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Abstract

Most statistical signal nonlinearity analyses adopt the Monte-Carlo approach proposed
by Theiler and co-workers, namely the ‘surrogate data’ method. A surrogate time series, or
‘surrogate’ for short, is generated as a realisation of the null hypothesis of linearity. A measure
(‘test statistic’) is computed for the original time series and it is compared to those computed
for an ensemble of surrogates. If the test statistic computed for the original is significantly
different from that computed for the surrogates, the null hypothesis is rejected, and the original
time series is judged nonlinear. One of the key issues in signal nonlinearity analysis is the
definition of a linear signal. The standard definition is that such a signal is generated by a
Gaussian linear stochastic process. This definition, however, is very stringent. Indeed, if a
linear signal were to be measured via a zero-memory, nonlinear observation function, or if
the driving noise were not Gaussian, the test for linearity would fail, and the signal would
be interpreted as nonlinear. Therefore, we extend the definition of linearity to incorporate
these uninteresting (Theiler et al., 1992) deviations in the null hypothesis and, consequently,
the method for generating the surrogate data. We propose a novel method for characterising
a time series, the ‘Delay Vector Variance’ (DVV) method, from which a novel test statistic
can be derived. It is shown that, in the context of surrogate data testing, it outperforms a
number of established nonlinearity measures. It is based upon the local unpredictability of a
time series, which is analysed in a standardised manner, and allows both for a straightforward
visualisation, and for a quantitative measure of the nonlinearities present in a time series. A
comprehensive comparative study is performed with other nonlinearity analysis methods in a
systematic manner and for a wide variety of benchmark time series.
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1 Introduction

In real-world applications of statistical signal processing, such as in adaptive filtering or sig-
nal/system modelling, it is desirable to verify the presence of an underlying linear or nonlinear
signal generation system, before the actual filters or models are constructed. Indeed, in the absence
of nonlinear behaviour, it is not favourable to use nonlinear models, since these are more difficult to
train than their linear counterparts, due to issues such as overfitting and computational complexity.
It is important to note that in these cases, the objective is the detection of possible nonlinearity of
the system, or equivalently of the transfer function. In other applications, for instance the analysis
of biomedical signals, such as heart rate variability (HRV), electrocardiogram (ECG), hand tremor
and electro-encephalogram (EEG), there is a need to assess the presence or absence of nonlinear
behaviour within the signal , as opposed to that of the system, because the linear/nonlinear nature
of the signal conveys information concerning the health condition of a subject (for an overview,
see Schreiber, 1999).

There exist several established methods for performing signal nonlinearity analysis, the dif-
ferences among them stemming from the underlying assumptions, which strongly impact their
outcomes and efficacy. Consequently, the outcome of a test, e.g., the rejection of a null hypothesis
of linearity, needs to be interpreted with due caution (see, e.g., Schreiber and Schmitz, 2000; Tim-
mer, 2000). The variety of approaches and the difficulty of interpretation of the results, clearly
indicate the need for a unifying approach with straighforwardly interpretable results.

The purpose of this technical report is to introduce such unfying methodology for a compre-
hensive characterisation of the nature of time series. Before introducing the novel method, we first
provide a short tutorial-like overview of the basic concepts, as well as the current state-of-the-art
in the domain of signal nonlinearity analysis. The analysis is supported by rigorous simulations on
both benchmark and real-world signals.

2 Definitions

Before focusing on patricular methods, we deem it useful to introduc some of the basic concepts
and notions from time series analysis.

2.1 System and Signal Nonlinearity

A linear shift-invariant system, f(·), is defined as one that obeys the superposition and scaling
property, namely for a, b ∈ R : f(ax + by) = af(x) + bf(y), together with producing identical
outputs for a given input at different instants of time. A system which is shift-invariant, but which
violates thesuperposition property is considered nonlinear. In its own right, this allows for a very
powerful tool for assessing system nonlinearity, referred to as ‘temporal summation’, as has been
applied, e.g., in the field of neuroimaging (Boynton et al., 1996; Miller et al., 2001; Mechelli et al.,
2001), whereby a short and a long pulse are presented to the system, and a system is judged linear
if the response to the long pulse can be predicted from a summation of temporally shifted versions
of the response to the short stimulus. However, the principle of temporal summation for analysing
the nonlinearity of a system implies that the system input is systematically varied, while in typical
real-world settings, this is not favourable, or is even physically impossible.

A linear signal, x, is generally defined as the output of a linear shift-invariant system that is
driven by Gaussian, white noise. However, in most cases, this definition is somewhat relaxed by
allowing the probability distribution of the signal values (the signal distribution) to deviate from the
Gaussian one. This can be interpreted as a linear signal (following the strict definition) measured
by a static (possibly nonlinear) observation function, h(·). Any signal which cannot be generated in
such a way is generally referred to as a nonlinear signal. The analysis of the nonlinearity of a signal
can often provide insights into the nature of the underlying signal production system. However,
care should be taken in the interpretation of the results, since the assessment of nonlinearity within
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a signal does not necessarily imply that the underlying signal generation system is nonlinear: the
input signal and system (transfer function) nonlinearities are confounded.

2.2 Properties of a Linear Signal

Recall that a linear (shift-invariant) system driven by white Gaussian noise gives rise to a linear
signal. Notice, however, that this only yields information about the generation mechanism and
the underlying system, and not on the generated signal itself. Therefore, when presented with
a time series, the generating mechanism of which is unknown, this definition cannot be used for
assessing signal (non-) linearity. For this purpose, before proceeding on to the detection of nonlinear
behaviour in a signal, the properties of a linear signal are briefly summarised, since these provide
a means for testing whether or not the time series is linear.

A linear signal can be generated by an autoregressive (AR) model1 driven by normally dis-
tributed, white (i.e., uncorrelated over time) noise. An AR-model (linearly) processes a signal by
‘shaping’ the amplitude spectrum of the input signal. Therefore, a linear signal is obtained by
filtering a Gaussian white noise source, and can be characterised by means of its amplitude spec-
trum. Indeed, since an AR-model can be described by its ‘amplitude spectrum shaping’ property,
and since white noise has a flat amplitude spectrum, the amplitude spectrum of a linear signal
conveys all necessary information for determining the parameters of the underlying AR-model. In
this context, the amplitude spectrum can be interpreted as a grossly overfit parameterisation of the
AR-process, using n/2 parameters, where n is the number of samples in the time series (Theiler
and Prichard, 1996). The importance of this observation will become clear in Section 3.

Another consequence of this observation is that the phase spectrum is irrelevant for the char-
acterisation of a linear signal. Indeed, the phase relations in a white noise source are random, and
do remain random after having been filtered with an AR-model. This intuitively suggests that
signals containing sharp transitions, such as the discontinuities in a square wave (see Fig. 1A),
are unlikely to be linear: in the frequency domain, such transitions correspond to a rich harmonic
content with delicately aligned phases. Disrupting this phase alignment will have a strong impact
on the signal ‘shape’. This is illustrated in Fig. 1C, where a phase randomised version of the square
wave is shown, i.e., the amplitude spectrum is retained and the phase relations are randomised. It
is evident that the signal’s shape has completely changed. Intuitively, if the signal were linear (as
is the case for a sine wave, see Fig. 1B), the visual appearance of the time series would remain the
same (Fig. 1D).

In the remainder of this report, we adopt the terminology of Theiler et al. (1994) and use
the term ‘linear properties’ to refer to the mean, variance and autocorrelation function of a time
series. The latter is related to the amplitude spectrum of a time series, due to the well-understood
Wiener-Khintchin theorem, which states that the autocorrelation function is equal to the inverse
Fourier transform of the Power Spectral Density (PSD).

2.3 Deterministic and Stochastic Nature

Apart from the signal linearity and nonlinearity, there are several other properties which can be
used for characterisation purposes, two of which we shall briefly describe in particular.

