + 8e4qa + 4e2qa cos(2α)

(

e4qa + 2e2qa cos(2α) + 1
)2 +

−4e6qa sin(2α) + 4e2qa sin(2α)
(

e4qa + 2e2qa cos(2α) + 1
)2 ζ̂ (38)

Comparing the definition for sech2(q) in (38) with ∂ tanh(q)
∂qa

= −∂ tanh(q)
∂α ζ̂ in (36) shows that they are equivalent;

therefore, we have shown that, as desired,

∂ tanh(q)

∂q
= sech2(q) (39)

5 Nonlinear Adaptive Filtering in H

The cost function in quaternion-valued adaptive filtering is given by

E(n) = e2
a(n) + e2

b(n) + e2
c(n) + e2

d(n)

= e(n)e∗(n) (40)

where the error e(n) = d(n) − y(n) with d(n) and y(n) corresponding respectively to the desired signal and
output signal. The terms ea(n), eb(n), ec(n) and ed(n) denote the error component in the real part, ı part, 

part and κ part.

5.1 Review of Nonlinear Quaternion Adaptive Filtering Algorithms

All current nonlinear quaternion-based adaptive filtering algorithms employ a “split” quaternion nonlinear
function, that is a real function such as tanh applied componentwise. The output signal y(n) is defined as [6] [9]

y(n) = Φs(w
T (n)x(n)) = Φa

(

wT (n)x(n)
)

+ Φb

(

wT (n)x(n)
)

ı + Φc

(

wT (n)x(n)
)

 + Φd

(

wT (n)x(n)
)

κ (41)

where Φs(·) denotes the “split” quaternion nonlinearity, w(n) is the adaptive filter weight vector and x(n) is the
filter input. Function Φa is a real-valued nonlinear activation function applied to the real part of wT (n)x(n),
Φb to the ı part, Φc to the  part and Φd to the κ part. This “split” quaternion function is analytic only
componentwise, meaning that we are not fully exploiting the couplings between the {1,ı,,κ} axes (channels).
Notice that the odd-symmetry property still applies to the split quaternion function, that is Φ

′∗
s

(

wT (n)x(n)
)

=

Φ
′

s

(

xH(n)w(n)
)

. Existing nonlinear quaternion based algorithms such as the QMLP learning algorithm derived
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for the feedforward nonlinear neural network architecture [6], minimize the cost function (40) through a gradient
descent weight update specified by w(n + 1) = w(n) − µ∇wE(n), where the gradient ∇wE(n) is given by [34]

∇wE(n) =
∂E

∂wa
+

∂E

∂wb
ı +

∂E

∂wc
 +

∂E

∂wd
κ (42)

For fair comparison with our proposed algorithms, we shall consider the simplified QMLP with only one neuron,
that is, Split-Quaternion Finite Impulse Response (QFIR) weight update given by [9]

w(n + 1) = w(n) − µ

(

e(n)Φ
′

s

(

wT (n)x(n)
)

x∗(n)

)

(43)

where Φs

′

(·) denotes the derivative of the split quaternion function Φs(·) and µ is a real-valued learning rate.
One of the main drawbacks of the QFIR learning algorithm is that it ignores the non-commutativity of the
quaternion product, leading to a suboptimal performance. An improvement over the QFIR algorithm was
achieved based on the SQAFA in [9] which takes into account the non-commutativity aspect of quaternion
algebra resulting in superior performance. The weight update of SQAFA can be expressed as [9]

w(n + 1) = w(n) + µ

(

2e(n)Φ
′

s

(

xH(n)w∗(n)
)

x∗(n) − Φ
′

s

(

wT (n)x(n)
)

x∗(n)e∗(n)

)

(44)

The SQAFA was further improved to tackle the large dynamic range of the signal by adding an adaptive
amplitude of the activation function to give the AASQAFA [9]. The output y(n) of AASQAFA is given by

Φs

(

wT (n)x(n)
)

= λa(n)Φ̄a

(

wT (n)x(n)
)

+ λb(n)Φ̄b

(

wT (n)x(n)
)

ı

+ λc(n)Φ̄c

(

wT (n)x(n)
)

 + λd(n)Φ̄d

(

wT (n)x(n)
)

κ (45)

where λa(n) is the real-valued amplitude of the nonlinearity for the real part of the quaternion, λb(n) for the ı

part, λc(n) for the  part and λd(n) for the κ part. The term Φ̄a refers to the unit amplitude of the nonlinear
function in the real part, Φ̄b in the ı part, Φ̄c in the  part and Φ̄d in the κ part. The parameter λ is made
adaptive according to [35] [36]

λ(n + 1) = λ(n) − ρ∇λE(n) (46)

where ρ is a real-valued learning rate. Due to the limitation of the “split” quaternion nonlinearity, the update
for the amplitudes are performed componentwise, given by [9]

λi(n + 1) = λi(n) + ρei(n)Φ̄i

(

wT (n)x(n)
)

, i ∈ {a, b, c, d} (47)

We shall next employ the proposed fully quaternion activation functions leading to structurally simpler yet
more powerful algorithms.

