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Signals with Finite Rate of Innovation (FRI)

I Signals that have a finite number of free parameters

x(t) =
∑
k∈Z

R−1∑
r=0

ak,r gr(t− tk).

If the set of functions {gr(t)}r=0,1,...,R−1 is known, the signal x(t) is perfectly
determined by the coefficients (ak,r, tk).

I Let us constrain the input signal to a stream of K Diracs in an interval τ
x(t) =

∑K
k=1 ak δ(t− tk), where tk ∈ [0, τ ].

I This signal has 2K degrees of freedom in a temporal interval τ
I Local rate of innovation: ρ = 2K

τ

I We acquire the signal with a sampling device at regular intervals of time t = nT

hptq “ ϕ
`´ t

T

˘
t“nT

yn
xptq yptq

I The output samples can be expressed as yn = 〈x(t), ϕ(t/T − n)〉.
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x(t) =
K∑
k=1

ak δ(t− tk)

I Classical sampling theory does not allow to sample and perfectly reconstruct a
stream of Diracs because it is not a bandlimited signal.

I The FRI framework can achieve perfect reconstruction under some conditions.

I State of the art FRI algoritms do not deal well with infinite streams:
I Based on isolating bursts of Diracs
I Require high sampling rates

I We present a novel sequential algorithm that is able to reconstruct these type of
signals:

I Able to recover 1k Diracs from 10k samples
I Robust under high noise conditions
I Works in real time
I Succesfully applied in neuroscience to infere spiking activity of individual neurons from

calcium fluorescence imaging
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Jon Oñativia, Jose Antonio Urigüen and Pier Luigi Dragotti CSP group - Imperial College London 4/16



Sampling FRI signals
Sequential algorithm

Signals with Finite Rate of Innovation
Sampling process

x(t) =
K∑
k=1

ak δ(t− tk)

I Classical sampling theory does not allow to sample and perfectly reconstruct a
stream of Diracs because it is not a bandlimited signal.

I The FRI framework can achieve perfect reconstruction under some conditions.

I State of the art FRI algoritms do not deal well with infinite streams:
I Based on isolating bursts of Diracs
I Require high sampling rates

I We present a novel sequential algorithm that is able to reconstruct these type of
signals:

I Able to recover 1k Diracs from 10k samples
I Robust under high noise conditions
I Works in real time
I Succesfully applied in neuroscience to infere spiking activity of individual neurons from

calcium fluorescence imaging
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Sampling process

I We sample x(t) with a very specific kernel: ϕ(t) together with its shifted versions
can reproduce exponentials of the form eαmt∑

n∈Z
cm,nϕ(t− n) = eαmt, m = 0, 1, . . . , P

I A family of functions that satisfy the exponential reproducing property are the
exponential splines (E-splines). The Fourier transform of the P -th order E-Spline
with parameter ~αP = (α0, α1, . . . , αP ) is given by

ϕ̂~αP (ω) =

P∏
m=0

(
1− eαm−jω

jω − αm

)
I If coefficients αm are real, or complex but appear in complex conjugate pairs, the

kernel is real valued.

I E-splines present the advantage of being of compact support P + 1.
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Input signal: x(t) =
∑K
k=1 ak δ(t− tk)

Samples (T = 1): yn = 〈x(t), ϕ(t− n)〉

ϕ(t) satisfies:
∑
n∈Z cm,nϕ(t− n) = eαmt, αm = α0 +mλ and m = 0, . . . , P

I If we combine samples yn with coefficients cm,n we obtain a new set of
measurements sm which can be expressed as a sum of exponentials:

sm =
∑
n

cm,n yn

=

K∑
k=1

ak e
α0tk︸ ︷︷ ︸
bk

eλtk︸ ︷︷ ︸
uk


m

=

K∑
k=1

bk u
m
k

I Retrieval of ak and tk from samples sm is a classical problem in spectral
estimation or in direction of arrival (DOA) estimation

I Can be solved for instance applying the annihilating filter method (a.k.a. Prony’s
method) or the matrix pencil method (inspired from ESPRIT)

I These methods require a minimum number of values sm and this in turn imposes
a minimal order P for the sampling kernel: P + 1 ≥ 2K.

I Critical sampling is achieved for P + 1 = 2K

I If we have an infinite stream we face some problems:
I This approach requires knowledge of all samples yn in order to compute sm
I The number of Diracs is infinite so the order of the E-spline must be infinite as well
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Sampling an infinite sequence of Diracs

I We consider a continuous time signal x(t) formed by an infinite stream of Diracs,∑
k∈Z ak δ (t− tk).

I There are an infinite number of Diracs, but with a limited rate of at most K
Diracs per τ interval.
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Figure: Infinite stream. Local maximum rate of innovation ρ = 2K/τ (K = 5, τ = 3.125
s).
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I We take advantage of the fact that the sampling kernel is of compact support
(P + 1)T . Thus, a Dirac can influence at most P + 1 samples yn.

I The sequential algorithm estimates the locations of the Diracs within a sliding
window that covers the interval of time τ = NT .