The Wold decomposition theorem (Wold, 1938) states that any discrete, stationary signal can
be decomposed into its deterministic2 and stochastic (random) components, which are statisti-
cally uncorrelated. This theorem forms the basis of many prediction models, since the presence
of a deterministic component imposes an upper bound on the performance of these models. Con-
sider, e.g., a sine wave (deterministic) contaminated with white noise (stochastic). In a prediction

1An autoregressive model of order m is a linear stochastic model of the form: xk =
∑m

i=1
aixk−i + ν: the

current value of the process, xk, is expressed as a finite, linear combination of the previous values of the process
and a random shock, ν.

2A deterministic signal is one for which the generation process can be described precisely by a set of equations.
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Figure 1: Illustration of the absence of the signal linearity property: A) Square wave; B) Sine
wave; C) Phase-randomised version of the square wave; D) Phase-randomised version of the sine
wave.

setting, the sine wave portion of the signal can be perfectly predicted using only two preceding
samples. However, the prediction performance is degraded due to the presence of the stochastic
component, and the portion of the variance that can be accurately predicted equals the variance of
the deterministic component (sine wave). In this report, the deterministic component refers to the
component of the signal that can be predicted from a number of previous time samples, whereas
the stochastic component refers to the component for which such prediction is impossible. Note
that this definition makes no statement regarding the number of previous samples required, nor of
the model that should be used for the prediction.

Schreiber (1999) has illustrated the deterministic/stochastic and linear/nonlinear properties by
interpreting them as conceptual axes, spanning a space in which both time series and modelling
approaches can be positioned. His main objective was not to use this space for characterisation
purposes, but rather to emphasise that these axes are independent: since determinism is one of the
necessary requirements for the presence of deterministic chaos3, it has often (mistakenly) been used
as an indication of nonlinearity. Furthermore, many of the early nonlinearity analysis methods are
based upon the methods for analysing chaos. As a consequence, properties such as determinism
and the presence of a strange attractor have often been confounded with nonlinear behaviour, e.g.,
the presence of a strange attractor would lead to the conclusion that the time series is nonlinear,
while this is not necessarily so. Therefore, as pointed out by Schreiber and Schmitz (2000), it
is important to know what the assumptions of a nonlinearity analysis are, especially regarding
deterministic chaos, so as not to confuse cause and effect (chaos implies nonlinearity, but not vice
versa). A similar interpretation of the assessment of nonlinearity is given by Theiler et al. (1992),
where it is seen as a first step towards the detection of chaos.

3Several requirements need to be satisfied for a signal to be chaotic, among which determinism, nonlinearity, and
the presence of a strange attractor are the most important ones.
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3 Surrogate Data Method

Theiler et al. (1992) have introduced the concept of ‘surrogate data’, which has been extensively
used in the context of statistical nonlinearity testing. The surrogate data method tests for a
statistical difference between a test statistic computed for the original time series and for an
ensemble of test statistics computed on linearised versions of the data, the so-called ‘surrogate
data’, or ‘surrogates’ for short. In other words, a time series is nonlinear if the test statistic for the
original data is not drawn from the same distribution as the test statistics for the surrogates. This is
basically an application of the ‘bootstrap’ method in statistics (Theiler et al., 1992). In the context
of nonlinearity testing, the surrogates are a realisation of the null hypothesis of linearity. Although
this is conceptually appealing, care should be taken when it comes to a correct interpretation of the
results. There are three major aspects of the surrogate data method that need to be considered:
1) the exact definition of the null hypothesis; 2) the realisation of the null hypothesis, i.e., the
generation method for the surrogate data; and 3) the test statistic. The first two aspects will be
explained briefly, mainly following Theiler and Prichard (1996) and Schreiber and Schmitz (2000).
For the third aspect, the basic assumptions (chaotic behaviour, determinism, etc.) should be
examined thoroughly for every test statistic separately, since these determine the type of deviations
from the null hypothesis that can be detected. It is crucial to realise that the rejection of a null
hypothesis conveys no information regarding to what aspect of the null hypothesis is violated (see,
e.g. Timmer, 2000).

There are two main types of null hypotheses: simple and composite. A simple null hypothesis
asserts that the data is generated by a specific and known (linear) process. A composite null
hypothesis asserts that the unknown underlying process is a member of a certain family of processes.
An example of a simple hypothesis is that data are drawn from a Gaussian distribution with zero
mean and unit variance, whereas an example of a composite null hypothesis is that they are drawn
from a Gaussian distribution.

3.1 Simple Null Hypothesis

The simple null hypothesis of linearity is that it is generated by a specific linear stochastic process,
driven by white Gaussian noise. Thus, for the generation of surrogate data, the appropriate
AR-model can be determined, after which it can be used for generating several surrogate time
series. The appropriate AR-model is found by subsequently fitting AR-models of increasing order
p, observing the squared estimation error E(p), and optimising for an information theory-based
model order selection criterion, such as the minimum description length (MDL, Rissanen, 1978):

MDL(p) = N log10(E(p)) + p log10(N), (1)

where N is the number of samples. This way, the optimal model order criterion is penalised
for computational complexity (roughly speaking, the increase in performance should exceed that
expected by the complexity increase of the AR-model).

To illustrate this strategy, consider the first coordinate of the chaotic Lorenz series, shown in
Fig. 2A. The optimal model order is determined by gradually fitting increasing-order AR-models
to the data (for details, see e.g., Chapter 3 in Mandic and Chambers, 2001). The model order cost
function is corrected for complexity using the MDL method, yielding an optimal model of order
3 (Fig. 2B). Figure 2C shows a realisation of the optimal AR-model. Although the original time
series is very smooth, the surrogate is rather ‘edgy’. This is due to a mismatch between the first
and last sample of the time series4. As suggested by Theiler et al. (1992), a simple ad hoc approach

4The estimation of the AR-model parameters uses the Yule-Walker equations, in which the autocorrelation
function is computed as the biased sample autocorrelation. A mismatch in begin- and endpoint introduces false
peaks in the sample autocorrelation function, which in turn distorts the power spectral density (PSD) due to the
Wiener-Khintchin theorem (see Section 2.2). The so introduced (high) frequency components result in an ‘edgy’
time series.
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Figure 2: A) First coordinate of a realisation of the Lorenz series. The dashed lines demarcate
the region selected by the endpoint matching; B) AR-model order estimation: prediction error
(dashed line) and MDL-corrected error (solid line); C) AR-based surrogate time series; D) AR-
based surrogate time series with endpoint matching.

can be used to circumvent this problem, namely by choosing a time slice in which the begin- and
endpoint closely match. This approach has been applied to the Lorenz series and the resulting
surrogate is shown in Fig. 2D. The original time series is first cropped to the time slice between
the dashed lines in Fig. 2A. It is evident that the surrogate time series resembles the original time
series closer than does that in Fig. 2C.

Although the AR-based approach has the advantage of easy implementation, together with
the fact that surrogate time series of any length can be generated, one important side-effect is
that the signal distribution of the surrogates becomes approximately Gaussian5. Therefore, if the
amplitudes of the original time series do not follow a normal distribution, a rejection of the null
hypothesis can be due to a discrepancy in signal distribution, rather than to actual nonlinear
behaviour.