5.2 Derivation of the Quaternion Adaptive Filtering Algorithm (QAFA)

The Quaternion Adaptive Filtering Algorithm (QAFA) employs a fully quaternion function instead of the “split”
quaternion function with the output y(n) given by

y(n) = Φ
(

wT (n)x(n)
)

(48)

where Φ(·) is the fully quaternion nonlinearity such as the tanh(q) introduced in Section IV. In order to derive
the QAFA, we shall express the cost function (40) as

E(n) =

(

d(n) − y(n)

)(

d∗(n) − y∗(n)

)

= d(n)d∗(n) − d(n)y∗(n) − y(n)d∗(n) + y(n)y∗(n) (49)

The error gradient ∇wE(n) of QAFA is then calculated as

∇wE(n) = −d(n)∇wy∗(n) −∇wy(n)d∗(n) + y(n)∇wy∗(n) + ∇wy(n)y∗(n) (50)

and the expressions for ∇wy(n) and ∇wy∗(n) are given by (the full derivation is given in Appendix E)

∇wy(n) = −Φ
′(

wT (n)x(n)
)

2x∗(n)

∇wy∗(n) = Φ
′∗

(

wT (n)x(n)
)

4x∗(n) (51)

Substitute the terms ∇wy∗(n) and ∇wy(n) into (50) to obtain the QAFA weight update in the form

w(n + 1) = w(n) + µ

(

2e(n)Φ
′(

xH(n)w∗(n)
)

x∗(n) − Φ
′(

wT (n)x(n)
)

x∗(n)e∗(n)

)

(52)

where Φ
′

(·) is the local derivative of the fully quaternion function.
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5.3 Derivation of Widely Linear Quaternion Adaptive Filtering Algorithm (WLQAFA)

We shall now extend the QAFA to fully capture the second-order statistics of the signal by incorporating the
quaternion widely linear model [22] [29] into its derivation, resulting in the Widely Linear Quaternion Adaptive
Filtering Algorithm (WLQAFA)2. Based on the widely linear model introduced in Section III, the output y(n)
of WLQAFA is defined as

y(n) = Φ
(

gT (n)x(n) + hT (n)xı(n) + uT (n)x(n) + vT (n)xκ(n)
)

= Φ
(

net(n)
)

(53)

where net(n) = gT (n)x(n) + hT (n)xı(n) + uT (n)x(n) + vT (n)xκ(n) is the widely linear part, to which the
function Φ(·) is applied.
The weight updates of the WLQAFA are made gradient adaptive according to

g(n + 1) = g(n) − µ∇gE(n); h(n + 1) = h(n) − µ∇hE(n)

u(n + 1) = u(n) − µ∇uE(n); v(n + 1) = v(n) − µ∇vE(n) (54)

The error gradient ∇wE(n) in (52) is equivalent to ∇gE(n), hence

g(n + 1) = g(n) + µ

(

2e(n)Φ
′∗

(

net(n)
)

x∗(n) − Φ
′(

net(n)
)

x∗(n)e∗(n)

)

(55)

where Φ
′
(

net(n)
)

is the fully quaternion derivatives. The error gradient ∇hE(n) is given by

∇hE(n) = −d(n)∇hy∗(n) −∇hy(n)d∗(n) + y(n)∇hy∗(n) + ∇hy(n)y∗(n) (56)

Following on in the same manner, the terms ∇hy(n) and ∇hy∗(n) are both calculated as

∇hy(n) = −Φ
′(

net(n)
)

2xı∗(n)

∇hy∗(n) = Φ
′∗

(

net(n)
)

4xı∗(n) (57)

Substituting ∇hy(n) and ∇hy∗(n) into the error gradient ∇hE(n) in (56) yields

h(n + 1) = h(n) + µ

(

2e(n)Φ
′∗

(

net(n)
)

xı∗(n) − Φ
′(

net(n)
)

xı∗(n)e∗(n)

)

(58)

Proceeding in a similar manner, the weight updates for u(n) and v(n) are found to be

u(n + 1) = u(n) + µ

(

2e(n)Φ
′∗

(

net(n)
)

x∗(n) − Φ
′(

net(n)
)

x∗(n)e∗(n)

)

v(n + 1) = v(n) + µ

(

2e(n)Φ
′∗

(

net(n)
)

xκ∗(n) − Φ
′(

net(n)
)

xκ∗(n)e∗(n)

)

(59)

For convenience of representation, the final weight update of the WLQAFA can be written in an augmented
form as

wa(n + 1) = wa(n) + µ

(

2e(n)Φ
′∗

(

net(n)
)

xa∗(n) − Φ
′(

net(n)
)

xa∗(n)e∗(n)

)

(60)

6 Convergence Analysis of QAFA and WLQAFA

The convergence criterion employed in this work is given by

‖ē(n)‖2
2 < ‖ẽ(n)‖2

2 (61)

where ē and ẽ are respectively the a posteriori output error and the a priori output error. To proceed with the
analysis, we will make two widely used general assumptions [37]

• the learning rate µ is small;

• at convergence, ẽ(n) is statistically independent of x(n).

2A full account of widely linear modelling in C is given in [10]
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6.1 Convergence of QAFA

The a posteriori output error ē and the a priori output error ẽ are given by

ē(n) = d(n) − Φ
(

wT (n + 1)x(n)
)

ẽ(n) = d(n) − Φ
(

wT (n)x(n)
)

(62)

and can be related by the first order Taylor series expansion [38]

‖ē(n)‖2
2 = ‖ẽ(n)‖2

2 + ∆wH(n)
∂‖ẽ(n)‖2

2

∂w(n)
(63)

where
∂‖ẽ(n)‖2

2

∂w(n) is the QAFA error gradient, and the term ∆wH(n) in (63) is obtained from (52) as

∆wH = µ
[

2xT (n)Φ
′∗

(

xH(n)w∗(n)
)

ẽ∗(n) − ẽ(n)xT (n)Φ′∗
(

wT (n)x(n)
)]

(64)

The term
∂‖ẽ(n)‖2

2

∂w(n) is given by

∂‖ẽ(n)‖2
2

∂w(n)
= −

[

4ẽ(n)Φ′
(

xH(n)w∗(n)
)

x∗(n) − 2Φ′
(

wT (n)x(n)
)

x∗(n)ẽ∗(n)
]

