
Sparsity according to Prony, average performance analysis
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Abstract—Finding the sparse representation of a signal in an over-
complete dictionary has attracted a lot of attention over the past years.
Traditional approaches such as Basis Pursuit are based on relaxing a
nonconvex `0-minimization problem [1]–[3]. In [4], a new polynomial
complexity algorithm, ProSparse, is presented. ProSparse solves the
sparse representation problem when the dictionary is the union of Fourier
and canonical bases and can be extended to other relevant pairs of bases
or frames. Here, we present a probabilistic average-case analysis that
characterizes a sharp phase transition behaviour of the algorithm. We
also present an extension of the algorithm for the noisy scenario. This
proposed extension outperforms the Basis Pursuit Denoise algorithm in
support retrieval in a number of scenarios.

I. INTRODUCTION

Let y ∈ CN be a complex-valued finite dimensional signal that
has a K-sparse representation in an overcomplete dictionary, that
is, y = Dx, where D ∈ CN×L is the overcomplete dictionary
with L > N atoms and x = (x`)

L−1
`=0 ∈ CL satisfies ‖x‖0

def
=

# {` : |x`| 6= 0} = K. When the dictionary consists of the union of
Fourier and identity matrices, that is, D = [F , I], the signal y can
be written as the sum of Kf Fourier atoms and Ks spikes, where
Kf +Ks = K.

ProSparse [4] is based on finding clean windows of consecutive
samples of the signal y where there is no contribution due to
the spikes, and therefore the samples are only due to the Fourier
atoms. The algorithm retrieves the Fourier atoms from these clean
windows by applying Prony’s method and obtains the spikes from the
residual resulting from removing the Fourier atoms from the original
signal. When the sparsity satisfies Kf Ks < N/2 the algorithm is
guaranteed to succeed.

II. NOISELESS AVERAGE PERFORMANCE

The previous sparsity bound is a worst-case result since it is
possible to find a counterexample that makes the algorithm fail
when Kf Ks = N/2. However, the probability of occurrence of
such counterexamples tend to zero when N is large. If this sparsity
constraint is not satisfied, that is, when the product of the number
of Fourier atoms and spikes goes beyond N/2, simulation results
show that ProSparse is able to find the sparse solutions for a much
larger area of the (Ks,Kf ) plane. In fact, we are able to prove the
existence of a phase transition phenomenon for the probability of
success of ProSparse. For large N and the number of spikes given
by Ks = αN , the algorithm succeeds with high probability when the
number of Fourier atoms is below a level that depends on α and fails
with high probability above this level. This phase transition behaviour
is illustrated in Figure 1, where the probability of success has been
obtained empirically by simulating 100 different realizations of the
sparse vector x for each pair of sparsity levels (Kf ,Ks). Specifically,
the following result can be shown:

Proposition 1. Let y ∈ CN be a mixture of Fourier atoms and spikes
chosen uniformly at random. Let Kf = τ logN be the number of

Fourier atoms. If there are Ks = αN spikes, then,

lim
N→∞

P {algorithm succeeds} =

{
0, if τ > −1/ log (1− α),
1, otherwise.

III. NOISY ALGORITHM

In the presence of noise, the search for the clean windows
becomes unreliable. Thus, we apply a slightly different approach
that is also based on Prony’s method. When samples due to Fourier
atoms are corrupted with additive noise, Prony’s performance can be
considerably improved by applying a denoising technique known as
Cadzow [5]. The noisy version of ProSparse is therefore based on
iteratively removing the Ks spikes by considering the entire signal
y and assuming that the spikes are additive noise: the spikes are
estimated from the residual between a denoised version of the signal
and the actual noisy signal. After removing the spikes, the Fourier
atoms are estimated applying Prony’s method to the entire signal y.
When the dictionary is given by the union of bases, the same strategy
can be applied to the Fourier transform of y where the spikes are
estimated by removing the Fourier atoms items iteratively.

Figures 2 and 3 show simulation results where the probability of
retrieving the correct support of the sparse vector are empirically
obtained for the noisy ProSparse and Basis Pursuit Denoise (BPDN)
algorithms. In the union of bases scenario, ProSparse outperforms
BPDN by a small margin. This margin is significantly increased when
we consider a Fourier frame.

IV. CONCLUSION

ProSparse is an algorithm, with a worst-case complexity ofO(N3),
that is able to find all the sparse solutions that satisfy some sparsity
conditions. The original paper [4] presents deterministic bounds when
some sparsity constraint is satisifed. Here, we have shown that the
algorithm is able to find the sparse solution with high probability
well beyond these sparsity levels. A noisy sparse reconstruction is
also presented that outperforms BPDN in a number of scenarios.
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Fig. 1: Empirical probability of success of ProSparse and deterministic and probabilistic bounds when there are Ks = αN spikes and Kf = τ logN Fourier atoms, with
N = 106. In green, the deterministic bound, in red the phase transition bound.
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Fig. 2: Empirical probability of support retrieval for different levels of noise when the dictionary is the union of Fourier and canonical bases. N = 64 and Ks = Kf = 50%K.
For each sparsity level, 20 different realizations of the sparse vector x have been generated and for each vector 20 different realizations of complex white Gaussian noise.
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Fig. 3: Empirical probability of support retrieval for different levels of noise when the dictionary is the union of a Fourier frame and the canonical basis. The dimension of the
Fourier frame is 64 × 256 and for the canonical basis N = 64. Ks = 25%K and Kf = K −Ks. For each sparsity level, 20 different realizations of the sparse vector x
have been generated and for each vector 20 different realizations of complex white Gaussian noise.