3.2 Composite Null Hypothesis

One possible composite null hypothesis is that the time series is generated by a linear stochastic
process driven by Gaussian white noise, constrained to produce a time series with an autocorrelation
function identical to that of the original time series. Due to the Wiener-Khintchin theorem (see
Section 2.2), this constraint can be approximated by forcing the original and surrogate time series
to have identical amplitude spectra. Note that this is in line with the observation that the phase
spectrum is irrelevant for the characterisation of a linear signal, as described in Section 2.2. This
allows for a straightforward method for generating surrogate data, namely by phase randomising
the Fast Fourier Transform (FFT) of the original time series and retransforming it to the time
domain. Indeed, in this way, the ‘FT-based’ surrogate is constrained to have the same amplitude
spectrum thus, to have linear properties (mean, variance and autocorrelation function, see Section
2.2) identical to those of the original time series, but is otherwise random. This is referred to as

5Indeed, if we assume that the output of the AR-model is stationary (otherwise it would not be stable), and,
thus, that the signal distribution remains constant, the AR-model computes the sum of a number of data points
drawn from a single distribution. For higher model orders, say exceeding five, the signal distribution of the resulting
signals would be approximately Gaussian due to the central limit theorem.
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Figure 3: Example surrogates of the Lorenz series: A) FT-based without endpoint matching; B)
FT-based with endpoint matching; C) AAFT-based with endpoint matching; D) iAAFT with
endpoint matching.

the Fourier Transform (FT) surrogate data method.
In the context of FFT, the endpoint matching procedure is straightforward to interpret: since

the FFT assumes the time series to be periodic over the time window under consideration, a
mismatch between begin- and endpoint results in a periodic discontinuity, which introduces high
frequency components (in classical signal processing, windowing is applied to compensate for this
effect of so-called spectral leakage). Examples of FT-based surrogates for the Lorenz series without
and with endpoint matching are shown in Fig. 3A and 3B.

As was the case for the AR-based method (Section 3.1), the signal distributions of the surrogates
do not necessarily resemble that of the original time series, which can lead to rejections of the null
hypothesis. In order to exclude such ‘false’ rejections, several methods have been proposed to
extend the composite null hypothesis to that of an underlying linear stochastic process, driven by
white Gaussian noise, and followed by a memoryless (‘static’), monotonic and possibly nonlinear
observation function h(·). The latter element can be used for rendering the signal distributions of
the surrogate and the original time series identical. Theiler et al. (1992) proposed an amplitude
transform of the original time series such that the distribution becomes Gaussian, prior to the
FT method, and retransforming it to the original distribution afterwards (Amplitude Adjusted
Fourier Transform, or AAFT method). Rather than fitting the observation function, h(·), with a
parametric model, they employed a rank-ordering procedure, i.e., the time series is sorted6 and the
sample with rank k is set to the same value as the k-th sample in a sorted Gaussian series of the
same length as the original time series. An example for the Lorenz series, including the endpoint
matching procedure, is shown in Fig. 3C.
The iterative Amplitude Adjusted Fourier Transform Method
However, Schreiber and Schmitz (1996) have shown that the AAFT method biases the amplitude
spectrum of the surrogate towards a slightly flatter one than that of the original time series,
which, again, can lead to false rejections of the null hypothesis. Therefore, Schreiber and Schmitz
(1996) proposed a fixed point iteration scheme, referred to as the iterative Amplitude Adjusted
Fourier Transform (iAAFT) method, which produces surrogates with identical (‘correct’) signal
distributions and approximately identical amplitude spectra as the original time series, or vice

6By sorting a time series, we refer to sorting the time samples in increasing order.
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versa. The iterative procedure is summarised as follows. Let {|Sk|} be the Fourier amplitude
spectrum of the original time series, s, and {ck} the sorted version of the original time series. At
every iteration j, there are two time series, namely r(j), which has the correct signal distribution,
and s(j), which has the correct amplitude spectrum. Starting with r(0) a random permutation of
the time samples of the original time series, the procedure is the following:

1. compute the phase spectrum of r(j−1) → {φk}
2. s(j) is the inverse transform of {|Sk| exp(iφk)}
3. r(j) is obtained by rank-ordering s(j) so as to match {ck}

These steps are iterated until convergence of, e.g., the discrepancy between {|Sk|} and the am-
plitude spectrum of r(j). In our implementation, convergence is assessed as the point at which
the MSE between {|Sk|} and the amplitude spectrum of r(j) stops decreasing. The algorithm has
been shown to converge after a finite number of steps (Schreiber and Schmitz, 2000), which in our
simulations is typically 50 iterations for a time series of 1000 samples. An example surrogate for
the Lorenz series, using the endpoint matching and retaining s(j) at convergence (thus, original
and surrogate time series have identical amplitude spectra), is shown in Fig. 3D. In this case, the
method converged after 25 iterations. Unless otherwise stated, we have used the iAAFT method
for generating surrogate time series, since it has been observed to yield superior results compared
to the other methods (see e.g., Kugiumtzis, 1999; Schreiber and Schmitz, 2000).

3.3 Hypothesis Testing

Since it is nearly impossible to describe the fundamental propery of nonlinearity in a single, unam-
biguous definition, it is often assessed as the ‘absence of linearity ’. In other words, in a statistical
context, a null hypothesis is asserted that the time series is linear, and it is rejected if the time
series does not conform to the properties associated with a linear signal.

Many nonlinearity analysis methods compare metrics obtained for the original signal to those
obtained for an ensemble of surrogates. If the metric of the original time series is significantly
different from those of the surrogates, the null hypothesis is rejected and the original time series
is hypothesised to be nonlinear. Since the analytical form of the probability distributions of the
metrics (‘test statistics’) is not known, a non-parametric rank-based test is used, as suggested by
Theiler and Prichard (1996). For every original time series, we generate Ns = 99 surrogates for the
nonlinearity tests. The test statistics for the original, to, and for the surrogates, ts,i (i = 1, . . . , Ns),
are computed and the series {to, ts,i} is sorted in increasing order, after which the position index
(rank) r of to is determined. A right-tailed (left-tailed) test is rejected if rank r of the original
time series exceeds 90 (is smaller or equal to 10), and a two-tailed test is rejected if rank r is
greater than 95, or smaller or equal to 5. For the subsequent analyses, it is convenient to define
the symmetrical rank rsymm as follows:

rsymm[%] =





r
Ns+1 for right− tailed tests

Ns+2−r
Ns+1 for left− tailed tests

|Ns+1
2 −r|

Ns+1
2

for two− tailed tests.

(2)

In this way, one- or two-tailed tests are rejected if rsymm > 90%.
Many test statistics have been proposed in the open literature (for an overview, see e.g. Hegger

et al., 1999). For every test statistic, it is important to verify the assumptions on which they are
based, or the properties they are examining, since these are important issues in the interpretation
of the analysis results. We have selected a number of test statistics, which have been shown to
perform well in nonlinearity detection applications. Furthermore, we propose a novel method for
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Figure 4: Realisation of the Mackey-Glass chaotic time series.

the characterisation of a time series, the ‘Delay Vector Variance’ (DVV) method, and show how
it can be applied to the testing for nonlinearity. These methods will be explained in the following
section. A collection of Matlab functions, which contains implementations of the surrogate data
generation methods described in this report, is mad public and is available from http://134.58.
34.50/temu.

4 Established Nonlinearity Analyses

Throughout the remainder of this report, the chaotic Mackey-Glass time series is used for illus-
trating the different methods. It is defined by the following equation:

dx

dk
=

0.2 xk−τ

1 + x10
k−τ

− 0.1 xk. (3)

The example time series is a realisation of 1500 samples with x0 = 0.2 and τ = 17, and is shown
in Fig. 4. Where applicable and unless otherwise stated, the embedding dimension (see further)
has been set to m = 2.

4.1 Time Delay Embedding

Many of the techniques described in this section rest upon the method of time delay embedding
for representing a time series in the so-called ‘phase space’, i.e., by a set of delay vectors (DVs)
of a given embedding dimension m, x(k) = [xk−mτ , . . . , xk−τ ]T , where τ is a time lag, which
for simplicity is set to unity in all simulations. In other words, x(k) is a vector containing m
consecutive time samples. Every DV x(k) has a corresponding target, namely the next sample, xk.
For an embedding dimension of two or three, the phase space of a time series can be represented
visually in a scatter plot of time samples separated by τ . This is shown in Fig. 5 for the Mackey-
Glass time series with an embedding dimension of m = 2. Clearly, there is some sort of ‘structure’
in the scatter plot, indicating the presence of a strange attractor (see Section 4.5). It is important
to choose the embedding dimension, m, sufficiently large, such that the m-dimensional phase space
enables for a ‘proper’ representation of the dynamical system. For a general overview, we refer to
(Hegger et al., 1999).