(65)

Substitute (64) - (65) into the Taylor series expansion (63) to yield

‖ē(n)‖2
2 = ‖ẽ(n)‖2

2 − µ

(

[

2xT (n)Φ′∗
(

xH(n)w∗(n)
)

ẽ∗(n)

− ẽ(n)xT (n)Φ′∗
(

wT (n)x(n)
)][

4ẽ(n)Φ′
(

xH(n)w∗(n)
)

x∗(n) − 2Φ′
(

wT (n)x(n)
)

x∗(n)ẽ∗(n)
]

)

(66)

Applying the independence assumptions and factorizing the term ‖ẽ(n)‖2
2 gives

‖ē(n)‖2
2 = ‖ẽ(n)‖2

2

[

1 − 10µxT (n)x∗(n)‖Φ′
(

wT (n)x(n)
)

‖2
2

]

(67)

The condition for convergence in (61) is satisfied for

0 < 10µxT (n)x∗(n)‖Φ′
(

wT (n
)

x(n))‖2
2 < 1 (68)

Solving for µ we obtain the range of the stepsize for QAFA to converge

0 < µ <
1

10xT (n)x∗(n)‖Φ′
(

wT (n)x(n)
)

‖2
2

(69)

6.2 Convergence of WLQAFA

The a posteriori output error ē and the a priori output error ẽ of the WLQAFA are rewritten as

ē(n) = d(n) − Φ
(

waT (n + 1)xa(n)
)

ẽ(n) = d(n) − Φ
(

waT (n)xa(n)
)

(70)

To accommodate the widely linear model, the Taylor Series in (63) is modified to

‖ē(n)‖2
2 = ‖ẽ(n)‖2

2 + ∆waH(n)
∂‖ẽ(n)‖2

2

∂wa(n)
(71)

where ∆waH(n) and
∂‖ẽ(n)‖2

2

∂wa(n) are respectively the Hermitian of the WLQAFA weight update and the error

gradient. Following in the same manner as for QAFA,

∆waH(n) = µ
[

2xaT (n)Φ
′(

net(n)
)

ẽ∗(n) − ẽ(n)xaT (n)Φ
′∗

(

net(n)
)]

(72)

∂‖ẽ(n)‖2
2

∂wa(n)
= = −

[

4ẽ(n)Φ
′∗

(

net(n)
)

xa∗(n) − 2Φ
′(

net(n)
)

xa∗(n)ẽ∗(n)
]

(73)

and the final bounds on µ so that the WLQAFA converges are given by

0 < µ <
1

10xaT (n)xa∗(n)‖Φ′
(

net(n)
)

‖2
2

(74)

Note that the upper bound of µ for the WLQAFA in (74) is smaller than that of QAFA in (69), due to the
larger size of the augmented input vector xa(n) .
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7 Simulations

A comprehensive comparison of the performances is provided for nonlinear FIR filters trained with QFIR [9],
AASQAFA [9] and the proposed algorithms based on fully quaternion nonlinear functions, QAFA and WLQAFA.
The filter length is denoted by L and the tanh(q) nonlinear activation function was used. The stepsize for the
adaptive amplitude of AASQAFA was set ρ = 0.4. The optimal AASQAFA initial amplitude was set to be
λ(0) = 1. The performance was measured in terms of prediction gain Rp defined as [37]

Rp = 10 log10

σ2
x

σ2
e

(75)

where σ2
x and σ2

e denote respectively the estimated variance of the input and error. The three quaternion
valued processes considered were the synthetic linear AR(4) process [10] with a varying degree of circularity,
the noncircular chaotic four-dimensional Saito signal [39], and the real-world three-dimensional wind field.

7.1 Linear AR (4)

For the purpose of this experiment, the input tap length was chosen to be L = 3, prediction horizon M = 1 and
the learning rate µ = 10−2. In the first set of experiments, the performances of WLQAFA, QAFA, AASQAFA
and QFIR were analyzed for a linear AR (4) process with a varying degree of circularity of the driving quaternion
quadruply white Gaussian noise (QWGN) ǫ(n). A total of 100 independent simulation trials were conducted
and averaged for the linear AR (4) process given by

r(n) = 1.79r(n − 1) − 1.85r(n − 2) + 1.27r(n − 3) − 0.41r(n − 4) + ǫ(n) (76)

Figure 1 shows the learning curves for a H-circular quaternion white Gaussian noise as the driving noise of the
linear AR(4) process. Observe that the proposed WLQAFA and QAFA had the fastest convergence, followed
by the AASQAFA and QFIR. Figure 2 depicts the learning curves for the input Ci-circular white Gaussian
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Figure 1: Learning curves for QFIR [9], AASQAFA [9], QAFA and WLQAFA on the prediction of linear AR
(4) signal (76) driven by H-circular white Gaussian noise.

noise3 for all of the algorithms considered. Similar to the previous case, the WLQAFA and QAFA had the
fastest convergence, however, in this case, as desired, the steady-state results for WLQAFA and QAFA were
equivalent. In the case of Cj and Ck white Gaussian noises, similar performances were obtained and are omitted
in this work for conciseness. Figure 3 shows learning curves for all the algorithms considered using a noncircular

3The notion of Cη circularity refers to only having a pair of axis exhibiting complex circularity.
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Figure 2: Learning curves for QFIR [9], AASQAFA [9], QAFA and WLQAFA on the prediction of linear AR
(4) signal (76) driven by Ci-circular white Gaussian noise.

white Gaussian noise as the input; the WLQAFA and QAFA had superior performances over the AASQAFA
and QFIR. It can also be seen that the steady-state of WLQAFA was similar than that of QAFA as they both
designed to cater for any AR type of processes. Table 1 reviews a comparison of prediction gains Rp between

Table 1: Prediction Gain Rp for a Linear AR (4) Process With Varying Degree of Noncircularity

Algorithms H-circular Ci-circular Cj-circular Ck-circular Noncircular
WLQAFA 20.22dB 20.93dB 20.91dB 20.88dB 21.58dB
QAFA 19.46dB 20.04dB 19.99dB 20.01dB 20.45dB
AASQAFA 18.09dB 15.75dB 15.35dB 15.66dB 17.01dB
QFIR 16.58dB 18.11dB 18.11dB 18.05dB 18.04dB

the WLQAFA, QAFA, AASQAFA and QFIR for the prediction of linear AR (4) process with varying classes
of input circularity. In all the cases, the proposed algorithms, WLQAFA and QAFA, had superior performance
over the AASQAFA and QFIR, illustrating the power of the fully quaternion function over the “split” quaternion
function. Also from Table 1, the use of the quaternion widely linear model for noncircular data is fully justified,
as indicated by a higher prediction gain of WLQAFA over the QAFA.

7.2 Four-dimensional Saito’s Chaotic Circuit

The four state variables and five parameters that govern Saito’s chaotic circuit are given by [39]
[

∂x1

∂τ
∂y1

∂τ

]

=

[

−1 1
−α1 −α1β1

] [

x1 − ηρ1h(z)
y1 − η ρ1

β1

h(z)

]

[

∂x2

∂τ
∂y2

∂τ

]

=

[

−1 1
−α2 −α2β2

] [

x2 − ηρ2h(z)
y2 − η ρ2

β2

h(z)

]

(77)

where τ is the time constant of the chaotic circuit and h(z) is the normalized hysteresis value given by [39]

h(z) =

{

1, z ≥ −1
−1, z ≤ 1

(78)

The parameters z, ρ1 and ρ2 are given as z = x1 + x2, ρ1 = β1

1−β1

and ρ2 = β2

1−β2

. The Saito chaotic signal
was initialized with the following parameters: η=1.3, α1=7.5, α2=15, β1=0.16 and β2=0.097, and is shown
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Figure 3: Learning curves for QFIR [9], AASQAFA [9], QAFA and WLQAFA on the prediction of linear AR
(4) signal (76) driven by noncircular quaternion Gaussian noise.
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Figure 4: Noncircular signals used in simulations. Left: The 4D Saito Signal. Right: The 3D wind signal (high
region).
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dimension-wise in Figure 4(a). Figure 5 depicts the performances of the algorithms considered in terms of
prediction horizon M (with fixed stepsize µ = 10−2) and stepsize µ (with fixed prediction horizon M=1).
Observe that the WLQAFA outperformed all the other algorithms by a margin greater than 2dB.
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Figure 5: The performance of WLQAFA, QAFA, AASQAFA and QFIR on the prediction of the noncircular
4D Saito signal.

7.3 Wind Forecasting

In this set of simulations, a single realization of three-dimensional wind field was used as the input4. Figure
4(b) shows the wind field in the high region used dimension-wise, and Figure 6 illustrates the performances of
WLQAFA, QAFA, AASQAFA and QFIR as a function of prediction horizon M and stepsize µ. The performance
of WLQAFA was better than that of QAFA; this was closely followed by AASQAFA, whereas the performance
of the QFIR was the poorest. Figure 7(a) and Figure 7(b) show respectively the wind field in the medium region
and low region and Figure 8 and Figure 9 depict its corresponding prediction gain for the WLQAFA, QAFA,
AASQAFA and QFIR. The results obtained are similar to those for the wind field in the high region.

7.4 Three-dimensional Rossler Signal

The Rossler attractor is governed by coupled partial differential equations [40]

∂x

∂t
= −y − z;

∂y

∂t
= x + αy;

∂z

∂t
= β + z(x − ρ) (79)

where α, ρ and β >0. The Rossler attractor implemented was initialized with the following parameters: α = 0.1,
ρ = 14 and β = 0.1. The resulting Rossler signal is shown component-wise in Fig 10(a). Figure 11 depicts the
performance of the algorithms in terms of prediction horizon M (with fixed stepsize µ = 10−2) and stepsize µ

(with fixed prediction horizon M=1). It is clearly seen that the WLQAFA has superior performance over the
QAFA followed by the QFIR and AASQAFA.

4The wind data were sampled at 32 Hz and recorded by the 3D WindMaster anemometer provided by Gill Instruments.
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Figure 6: The performance of WLQAFA, QAFA, AASQAFA and QFIR on the prediction of a 3D wind signal
in the high region.

0 1000 2000 3000 4000
−3

−2

−1

0

1

Time (samples)

E
as

t D
ire

ct
io

n 
(m

/s
)

0 1000 2000 3000 4000
−4

−2

0

2

Time (samples)

N
or

th
 D

ire
ct

io
n 

(m
/s

)

0 1000 2000 3000 4000
−1

−0.5

0

0.5

1

Time (samples)

V
er

tic
al

 D
ire

ct
io

n 
(m

/s
)

0 1000 2000 3000 4000
−0.5

0

0.5

1

Time (samples)

E
as

t D
ire

ct
io

n 
(m

/s
)

0 1000 2000 3000 4000
−2

−1

0

1

Time (samples)

N
or

th
 D

ire
ct

io
n 

(m
/s

)

0 1000 2000 3000 4000
−0.5

0

0.5

1

Time (samples)