4.2 Deterministic Versus Stochastic Plots

The idea underpinning the method introduced by Casdagli (1991), the Deterministic Versus
Stochastic (DVS) plots, is to construct piecewise-linear approximations of the unknown predic-
tion function, which maps the DVs onto their corresponding targets, using a variable number n of
neighbouring DVs for generating the approximations. In practice, the DVS method examines the
(robust) average prediction error E(n) for local linear models of a given embedding dimension m,
as a function of the varying number of data points, n, used for constructing the local linear model.
The prediction error as a function of the locality of the model conveys information regarding the
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Figure 5: State space representation of the Mackey-Glass chaotic time series.

nonlinearity of the signal, since there is an intimate connection between nonlinear models and
local linear ones. Indeed, in terms of a relation between the degree of locality and signal nature, a
small value of n corresponds to a deterministic model (Farmer and Sidorowich, 1987), large values
of n correspond to fitting a stochastic linear AR model, whereas intermediate values of n to fit-
ting nonlinear stochastic models. Therefore, the position of the minimum in the DVS plot yields
information regarding the deterministic or stochastic nature of the time series.

The degree of locality is controlled by the number of nearest DVs (in terms of the the Euclidean
distance in the m-dimensional observation space), n, that are used for estimating the model pa-
rameters. The complete set of DVs is divided into a test set, Vtest, and a training set Vtrain. For
every DV x(k) in the test set, a subset Ωk is generated by grouping the n DVs in the training set
that are nearest to x(k). The prediction error, E(n), is computed as the mean (robust) prediction
error over Vtest, namely

E(n) = 〈|xk − x̂k|〉x(k)∈Vtest
, (4)

where x̂k is the output generated by a linear model, when presented with x(k) as its input, and
xk is the target for x(k). The model parameters, A = [a1, . . . , am]T , are determined by solving the
linear regression xk = AT x(k), using the set x(k) ∈ Ωk (Ωk ⊂ Vtrain, thus x(k) 6∈ Ωk).

The mean prediction error E(n) is then computed as a function of the degree of locality (number
n of DVs in the sets Ωk). The resulting plots, representing E as a function of the number of nearest
neighbours n, are referred to as ‘DVS plots’. The number of DVs in the sets Ωk yielding the lowest
mean prediction error, nopt, i.e., the position of the minimum in the DVS plot, is used as an
indicator of the nature of the time series under examination. A minimum close to the origin of the
DVS plot (near the ‘local linear extremum’) indicates a deterministic nature, and a minimum on
the right hand side (near the ‘global linear extremum’) indicates a linear and stochastic nature.
Minima occurring in between the two extrema, for increasing values of nopt, correspond to gradually
fitting ‘more linear’ and ‘more stochastic’ models, and are an indication of nonlinearity (Casdagli,
1991). The DVS method does not allow for a quantitative analysis.

In our implementation, we divide the time series under study in two contiguous time segments
(a 4/5− 1/5 split), respectively for estimating the model parameters and for computing the mean
prediction error, yielding the two sets of DVs, Vtrain and Vtest. The ratio 4/5 − 1/5 is chosen
arbitrarily, but is a common choice in cross-validation strategies. Note that this approach assumes
that the signal’s statistical characteristics in the ‘train’ and ‘test’ time segments remain identical.
Another possibility, one that would not make this assumption, would be to generate the DVs before
dividing them (randomly) into a training and test set. In that case, both sets would contain DVs
derived from the complete time series. However, such an approach would introduce undesired
dependencies between train and test sets, since consecutive DVs (possibly one in Vtrain and the
other in Vtest) share (m− 1) signal samples.

An example DVS plot is shown in Fig. 6 for the Mackey-Glass chaotic (nonlinear deterministic)
time series, for an embedding dimension of m = 2. The minimum of the curve is clearly at the left
hand side of the plot, indicating a nonlinear and deterministic nature of the time series.

It should be noted at this point, however, that a static nonlinearity, such as that included
in the composite null hypothesis explained in Section 3, is interpreted as a genuine nonlinearity
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Figure 6: DVS plot of the Mackey-Glass time series.

Figure 7: DVS plot for a signal generated by an AR(4) model (dashed curve), and for the same
signal passed through a static nonlinearity.

by the DVS method. Thus, a linear stochastic signal, followed by a static nonlinear observation
function, will have a local minimum in the DVS-plot in between the linear stochastic and nonlinear
deterministic extremum. This is illustrated in Fig. 7, where the DVS plot for a signal with unit
variance, generated by a stable AR(4)-model7, is shown (dashed curve). The DVS plot clearly
shows a minimum on the righthand side, at the linear stochastic extremum, indicating a linear
stochastic time series. The linear AR-signal is then passed through a static sigmoid nonlinearity
(atan), and the resulting DVS plot is also shown in Fig. 7 (solid curve). It is clear that the static
nonlinearity results in a local minimum in between the deterministic and linear stochastic extrema,
indicating a nonlinear nature of the time series.

4.3 Traditional Nonlinearity Metrics

We now shortly describe two traditional measures of nonlinearity, which have also been used by
Schreiber and Schmitz (1997), namely the third-order autocovariance and the asymmetry due to
time reversal.

The third-order autocovariance (C3) is a higher-order extension of the traditional autocovari-
ance and is given by:

tC3(τ) = 〈xkxk−τxk−2τ 〉 , (5)

where τ is a time lag which, for simplicity and convenient comparison, is set to unity in all
simulations. In combination with the surrogate data method, it has been used in (Schreiber and
Schmitz, 1997) as a two-tailed test for nonlinearity.

A time series is said to be reversible if its probabilistic properties are invariant with respect
to time reversal, i.e., if the joint probability of (xn, xn+τ , . . . , xn+kτ ) equals the joint probability
of (xn+kτ , xn+(k−1)τ , . . . , xn), for all k and n (Diks et al., 1995). Furthermore, it has been shown
that time reversibility is preserved by a static (possibly nonlinear) transform. The time reversibil-
ity has been demonstrated by Weiss (1975) for a linear Gaussian time series, and, thus, for all
static transforms thereof. Schreiber and Schmitz (1997) proposed the following metric (REV) for

7The following stable AR(4)-model is used: xk = 1.79 xk−1 − 1.85 xk−2 + 1.27 xk−3 − 0.41 xk−4 + νk, where νk

is a white noise source with a standard normal distribution.
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Figure 8: Example C3 (A) and REV (B) analysis for the Mackey-Glass time series. The thick
lines represent the test statistics for the original time series, and the thin lines those for the 24
surrogates.

measuring the asymmetry due to time reversal:

tREV(τ) =
〈
(xk − xk−τ )3

〉
. (6)

They have shown that, in combination with the surrogate data method, it yields a reliable two-
tailed test for nonlinearity.

The application of these test statistics in a surrogate data setting, is illustrated in Fig. 8. The
thick lines represent the test statistics for the original time series, to. Those for the surrogates,
ts,i are drawn as thin lines. The time series is judged nonlinear if to is significantly different from
ts,i, which is not the case in these examples: using the rank-based testing explained in Section 3.3,
we derive rsymm = 28% for C3 and rsymm = 36% for REV, thus, not exceeding the significance
threshold of 90%.

4.4 The δ − ε Method

The method proposed by Kaplan (1994, 1997) was initially used for examining the degree of
predictability of a time series without constructing its model, assuming a continuous function that
maps the DVs onto their corresponding targets. The analysis can be summarised as follows:

• The pairwise (Euclidean) distances between DVs x(i) and x(j) are computed and denoted
by δi,j . The distance between corresponding targets (using the L2-norm) is denoted by εi,j .