V
er

tic
al

 D
ire

ct
io

n 
(m

/s
)

(b) 3D Wind Signal (low)(a) 3D Wind Signal (med)

Figure 7: Noncircular signals used in simulations. Left: The 3D wind signal (medium region). Right: The 3D
wind signal (low region).
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Figure 8: The performance of WLQAFA, QAFA, AASQAFA and QFIR on the prediction of a 3D wind signal
in the medium region.
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Figure 9: The performance of WLQAFA, QAFA, AASQAFA and QFIR on the prediction of a 3D wind signal
in the low region.
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Figure 10: The time waveforms on the Rossler signal (left) and Seismac signal (right).
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7.5 Forecasting Seismic Field

In this simulation, a three-dimensional seismic field was used as the input5. Figure 10(b) shows the seismic field
dimension-wise, and Figure 12 illustrates the performances of WLQAFA, QAFA, AASQAFA and QFIR as a
function of prediction horizon M and stepsize µ. The performance of WLQAFA was significantly better than
that of QAFA followed by AASQAFA and QFIR.
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Figure 12: The performance of WLQAFA, QAFA, AASQAFA and QFIR on the prediction of a 3D Seismic
Field.

8 Discussion

The performances of the filters with the proposed locally analytic fully quaternion activation functions were
generally better than those of the existing AASQAFA and QFIR. The widely linear version outperformed the
QAFA, due to the implementation of the quaternion widely linear model that fully captures the second-order
statistics of quaternion signals. In order to create a class of fully quaternion function that is suitable for
quaternion-valued adaptive filtering, it is essential to examine the possibility of employing other fully complex
transcendental functions [11] as locally analytic fully quaternion functions. In Section IV, we have established
that the exponential function eq is locally analytic and, given that summations and products of analytic functions
are analytic as well as quotients (provided the denominator does not vanish), the tanh(q) function is also locally
analytic because it can be expressed in terms of eq as

tanh(q) =
sinh(q)

cosh(q)
=

eq − e−q

eq + e−q
=

e2q − 1

e2q + 1
(80)

This was verified by a rigorous derivation given in Appendix D. By continuity, the other quaternion transcenden-
tal functions are also locally analytic. In the complex domain, Duch et al. have shown that if a set of functions
are fully analytic, then their performances should be similar [41]. In the same spirit, Figure 7 confirms by
simulations that the other elementary transcendental functions give similar performance as the locally analytic
function tanh(q). Thus, the fully complex functions from C can be extended to fully quaternion functions in H

and are consistent with the observations in [41]. For convenience, the class of locally analytic fully quaternion

5The seismic wave data was sampled at 500 Hz in each axis and is recorded by the SeisMAC software provided by Suitable
Systems.
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functions and their derivatives are given below

tanh(q) :
∂ tanh(q)

∂q
= sech2(q) (81)

tan(q) :
∂ tan(q)

∂q
= sec2(q) (82)

sin(q) :
∂ sin(q)

∂q
= cos(q) (83)

arctan(q) :
∂ arctan(q)

∂q
= (1 + q2)−1 (84)

arcsin(q) :
∂ arcsin(q)

∂q
= (1 − q2)−1/2 (85)

sinh(q) :
∂ sinh(q)

∂q
= cosh(q) (86)

arctanh(q) :
∂arctanh(q)

∂q
= (1 − q2)−1 (87)

arcsinh(q) :
∂arcsinh(q)

∂q
= (1 + q2)−1 (88)

Another factor to consider is the computational complexity of the algorithms which is summarised in Table 2.
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Figure 13: Prediction gains of QAFA for tan(q), sin(q), arctan(q), arcsin(q), sinh(q), arctanh(q) and arcsinh(q)
for the prediction of 3D wind signal.

Table 2: Computational complexities of the algorithms considered
Algorithms Multiplications Additions
QFIR 36L+20 28L+15
AASQAFA 68L+36 54L+19
QAFA 68L+36 54L+24
WLQAFA 272L+144 208L+38

The computational complexity of the AASQAFA, QAFA is O(68L); the QFIR has the lowest computational
complexity of O(36L) and the WLQAFA has the highest computational complexity of O(272L). The QAFA
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algorithm thus represents an improvement from our previous proposed algorithm AASQAFA [9] in terms of
performance and simplicity, while maintaining similar computational complexity.
In summary, the advantages of proposed class of QAFA and WLQAFA algorithms based on fully quaternion
locally analytic nonlinearities, are

• The performances of algorithms based on fully quaternion locally analytic functions, QAFA and WLQAFA,
were superior compared to those based on the split quaternion functions, AASQAFA and QFIR, as the
fully quaternion nonlinearities (81) - (88) provide a direct manipulation of the quaternion signal, instead
of the channelwise processing in R;

• The widely linear model (16) enables the WLQAFA to fully capture the quaternion second order statistics,
and hence offers a further performance enhancement over the standard linear model employed in QAFA,
AASQAFA and QFIR;

• The fully quaternion based QAFA is a reasonable choice as it allows a trade off between performance and
computational complexity.

Future works will include fusing the atmospheric parameters, such as wind temperature [42] [43].

9 Conclusion

A class of quaternion-valued nonlinear functions suitable for stochastic gradient based training of quaternion
valued nonlinear adaptive filters has been proposed. The existing learning algorithms either neglect the non-
commutativity aspect of quaternion, thus proving inadequate for the modelling of three and four-dimensional
processes, or are unable to provide an accurate estimate due to the use of the suboptimal split-quaternion
function. A class of fully quaternion activation functions has been derived according to the local analyticity
condition which enables the extension of fully complex nonlinear activation functions to the quaternion domain.
The proposed fully quaternion algorithms (QAFA and WLQAFA) have been shown to exhibit excellent per-
formance on the prediction of four-dimensional synthetic and three-dimensional real-world vector signals. The
WLQAFA has been shown to achieve enhanced performance due to the utilization of the quaternion widely
linear model and the associated augmented quaternion statistics, which fully captures the second-order infor-
mation within quaternion-valued signals and enable the processing of both second-order circular (proper) and
improper processes. Simulations over a range of noncircular synthetic signals and real world three-dimensional
wind recordings illustrate the benefit of the proposed approach.

.1 Analyticity of the exponential function eq

To calculate the term −∂eq

∂α ζ̂, we first need to evaluate the terms ∂eq

∂qb
, ∂eq

∂qc
and ∂eq

∂qd
. The term ∂eq

∂qb
is derived by

differentiating (28) with respect to qb to yield

∂eq

∂qb
= eqa

∂

∂qb

(

cos(α) +
qb sin(α)ı

α
+

qc sin(α)

α
+

qd sin(α)κ

α

)

= eqa

(

− sin(α)
∂α

∂qb
+

qb

α
cos(α)

∂α

∂qb
ı +

( ∂

∂qb

qb

α

)

sin(α)ı +
qc

α
cos(α)

∂α

∂qb


+
( ∂

∂qb

qc

α

)

sin(α) +
qd

α
cos(α)

∂α

∂qb
κ +

( ∂

∂qb

qd

α

)

sin(α)κ

)

= eqa

(

−qb sin(α)

α
+

q2
b cos(α)ı

α2
+

(

q2
c + q2

d

)

sin(α)ı

α3
+

qbqc cos(α)

α2

−
qbqc sin(α)

α3
+

qbqd cos(α)κ

α2
−

qbqd sin(α)κ

α3

)

(89)

Proceeding in the same manner, the terms ∂eq

∂qc
and ∂eq

∂qd
are calculated as

∂eq

∂qc
= eqa

(

−qc sin(α)

α
+

qbqc cos(α)ı

α2
−

qbqc sin(α)ı

α3
+

q2
c cos(α)

α2

+

(

q2
b + q2

d

)

sin(α)

α3
+

qcqd cos(α)κ

α2
−

qcqd sin(α)κ

α3

)

(90)

∂eq

∂qd
= eqa

(

−qd sin(α)

α
+

qbqd cos(α)ı

α2
−

qbqd sin(α)ı

α3
+

qcqd cos(α)

α2

−

(

qcqd

)

sin(α)

α3
+

q2
d cos(α)κ

α2
+

(

q2
b + q2

c

)

sin(α)κ

α3

)

(91)
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Substituting the terms defined in (89), (90) and (91) into the analyticity condition specified in (30) results in

−
∂eq

∂α
ζ̂ = eqa

(

− sin(α)

α2

(

q2
b + q2

c + q2
d

)

+
qb cos(α)

α3
ı +

qc cos(α)

α3
 +

qd cos(α)

α3
κ

)

ζ̂ (92)

We can simplify (92) by substituting the definition of ζ̂ in (22) and α in (23) to give

−
∂eq

∂α
ζ̂ = eqa

(

− sin(α) +
qb cos(α)ı

α
+

qc cos(α)

α
+

qd cos(α)κ

α

)(

− ζ̂

)

= eqa

(

− sin(α) + cos(α)ζ̂

)(

− ζ̂

)

= eqa

(

cos(α) + sin(α)ζ̂

)

(93)

.2 Euler form of tanh(q)

The function tanh(q) in terms of the Euler formula is given by

tanh(q) =
e2qa cos(2α) − 1 + e2qa sin(2α)ζ̂

e2qa cos(2α) + 1 + e2qa sin(2α)ζ̂

=
e4qa

(

cos2(2α) + sin2(2α)
)

+ 2e2qa cos(2α)ζ̂ + 1

e4qa

(

cos2(2α) + sin2(2α)
)

+ 2e2qa cos(2α) − 1

=
e4qa − 1 + 2e2qa sin(2α)

e4qa + 2e2qa cos(2α) + 1
(94)

.3 Local Analyticity of tanh(q)

To examine the local analyticity of tanh(q), we first apply the quaternion local analyticity condition in (21) to
(94) to show that

∂ tanh(q)

∂qa
= −

(

qb

α

∂ tanh(q)

∂qb
+

qc

α

∂ tanh(q)

∂qc
+

qd

α

∂ tanh(q)

∂qd

)(

qbı + qc + qdκ

α

)

(95)

Similarly to the case of quaternion exponential functions, we obtain the term ∂ tanh(q)
∂qa

by differentiating (94)
with respect to qa, to give

∂ tanh(q)

∂qa
=

∂

∂qa

(

e4qa − 1

e4qa + 2e2qa cos(2α) + 1
+

2e2qa sin(2α)ζ̂

e4qa + 2e2qa cos(2α) + 1

)

=
4e6qa cos(2α) + 8e4qa + 4e2qa cos(2α)

(

e4qa + 2e2qa cos(2α) + 1
)2 +

(

4e2qa sin(2α) − 4e6qasin(2α)
)

(

e4qa + 2e2qa cos(2α) + 1
)2 ζ̂ (96)

In order to determine the remaining terms in (95), define

u = 2e2qa sin(2α) (97)

v = e4qa + 2e2qa cos(2α) + 1 (98)

We can then substitute u and v into (94) and expand ζ̂ according to (22) to yield

tanh(q) =
e4qa − 1 + uζ̂

v

=
e4qa − 1

v
+

uqbı

vα
+

uqc

vα
+

uqdκ

vα
(99)
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Proceeding in a manner similar to when determining the analyticity of eq, the term ∂ tanh(q)
∂qb

is obtained by

differentiating (95) with respect to qb, resulting in

∂ tanh(q)