• The ε-values are averaged, conditional to δ, i.e., ε(r) = εj,k, for r ≤ δj,k < r + ∆r, where ∆r
denotes the width of the ‘bins’ used for averaging εj,k.

• The smallest value for ε(r) is denoted by E = limr→0 ε(r), and is a measure for the pre-
dictability of the time series.

The ‘cumulative’ version of ε(r) avoids the need for setting a binwidth ∆r:

εc(r) = εj,k with δj,k < r, (7)

where εj,k is, as before, the mean pairwise distance between targets. Figure 9 shows the cumulative
plot for the Mackey-Glass time series.

The heuristic for determining E is the Y -intercept of the linear regression of the Nδ (δ, ε)-
pairs with smallest δ. In the example shown in Fig. 9, this yields E = 0.0138, and indicates a
deterministic nature. This value can be used as a test statistic for a left-tailed nonlinearity test
using surrogate data8. In our simulations, we have set Nδ = 500.

8A Matlab implementation of the δ − ε method and the test statistic is publicly available from http://www.

macalester.edu/~kaplan/Software/.
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Figure 9: Cumulative δ − ε plot for the Mackey-Glass time series.

4.5 Correlation Exponent

This approach to nonlinearity detection is described by Grassberger and Procaccia (1983) and
computes the correlation exponent, which yields an indication of the local structure of a strange
attractor. For this purpose, the correlation integral is computed as

C(l) = lim
N→∞

1
N2

{number of pairs (i, j) for which ‖x(i)− x(j)‖ < l}, (8)

where l is a length measure which is varied, and N is the number of DVs available for the analysis.
Grassberger and Procaccia (1983) established that the correlation exponent, i.e., the slope of the
(ln (C(l)), ln (l))-curve, can be taken as a measure for the local structure of a strange attractor.
Several methods exist for determining the range over which the slope is to be computed (‘scaling
region’, see, e.g., Theiler and Lookman, 1993; Hegger et al., 1999). We adopt an ad hoc approach,
since the other methods, albeit more appropriate for the estimation of the correlation exponent,
require user intervention and we are interested in an autonomous nonlinearity detection method.
The slope is computed over the l-interval [µd ± σd], where µd and σd are the mean and standard
deviation of all possible pairwise distances between different DVs. The resulting slope (referred to
as COR) should not be interpreted as the actual correlation exponent, but it is proven sufficient in
the context of surrogate data testing, since it examines the correlation integral in a standardised
scaling region. Indeed, since the surrogate time series have signal distributions identical to that of
the original, the distributions of pairwise distances, and thus, the mean and standard deviation,
will be similar. Note that this distribution is approximately Gaussian for high embedding dimen-
sions. Therefore, the correlation integral curve is examined in similar regions for both original and
surrogate data, and a difference in the slope indicates a difference in local structure. Figure 10B
illustrates the analysis for the Mackey-Glass time series, for an embedding dimension of m = 5 (this
parameter value is determined using Cao’s method, as explained in the next paragraph), in the
described scaling region and the corresponding slope. The correlation exponent yields two-tailed
tests.

The embedding dimension for which the COR analysis is performed, can be determined using
Cao’s method (Cao, 1997), which is related to the false nearest neighbour method (Kennel et al.,
1992). It yields a measure E1(d) which stops varying when d exceeds the minimum embedding di-
mension required for reconstructing a possible strange attractor, which is computed in the following
manner:

E1(d) =
E(d + 1)

E(d)

E(d) =
1

N − d

N−d∑

k=1

a(k, d)

a(k, d) =
‖x(d+1)(k)− x(d+1)(n(k, d))‖∞
‖x(d)(k)− x(d)(n(k, d))‖∞

,

where ‖ · ‖∞ is the L∞-norm, x(d)(k) is the d-dimensional delay vector, starting at time index
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A B

Figure 10: Example analysis for the Mackey-Glass time series. A) Cao’s method for determining
the optimal embedding dimension (m = 5 in this example); B) Grassberger-Procaccia curve in the
standardised scaling region, for m = 5. The dashed curve represents the output of the regression
from which the slope is computed (in this case 1.5169).

(k − d), and n(k, d) is an integer such that x(d)(n(k, d)) is the nearest neighbour of x(d)(k) in the
d-dimensional space in the ‖ · ‖∞ sense. The measure E1(d) settles when d exceeds the optimal
embedding dimension, and quantifies the degree in which neighbouring DVs have similar targets.
In our simulations, it is evaluated for embedding dimensions between 2 and 25. We adopt the
following criterion for determining the point of convergence: the value of the differences between
consecutive measurements should be lower than 0.01 and the actual measurement should exceed
0.95 times the average of the five preceeding measurements (to compensate for false plateaus).
This method is exemplified for the Mackey-Glass time series in Fig. 10A.

The COR analysis is more specific than the other nonlinearity analyses, since it examines the
local structure of a strange attractor in a certain scaling region. On the other hand, there exist
time series that do not exhibit a strange attractor, but do lead to a rejection of a null hypothesis of
linearity. Still, if one time series exhibits a strange attractor, and another does not, there should
be a difference in COR results. Notice however, that a difference in COR results as such does not
provide conclusive evidence for the presence of a strange attractor. Also, as a consequence, linear
signals that show geometric structure in phase space can be erroneously judged nonlinear.

5 Proposed Method

We describe a novel characterisation method for a time series which examines the predictability of
a time series by virtue of the observation of the variability of the targets (Gautama et al., 2003,
2004). The proposed approach, the ‘Delay Vector Variance’ (DVV) method, is somewhat related to
the δ−ε method and the Deterministic Versus Stochastic plots (Casdagli, 1991), both of which are
local prediction techniques described earlier. A Matlab implementation of the method is publicly
available from http://134.58.34.50/temu. Next, it is described how the proposed method can be
used for nonlinearity testing, and, finally, for rigour, the sensitivity of the method to the parameter
settings is examined.

5.1 Time Series Characterisation

For a given embedding dimension m, a measure of unpredictability, σ∗2, is computed over all sets
Ωk. A set Ωk is generated by grouping those DVs that are within a certain Euclidean distance to
x(k), which is varied in a manner standardised with respect to the distribution of pairwise distances
between DVs. This way, the threshold scales automatically with the embedding dimension m, as
well as with the dynamical range of the time series at hand, and thus, the complete range of
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pairwise distances is examined9. For a given embedding dimension m, the proposed ‘Delay Vector
Variance’ method (DVV) can be summarised as follows:

• The mean, µd, and standard deviation, σd, are computed over all pairwise Euclidean distances
between DVs, ‖x(i)− x(j)‖ (i 6= j).

• The sets Ωk(rd) are generated such that Ωk(rd) = {x(i)| ‖x(k)−x(i)‖ ≤ rd}, i.e., sets which
consist of all DVs that lie closer to x(k) than a certain distance rd, taken from the interval
[max{0, µd−ndσd}; µd+ndσd], e.g., Ntv uniformly spaced distances, where nd is a parameter
controlling the span over which to perform the DVV analysis.

• For every set Ωk(rd), the variance of the corresponding targets, σ2
k(rd), is computed. The

average over all sets Ωk(rd), normalised by the variance of the time series, σ2
x, yields the

‘target variance’, σ∗2(rd):

σ∗2(rd) =
1
N

∑N
k=1 σ2

k(rd)
σ2

x

. (9)

We only consider a variance measurement valid , if the set Ωk(rd) contains at least No = 30
DVs, since having too few points for computing a sample variance yields unreliable estimates
of the true (population) variance. A sample of 30 data points for estimating a mean or
variance is a general rule-of-thumb. The effect of this parameter choice is rigorously examined
in Section 5.3.

As a result of the standardisation of the distance axis, the resulting ‘DVV plots’ (target variance,
σ∗2(rd) as a function of the standardised10 distance, rd−µd

σd
) are straighforward to interpret, as

illustrated in Fig. 11A for the chaotic Mackey-Glass time series (solid curve) using m = 2 and
nd = 4. The presence of a strong deterministic component will lead to small target variances for
small spans. The minimal target variance, σ∗2min = minrd [σ∗2(rd)], is a measure for the amount
of noise which is present in the time series (the prevalence of the stochastic component). At the
extreme right, the DVV plots smoothly converge to unity, since for maximum spans, all DVs belong
to the same universal set, and the variance of the targets is equal to the variance of the time series.
If this is not the case, the span parameter, nd, should be increased. The parameter sensitivity of the
DVV method with respect to nonlinearity testing is discussed in Section 5.3. The average DVV plot,
computed over 25 iAAFT-based surrogates for the Mackey-Glass time series is also shown in Fig.
11A (dashed curve). It is evident that the surrogates also have a strong deterministic component,
illustrating the dissociation between linear/nonlinear and stochastic/deterministic nature of a time
series.

The optimal embedding dimension can be determined by running a number of DVV analyses
for different values of m, and choosing that for which the minimal target variance, σ∗2min, is lowest,
i.e., that which yields the best predictability. We have performed this analysis for embedding
dimensions ranging from 2 to 25. An example is shown in Fig. 11B for the Mackey-Glass time
series, indicating an optimal embedding dimension of m = 11.

To summarise, the proposed DVV method can be outlined as follows:
9For computational reasons, we restrict the analysis by computing the pairwise distances between a ‘reference’

subset of Nsub = 500 DVs and the complete set of DVs, selected by subsampling the DVs. Note that this is not
equivalent to subsampling the time series.

10Note that we use the term ‘standardised’ in the statistical sense, namely as having zero mean and unit variance.

16



A B

Figure 11: A) DVV plot of the Mackey-Glass time series (solid line) and the average DVV plot,
computed over 25 iAAFT-based surrogates (dashed line); B) Minimal target variance, σ∗2min as a
function of embedding dimension, m.

Delay Vector Variance Method

Input: time series xk

embedding dimension, m
maximal span σd

‘reference’ subset Re, with Nsub elements
number of target variances, Ntv

minimal set size, No

Output: DVV plot = target variance σ∗2 versus distance rd

1. ∀k : generate delay vector x(k) = [xk−m, . . . , xk−1]T

and corresponding target xk

2. ∀i ∈ Re, ∀j: compute pairwise distances d(i, j) = ‖x(i)− x(j)‖
3. compute standardised axis:

• µd = mean (d(i, j))ij

• σd = std (d(i, j))ij

• rd(n) = µd − nd σd + 2 ndσd
Ntv−1 , n = 1, . . . , Ntv

4. ∀k ∈ Re, ∀n:
generate sets Ωk(rd(n)) = {x(i)| ‖x(k)− x(i)‖ ≤ rd(n)}

5. ∀n: if (rd(n) > 0)
σ∗2(rd(n)) = var ({xi| x(i) ∈ Ωk(rd(n)) and #Ωk(rd(n)) ≥ No})k

else
σ∗2(rd(n)) is marked as invalid

5.2 Nonlinearity Analysis

In the following step, the linear or nonlinear nature of the time series is examined by performing
DVV analyses on both the original and a number of surrogate time series, using the optimal
embedding dimension of the original time series, which is either set manually, or determined using
Cao’s method, or using the minimal target variance, σ∗2min. Due to the standardisation of the
distance axis, these plots can be conveniently combined in a scatter diagram, where the horizontal
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Figure 12: DVV scatter diagram of the Mackey-Glass time series (solid line). The error bars are
shown (only one in three, so as not to overload the diagram).

axis corresponds to the DVV plot of the original time series, and the vertical to that of the surrogate
time series. If the surrogate time series yield DVV plots similar to that of the original time series,
the ‘DVV scatter diagram’ coincides with the bisector line, and the original time series is judged to
be linear. Conversely, as is the case in Fig. 12 where the DVV scatter diagram for the Mackey-Glass
time series is shown for m = 2 and nd = 4, if the original time series is nonlinear, the curve deviates
from the bisector line. Thus, the deviation from the bisector line is an indication of nonlinearity,
and can be quantified by the root mean square error (RMSE) between the σ∗2s of the original
time series and the σ∗2s averaged over the DVV plots of the surrogate time series (note that while
computing this average, as well as with computing the RMSE, only the valid measurements are
taken into account):

tDVV =

√√√√
〈(

σ∗2(rd)−
∑Ns

i=1 σ∗2s,i(rd)
Ns

)2〉

valid rd

, (10)

where σ∗2s,i(rd) is the target variance at span rd for the i–th surrogate, and the average is taken
over all spans rd that are valid in all surrogate and DVV plots. In this way, a single test statistic
is obtained, and traditional (right-tailed) surrogate testing can be performed (the deviation from
the average is computed for the original, and surrogate time series).

5.3 Sensitivity Analysis

To examine the sensitivity of the proposed method to parameter settings with respect to nonlin-
earity detection, we consider three nonlinear time series (the Mackey-Glass time series, the Laser
and the Model2 series) and one linear (Model5). For details regarding the time series, we refer
to Section 6.1. For each of the time series, we perform a set of DVV-based nonlinearity analyses
for a range of parameter values, using a set of Ns = 99 surrogates, which is identical across anal-
yses. Unless otherwise stated, the default parameter settings are the following: m = 3, nd = 4,
Ntv = 25 nd, Nsub = 500 and No = 30. To evaluate the performance of the DVV nonlinearity
detection, we use a heuristic measure for the probability with which the null hypothesis is rejected,
namely:

d =
|to − µs|

σs
, (11)

where to is the RMSE measure for the original time series, and µs and σs are the mean and standard
deviations of the RMSE measures for the surrogates. Note that a corresponding p-value would be
given by erf(d/

√
2) if the distribution of d were Gaussian, and d ≥ 3 could, e.g. be used as a

rejection threshold. This measure has also been used in the nonlinearity detection context, e.g., in
(Theiler et al., 1992). Observing this measure as a function of the parameters yields more detailed
information than the rejection rate, and is related to the power11 and size12 of the test.

11The power of a statistical test, (1− β), is the probability of correctly rejecting the null hypothesis.
12The size of a statistical test, (1− α), is the probability of erroneously rejecting the null hypothesis.
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Figure 13: Sensitivity analysis results of the DVV method. Significance measure d as a function
of the embedding dimension m (A), the maximal span, nd (B), the number of evaluation points,
Ntv (C), the size of the subset, Nsub (D), and the minimal set size, No (E). The plot conventions
are the following: the Mackey-Glass time series (thick, solid curve), the Laser series (thick, dashed
curve), the Model2 (thin, solid curve) and the Model5 series (thin, dashed curve).

5.3.1 Embedding Dimension, m

The embedding dimension, m, determines how many previous time samples are used for examining
the local predictability. For modelling purposes, this parameter is very important, since it deter-
mines the ‘tap input memory’, and conversely, the number of parameters of the model. However,
in the DVV nonlinearity detection context, m is not as critical, as is shown in Fig. 13A. Albeit
the significance measure d is influenced by the embedding dimension, m, for the three nonlinear
signals, the symmetrical rank remains rsymm = 100% over the whole range of dimensions tested.
Furthermore, the linear signal does not lead to a rejection of the null hypothesis over the range of
dimensions tested (rsymm ∈ [31, 73]).

5.3.2 Maximal Span, nd

The maximal span parameter, nd, determines the range of standardised distances to consider. Note
that the number of evaluation points Ntv = 25 nd, due to which the spacing between consecutive
standardised distances remains constant. The results are shown in Fig. 13B. Except for the Model2
time series, there is a clear effect of the maximal span parameter on the significance measure, d.
The corresponding symmetrical ranks remain rsymm = 100 for the Mackey-Glass and Model2 series.
At a significance level of α = 0.10, the null hypothesis is erroneously accepted for the Laser series
for nd ≤ 0.6], and it is erroneously rejected for the Model5 series, for nd ≤ 0.9. For nd-values
exceeding 0.9, the nonlinearity for all time series are correctly assessed.