∂qb
=

∂

∂qb

(

e4qa − 1

v
+

uqbı

vα
+

uqc

vα
+

uqdκ

vα

)

=

(

e4qa − 1
)(

4e2qaqb sin(2α)
)

v2
+

(

vα
)(

∂uqb

∂qb

)

−
(

uqb

)(

∂vα
∂qb

)

(

vα)2
ı +

(

vα
)(

∂uqc

∂qb

)

−
(

uqc

)(

∂vα
∂qb

)

(

vα)2


+

(

vα
)(

∂uqd

∂qb

)

−
(

uqd

)(

∂vα
∂qb

)

(

vα)2
κ

=

(

e4qa − 1
)(

4e2qaqb sin(2α)
)

v2
+

(

vαu + v4e2qaq2
b cos(2α) −

uvq2

b

α + uq2
b4e2qa sin(2α)

(

vα
)2

)

ı

+

(

v4e2qaqbqc cos(2α) − uvqbqc

α + uqbqc4e2qa sin(2α)
(

vα
)2

)



+

(

v4e2qaqbqd cos(2α) − uvqbqd

α + uqbqd4e2qa sin(2α)
(

vα
)2

)

κ (100)

Noticing that u, v and α are functions of the variables qb, qc and qd, the terms ∂ tanh(q)
∂qc

and ∂ tanh(q)
∂qd

become

∂ tanh(q)

∂qc
=

(

e4qa − 1
)(

4e2qaqc sin(2α)
)

v2
+

(

v4e2qaqbqc cos(2α) − uvqbqc

α + uqbqc4e2qa sin(2α)
(

vα
)2

)

ı

+

(

vαu + v4e2qaq2
c cos(2α) −

uvq2

c

α + uq2
c4e2qa sin(2α)

(

vα
)2

)



+

(

v4e2qaqcqd cos(2α) − uvqcqd

α + uqcqd4e2qa sin(2α)
(

vα
)2

)

κ (101)

∂ tanh(q)

∂qd
=

(

e4qa − 1
)(

4e2qaqd sin(2α)
)

v2
+

(

v4e2qaqbqd cos(2α) − uvqbqd

α + uqbqd4e2qa sin(2α)
(

vα
)2

)

ı

+

(

v4e2qaqcqd cos(2α) − uvqcqd

α + uqcqd4e2qa sin(2α)
(

vα
)2

)



+

(

vαu + v4e2qaq2
d cos(2α) −

uvq2

d

α + uq2
d4e2qa sin(2α)

(

vα
)2

)

κ (102)

Replacing (100), (101) and (102) to the right hand of side of (95) yields

−
∂ tanh(q)

∂α
ζ̂ =

(

(

e4qa − 1
)(

4e2qa sin(2α)
(

q2
b + q2

c + q2
d

))

(

vα
)2 +

v4qbe
2qa cos(2α) + u4qbe

2qa sin(2α)

v2α
ı

+
v4qce

2qa cos(2α) + u4qce
2qa sin(2α)

v2α
 +

v4qde
2qa cos(2α) + u4qde

2qa sin(2α)

v2α
κ

)(

− ζ̂

)

(103)

Next, the terms u (97) and v (98) in (103) are expanded to give

−
∂ tanh(q)

∂α
ζ̂ =

(

(

e4qa − 1
)(

4e2qa sin(2α)
(

q2
b + q2

c + q2
d

))

((

e4qa + 2e2qa cos(2α) + 1
)

α
)2

+
4qbe

6qa cos(2α) + 4qbe
2qa cos(2α) + 8qbe

4qa
(

cos2(2α) + sin2(2α)
)

(

e4qa + 2e2qa cos(2α) + 1
)2

α
ı

+
4qce

6qa cos(2α) + 4qce
2qa cos(2α) + 8qce

4qa
(

cos2(2α) + sin2(2α)
)

(

e4qa + 2e2qa cos(2α) + 1
)2

α


+
4qde

6qa cos(2α) + 4qde
2qa cos(2α) + 8qde

4qa
(

cos2(2α) + sin2(2α)
)

(

e4qa + 2e2qa cos(2α) + 1
)2

α
κ

)(

− ζ̂

)

(104)
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To simplify (104) further, we employ sin2(α) + cos2(α) = 1 to give

−
∂ tanh(q)

∂α
ζ̂ =

(

(

4e6qa sin(2α) − 4e2qa sin(2α)
)

(

e4qa + 2e2qa cos(2α) + 1
)2

+
4e6qa cos(2α) + 8e4qa + 4e2qa cos(2α)

(

e4qa + 2e2qa cos(2α) + 1
)2

(qbı + qc + qdκ

α

)

)(

− ζ̂

)

(105)

Further substituting ζ̂ in (22) and α in (23) into (105) gives

−
∂ tanh(q)

∂α
ζ̂ =

(

(

4e6qa sin(2α) − 4e2qa sin(2α)
)

(

e4qa + 2e2qa cos(2α) + 1
)2 +

4e6qa cos(2α) + 8e4qa + 4e2qa cos(2α)
(

e4qa + 2e2qa cos(2α) + 1
)2 ζ̂

)(

− ζ̂

)

=
4e6qa cos(2α) + 8e4qa + 4e2qa cos(2α)

(

e4qa + 2e2qa cos(2α) + 1
)2 +

4e2qa sin(2α) − 4e6qa sin(2α)
(

e4qa + 2e2qa cos(2α) + 1
)2 ζ̂ (106)