5.3.3 Number of Evaluation Points, Ntv

The number of standardised distances for which the target variances are computed, Ntv, has been
systematically varied from 10 to 100, using increments of 10. The results are shown in Fig. 13C for
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the four time series. Over the complete range of parameter values tested, the symmetrical ranks for
the three nonlinear time series remains rsymm = 100%, and rsymm ∈ [47, 72] for the linear signal.

5.3.4 Size of Subset, Nsub

Reducing the size of the subset of DVs to which the pairwise Euclidean distances are computed,
Nsub, greatly speeds up the DVV analysis. The effect on the significance measure is shown in Fig.
13D. Again, rsymm = 100% over the range of parameter values tested (Nsub ∈ [50, 1000]) for the
nonlinear signals, and rsymm ∈ [3, 70] for the linear signal. Note that the first two values of the
significance measure for the linear signal (d(Nsub = 50) = 1.33 and d(Nsub = 100) = 1.20) are
relatively high, but they correspond to RMSE values in the left half of the distribution, while we
use a right-tailed test (note the absolute value in Eq. 11).

5.3.5 Minimal Set Size, No

The minimal set size parameter, No, is normally set to a default value of No = 30, such that
the variance estimates are reliable. The effect of this parameter is now examined by analysing
the nonlinearity detection performance for values between No = 5 and No = 50 in increments
of 5. For the nonlinear signals, rsymm = 100% over the range tested, and for the linear signal,
rsymm ∈ [46, 64]. The results are shown in Fig. 13E. There is a clear downward trend of d for
increasing No, which is to be expected: at the limit (No equals the number of delay vectors), a set
is only valid if it contains all delay vectors, and, consequently, yielding a target variance will be
unity (only at the right extremum of a DVV plot). However, for reasonable values, say, between
10 and 30), the performance is reliable.

The sensitivity of the proposed DVV method to parameter settings has been analysed for four
different time series, three nonlinear and the fourth linear. It was found that the embedding
dimension, m, and the maximal span, nd, were the only parameters with a noticeable effect with
respect to nonlinearity detection. Furthermore, the effects were minor for reasonable parameter
values, say, for m ∈ [3, 10] and nd ≥ 1.

6 Comparative Study

To verify the proposed DVV-analysis, a number of time series with different natures are generated,
for which we can control the predictability, i.e., the prevalence of the deterministic component,
and the degree of nonlinearity. Furthermore, we consider five benchmark signals, which have
been considered in a comparative study (Barnett et al., 1997), and a number of commonly used
(‘standard’) test signals, the properties of which have been studied in the literature.

6.1 Signals

A unit-variance deterministic signal (sum of three sine waves, scaled to unit variance) is contam-
inated with uniformly distributed white noise with standard deviation σn. After standardising to
unit variance, the resulting signal, nk, is passed through a second-order nonlinear system, described
by:

xk = arctan(γnlCT x(k)) +
nk

2
,

where γnl controls the degree of nonlinearity, C = [0.2,−0.5]T , and x(k) are DVs of embedding
dimension m = 2. This is a benchmark nonlinear system referred to as model II in (Narendra and
Parthasarathy, 1990). In this way, the predictability is influenced by σn, whereas the degree of
nonlinearity is controlled by γnl. In total, we generate 9 time series, defined by σn ∈ {0, 0.25, 0.5}
and γnl ∈ {0, 0.5, 1.0}. We refer to this set of signals as the ‘tile’ set, since, in a way, it tiles the
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Figure 14: Phase space representation of a linear signal from the tile set, using an embedding
dimension of m = 2.

space mentioned by Schreiber (1999), formed by a deterministic/stochastic and a linear/nonlinear
axes. It should be noted that, since the driving deterministic signal is a sum of sines, all time series
display attractor dynamics in phase space, as illustrated in Fig. 14 showing the phase diagram of
one of the linear signals of the tile set.

The algorithms are further tested on five benchmark time series that have also been used in
(Barnett et al., 1997).

Model1 is a fully deterministic, chaotic Feigenbaum recursion of the form:

xk = 3.57 xk−1(1− xk−1), (12)

where the initial condition is x0 = 0.7.

Model2 is a Generalised Autoregressive Conditional Heteroscedastic (GARCH) process of the
following form:

xk =
√

hkνk, (13)
hk = 1 + 0.1 x2

k−1 + 0.8 xk−1,

where h0 = 1 and x0 = 0.

Model3 is a nonlinear moving average (NLMA) process of the following form:

xk = νk + 0.8νk−1νk−2. (14)

Model4 is an Autoregressive Conditional Heteroscedastic (ARCH) process of the following form:

xk = (1 + 0.5 x2
k−1)

1/2νk, (15)

with the value of the initial observation set to x0 = 0.

Model5 is an autoregressive moving average (ARMA) model of the form:

xk = 0.8 xk−1 + 0.15 xk−2 + νk + 0.3 νk−1, (16)

with x0 = 1 and x1 = 0.7.

Each of the generated signals consists of 2000 samples, and for the four stochastic models (Model2–
Model5), the white noise disturbances, νk, are sampled independently from a standard normal
distribution. Thus, only the Model5 series is linear (for a more detailed description, see Barnett
et al., 1997).

Finally, to complete the comparison, we include four standard time series which have been
analysed frequently in the context of nonlinearity, namely the Sunspots series (280 samples), the
Laser data from the Santa Fe Competition (1000 samples), the first coordinate of a realisation of
the Lorenz series (1000 samples), and a realisation of a Hénon series (1000 samples).
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6.2 Simulations

6.2.1 Tile Set

For the tile set, we used an embedding dimension of m = 2, for the benchmark set, all analyses were
performed with m = 3, and for the standard time series, m = 2. In all DVV analyses, the maximal
span, nd, was determined by visual inspection such that the DVV plots converged to unity at the
extreme right, yielding nd = 3. This convenience did not influence the generality of our results.
The results of the rank tests for the tile set are shown in Table 1 (significant rejections at the level
of 0.1 of the null hypothesis, i.e., an underlying Gaussian linear stochastic model, the output of
which is amplitude transformed, are shown in boxes). Note that the DVS method is not included
in this table, since it does not allow for a quantitative analysis. In the absence of noise (σn = 0),
only the δ − ε, COR and DVV methods detected nonlinearities for slopes γnl ≥ 2.0. When noise
was added to the driving signals, the time reversal metric (REV) was able to detect the nonlinear
nature for high slopes. The third-order cumulant (C3) was unable to detect nonlinearities in this
type of signals. The COR analysis detects nonlinearity even in the cases where γnl = 0. This
could be due to the presence of an attractor in all signals from this set, as explained in Section
6.1. The δ − ε method fails to detect nonlinearities in the signals in the presence of noise. This
could be attributable to the decreasing deterministic component when noise is added, which, in
turn, decreases the sensitivity of the method, as it is based on the deterministic properties of a
time series. Only the DVV method consistently detected nonlinear behaviour for γnl ≥ 2, for all
noise levels.

The results for the DVS and the DVV analyses are illustrated in Fig. 15 and 16, respectively.
The degree of nonlinearity, γnl, increases from left to right, and the noise level, σn, increases from
top to bottom. The DVS plots in Fig. 15 show that, as γnl increases, the error discrepancy between
the best local linear model and the global linear model becomes larger, indicating, indeed, a higher
degree of nonlinearity. In the DVV scatter diagrams (Fig.16), the effect of increasing nonlinearity
as described above, corresponds to a stronger deviation from the bisector line (dashed line). The
effect of increasing σn in the DVS plots is a higher error value at the optimal degree of locality. The
span on the horizontal axes of the DVV scatter diagrams becomes smaller as σn increases. Both
methods are in agreement and show a gradual change as a function of the degree of nonlinearity
and the noise level. Thus, for instance, in the first columns of the tile figures, the lowest error
increases (Fig. 15), and the horizontal range spanned by the DVV scatter diagrams decreases (Fig.
16) from top to bottom, i.e., for increasing noise levels. Conversely, considering the first row in
the tile figures, from left to right, i.e., for increasing degrees of nonlinearity, the minimum becomes
more pronounced in Fig. 15, and the deviation from the bisector line becomes more emphasised in
Fig. 16.