.4 A Local Derivative of tanh(q)

We shall first expand (37) into its Euler formula to give

sech(q) =
2

eqa

(

cos(α) + sin(α)ζ̂
)

+ e−qa

(

cos(α) − sin(α)ζ̂
)

=
2eqa

(

cos(α) − sin(α)ζ̂
)

+ 2e−qa
(

cos(α) + sin(α)ζ̂
)

e2qa + 2
(

cos2(α) − sin2(α)
)

+ e−2qa

=
2e3qa

(

cos(α) − sin(α)ζ̂
)

+ 2eqa
(

cos(α) + sin(α)ζ̂
)

e4qa + 2e2qa

(

cos2(α) − sin2(α)
)

+ 1
(107)

and apply the identity cos2(α) − sin2(α) = cos(2α) to give

sech(q) =
2e3qa

(

cos(α) − sin(α)ζ̂
)

+ 2eqa
(

cos(α) + sin(α)ζ̂
)

e4qa + 2e2qa cos(2α) + 1
(108)

Upon squaring (108) results in

sech2(q) =
4e6qa

(

cos2(α) − sin2(α)
)

+ 4e4qa
(

2 cos2(α) + 2 sin2(α)
)

+ 4e2qa
(

cos2(α) − sin2(α)
)

(

e4qa + 2e2qa cos(2α) + 1
)2

+
−8e6qa sin(α) cos(α) + 8e2qa sin(α) cos(α)

(

e4qa + 2e2qa cos(2α) + 1
)2 ζ̂ (109)

and substituting 2 sin(α) cos(α) = sin(2α) yields

sech2(q) =
4e6qa cos(2α) + 8e4qa + 4e2qa cos(2α)

(

e4qa + 2e2qa cos(2α) + 1
)2 +

−4e6qa sin(2α) + 4e2qa sin(2α)
(

e4qa + 2e2qa cos(2α) + 1
)2 ζ̂ (110)

.5 Derivation of ∇wy
∗(n) and ∇wy(n)

The terms wT (n)x(n) and xH(n)w∗(n) are first expanded as (due to space limitation, the time index “n” has
been dropped) :

wT (n)x(n) =









wT
a xa − wT

b xb − wT
c xc − wT

d xd

wT
a xb + wT

b xa + wT
c xd − wT

d xc

wT
a xc + wT

c xa + wT
d xb − wT

b xd

wT
a xd + wT

d xa + wT
b xc − wT

c xb









(111)

xH(n)w∗(n) =









wT
a xa − wT

b xb − wT
c xc − wT

d xd

−wT
a xb − wT

b xa − wT
c xd + wT

d xc

−wT
a xc − wT

c xa − wT
d xb + wT

b xd

−wT
a xd − wT

d xa − wT
b xc + wT

c xb









(112)

The gradients ∇wy∗(n) and ∇wy(n) are defined as

∇wy(n) = ∇wa
y(n) + ∇wb

y(n)ı + ∇wc
y(n) + ∇wd

y(n)κ (113)

∇wy∗(n) = ∇wa
y∗(n) + ∇wb

y∗(n)ı + ∇wc
y∗(n) + ∇wd

y∗(n)κ (114)
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The odd-symmetry property also applies to the fully quaternion function and is given by

Φ
′∗

(

wT (n)x(n)
)

= Φ
′(

xH(n)w(n)
)

(115)

The derivatives in (113) can be calculated from the expansions (111) while using (115), resulting in

∇wa
y(n) = Φ

′(

wT (n)x(n)
)

(xa + xbı + xc + xdκ)

∇wb
y(n)ı = Φ

′(

wT (n)x(n)
)

(−xb + xaı − xd + xcκ)ı

= Φ
′(

wT (n)x(n)
)

(−xa − xbı + xc + xdκ)

∇wc
y(n) = Φ

′(

wT (n)x(n)
)

(−xc + xdı + xa − xbκ)

= Φ
′(

wT (n)x(n)
)

(−xa + xbı − xc + xdκ)

∇wd
y(n)κ = Φ

′(

wT (n)x(n)
)

(−xd − xcı + xb + xaκ)κ

= Φ
′(

wT (n)x(n)
)

(−xa + xbı + xc − xdκ) (116)

where the symbols Φ
′

(·) denotes the derivative of the fully quaternion function. Similarly, the remaining
derivatives in (114) are calculated from (112) to give

∇wa
y∗(n) = Φ

′∗
(

wT (n)x(n)
)

(xa − xbı − xc − xdκ)

∇wb
y∗(n)ı = Φ

′∗
(

wT (n)x(n)
)

(−xb − xaı + xd − xcκ)ı

= Φ
′∗

(

wT (n)x(n)
)

(xa − xbı − xc − xdκ)

∇wc
y∗(n) = Φ

′∗
(

wT (n)x(n)
)

(−xc − xdı − xa + xbκ)

= Φ
′∗

(

wT (n)x(n)
)

(xa − xbı − xc − xdκ)

∇wd
y∗(n)κ = Φ

′∗
(

wT (n)x(n)
)

(−xd + xcı − xb − xaκ)κ

= Φ
′∗

(

wT (n)x(n)
)

(xa − xbı − xc − xdκ) (117)

Finally, substituting (116) into (113) yields

∇wy(n) = −Φ
′(

wT (n)x(n)
)

2x∗(n) (118)

and substituting (117) into (114) gives

∇wy∗(n) = Φ
′∗

(

wT (n)x(n)
)

4x∗(n) (119)

which is applied in the derivation of QAFA and WLQAFA. Similar derivations hold for the weight vectors h, u

and v.
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