6.2.2 Benchmark and Standard Sets

The results for the remaining time series under study are shown in Table 2. The DVS plots
(which do not allow for a quantitative analysis) for the benchmark and standard sets are shown
respectively in Fig. 17 and Fig. 19. For comparison, the corresponding DVV scatter diagrams are
visualised in Fig. 18 and 20. It is clear from the Figures and Tables that the different methods
yielded different results. All the methods detected nonlinearities in the Hénon and Model4 time
series. The δ− ε, COR, and DVV methods consistently rejected the null hypothesis, and the DVS
method showed indications of nonlinearity, for all other chaotic series (Laser, Lorenz and Model1).
Nonlinear behaviour was detected in the Sunspots time series by DVS and REV. The COR and
DVV methods were the only ones to reject all nonlinear signals described in (Barnett et al., 1997)
(Model1–Model4)13. None of the methods detected nonlinearities in the linear time series, Model5.

13Note that in (Barnett et al., 1997), the δ− ε method also rejected the linearity hypothesis for Model2, whereas
in our simulations, the null hypothesis was accepted, albeit marginally so. This could be due to our choice of the
time lag τ , which was optimised for in (Barnett et al., 1997), but was set to unity in all our simulations, or to a
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γnl σn C3 REV δ − ε COR DVV
0.0 0.0 31 38 99 3 22
1.5 0.0 45 59 6 88 100
2.0 0.0 54 73 2 1 100
2.5 0.0 65 52 2 1 100
0.0 0.5 36 81 56 83 52
1.5 0.5 52 82 73 54 98
2.0 0.5 54 100 94 1 100
2.5 0.5 43 87 95 1 100
0.0 1.0 34 82 52 100 28
1.5 1.0 57 89 52 10 82
2.0 1.0 71 24 11 1 100
2.5 1.0 38 41 76 1 100

Table 1: Results of the rank tests for the tile set. Significant rejections of the null hypothesis at
the level of 0.1 are indicated by boxes.

γnl

→
σn ↓

Figure 15: DVS plots for the tile set. The degree of nonlinearity increases from left to right, the
noise level from top to bottom.
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γnl

→
σn ↓

Figure 16: DVV scatter diagrams for the tile set. The degree of nonlinearity increases from left to
right, the noise level from top to bottom. The error bars indicate the standard deviation from the
mean of σ∗2.

signal C3 REV δ − ε COR DVV
Model1 13 1 3 1 100
Model2 84 97 12 1 100
Model3 100 73 8 1 100
Model4 100 97 1 1 100
Model5 32 41 57 28 16

Sunspots 8 100 30 20 43
Laser 1 45 1 1 100
Lorenz 19 1 1 1 100
Hénon 100 1 1 1 100

Table 2: Results of the rank tests for the benchmark and standard time series. Significant rejections
of the null hypothesis at the level of 0.1 are indicated by boxes.
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Model1 Model2 Model3

Model4 Model5

Figure 17: DVS plots of the five benchmarks signals used by Barnett et al. (1997).

Model1 Model2 Model3

Model4 Model5

Figure 18: DVV scatter diagrams of the five benchmarks signals used by Barnett et al. (1997).
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Sunspots Laser Lorenz Hénon

Figure 19: DVS plots of the four standard signals.

Sunspots Laser Lorenz Hénon

Figure 20: DVV scatter diagrams of four standard signals.

7 Case Studies

To illustrate the proposed DVV method in the context of biomedical signal processing, two case
studies are considered, namely heart rate variability (HRV) and functional magnetic resonance
imaging (fMRI) time series. In all results shown, the optimal embedding dimension has been
obtained by selecting that for which the minimal target variance is smallest.

7.1 Heart Rate Variability

Four Heart Rate Variability (HRV) time series have been derived from long-term electrocardiogram
recordings (14 to 22 hours each), with manually reviewed beat annotations, taken from the MIT-
BIH Long-Term database14. The labelling convention is shown in Table 3. The signals consist
of recordings of male patients suffering from different heart diseases. For efficiency, the time
series have been limited in size to 8192 samples. It is generally accepted that the heart condition
influences the nonlinear nature of the HRV signal Christini et al. (1995); Guzzetti et al. (1996);
Ho et al. (1997); Poon and Merrill (1997).

The DVV scatter diagrams (Fig. 21 for A1–A4) show that there is a difference between the
four HRV signals in the deviation from the bisector line. Clearly, A2 yields the smallest deviation

different approach to the estimation of E. However, this does not impact the generality of our analysis
14Publicly available from http://www.physionet.org/physiobank/database/ltdb/

label record number
A1 14046
A2 14149
A3 14157
A4 14172

Table 3: Labelling conventions of the HRV time series.
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A1 A2 A3 A4

Figure 21: DVV scatter diagrams for the HRV time series (A1–A4). The error bars correspond to
the upper and lower quartiles of the target variances for the surrogates.

B1 B2 B3 B4

Figure 22: DVV scatter diagrams for the fMRI time series (B1–B4). The error bars correspond to
the upper and lower quartiles of the target variances for the surrogates.

from the linearity hypothesis.

7.2 Functional Magnetic Resonance Imaging

The functional Magnetic Resonance Imaging (fMRI) time series have been taken from two experi-
mental macaque motion studies Vanduffel et al. (2001). We consider four time series, taken from
the left and right middle temporal area (MT/V5), recorded using two different contrast agents:
one set (time series labelled B1 and B2, 1920 samples) is recorded using the traditional Blood Level
Oxygen Dependent (BOLD) contrast agent, and the other (time series B3 and B4, 1200 samples)
using an exogenous contrast agent, namely monocrystalline iron oxide nanoparticle (MION), which
has been recently introduced for application in fMRI. The latter is expected to be dependent on
fewer physiological variables which possibly interact in a nonlinear fashion, and should, therefore,
display less nonlinearity than the BOLD signals Friston et al. (2000).

The proposed DVV method detects nonlinearity in B1, B2 and B4 using the surrogate data
test, and, additionally, the method reveals that the deviations from the bisector line are smaller
for the MION signals (B3 and B4) than for the BOLD ones (B1 and B2), which complies with the
recording conditions. This can be observed in the DVV scatter diagrams shown in Fig. 22: the
diagrams for B3 and B4 almost coincide with the bisector line, whereas those for B1 and B2 do
not.
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8 Summary

A time series can be characterised by a variety of different criteria, based on different aspects of the
signal. Hence, the fundamental problem of choosing an appropriate criterion or ‘test statistic’ for
the nonlinearity analysis needs to be done with due caution. Indeed, nonlinearity analysis results
ought to be interpreted with respect to the definition of linearity that has been adopted (which
is reflected in the surrogate data generation method), and the aspects of the time series on which
the test statistic is based, such as time reversal asymmetry, phase space geometry, correlation
exponent, to mention just a few.

To provide a unifying approach to detecting the nature of real-world signals, we have introduced
a novel way for characterising a time series, called the ‘Delay Vector Variance’ (DVV) method,
and have evaluated its performance in the context of nonlinearity detection. We have performed
comprehensive simulations on a large number of time series, both synthetic and real-world, and
have found that the proposed DVV method outperforms some well-established methods. Finally,
two case studies of nonlinearity detection have been described, one on heart rate variability (HRV)
and the other on functional magnetic resonance imaging (fMRI) time series.
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