Diracs 

retrieval 
{tk, ak}

k=1

K

For each window:

(i-1) window

(i+1) window

ith window

Figure: Sequential processing.

I Problem ⇒ if we only process N samples at a time there are border effects when
Diracs are located near the borders of the sliding window
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Figure: Border effects.
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Sampling an infinite sequence of Diracs
The noisy scenario
Application: neural activity detection

I The border effect in the left side is due to Dircas before the τ interval that leak
into the N samples yn of the current window.

I If we assume that we have already recovered Diracs up to the current position of
the sliding window we can remove the contribution to yn of nearby Diracs that
happened before.
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I The border effect on the right side is due to Diracs inside the τ interval that leak
outside the N samples yn of the current window.

I To make sure that these Diracs will be recovered for a certain position of the
sliding window we have to impose:

T ≤ 1
K ρ

and P + 1 = 2K
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Figure: Sequential perfect reconstruction of a noiseless stream of Diracs. Section of a stream of
1000 Diracs and 10220 samples yn. Rate K = 5 Diracs per τ = 3.125 s, N = 50 samples,
T = 1/16 s and order of the E-spline P = 9.
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The noisy scenario
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Figure: 1k Diracs, 10k samples, SNR = 10 dB.

I Perfect reconstruction conditions do not hold anymore.
I We can relax conditions on T and P

I We allow the sampling kernel to be of higher order in order to be more robust against
noise.

I The idea is to estimate Diracs by analysing the consistency of the retrieved
locations among different positions of the sliding window.
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I A Dirac is captured among different positions of the sliding window:
I If a retrieved location corresponds to a true Dirac this location will be consistent among

different positions of the sliding window.

2 3 4 5 6

0

0.5

1

1.5

2

2.5

3

3.5

τ

Time (s)

 

 

Diracs

Samples

20 40 60 80 100
0

1

2

3

4

5

Window index

T
im

e
 (

s
)

 

 

Ret. locations
0 1 2 3 4 5

0

10

20

30

40

50

Time (s)

 

 

Histogram

Threshold

I If we analyse the consistency of the retrieved locations we can estimate the
Diracs from the peaks of the histogram of the locations:
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Figure: Retrieved locations among different positions of the sliding window and histogram of
locations.
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I If we analyse the consistency of the retrieved locations we can estimate the
Diracs from the peaks of the histogram of the locations:
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Figure: Retrieved locations among different positions of the sliding window and histogram of
locations.
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I If we analyse the consistency of the retrieved locations we can estimate the
Diracs from the peaks of the histogram of the locations:

50 100 150

4

5

6

7

8

9

10

11

n
i

T
im

e
 (

s
)

 

 

True locations of Diracs

Detected locations

4 5 6 7 8 9 10 11

0

5

10

15

20

25

30

35

Time (s)

 

 
True Diracs

Histogram

Threshold

Figure: Retrieved locations among different positions of the sliding window and histogram of
locations.
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I If we analyse the consistency of the retrieved locations we can estimate the
Diracs from the peaks of the histogram of the locations:
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Figure: Retrieved locations among different positions of the sliding window and histogram of
locations.
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I If we analyse the consistency of the retrieved locations we can estimate the
Diracs from the peaks of the histogram of the locations:
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Figure: Retrieved locations among different positions of the sliding window and histogram of
locations.
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I If we analyse the consistency of the retrieved locations we can estimate the
Diracs from the peaks of the histogram of the locations:
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I If we analyse the consistency of the retrieved locations we can estimate the
Diracs from the peaks of the histogram of the locations:
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I If we analyse the consistency of the retrieved locations we can estimate the
Diracs from the peaks of the histogram of the locations:
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I The consistency analysis makes the retrieval algorithm robust against noise.
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Figure: Sequential reconstruction of a noisy stream of Diracs (SNR = 10 dB). Section of a
stream of 1000 Diracs and 10220 samples yn. Rate K = 5 Diracs per τ = 3.125 s,
N = 50 samples, T = 1/16 s and order of the E-spline P = 22.

I Some results for differents levels of noise (experiment repeated 100 times for each
level of noise):

SNR (dB) 5 10 15 20

Detection rate 97.69 % 99.97 % 100.00 % 100.00 %
False positives 351.7 37.8 0.5 0.3
Precision (s) 0.0086 0.0049 0.0028 0.0018
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Application: neural activity detection

I This framework has been successfully applied to the detection of neural activity in
calcium concentration movies 1.

Figure: Simultaneous multiphoton calcium imaging of a region of the cortex and
electrophisiological recording of a targeted cell with a micropipette.

I Fluorescence sequences obtained by averaging the pixel values of a ROI can be
modeled as a stream of decaying exponentials:

c(t) = A
∑
k

e
−α(t−tk)

u(t − tk)

=
∑
k

δ(t − tk)

︸ ︷︷ ︸
x(t)

∗ Ae
−αt

u(t)︸ ︷︷ ︸
ρα(t)

= x(t) ∗ ρα(t).

I This is a Finite Rate of Innovation signal and with a correct processing of the
fluorescence samples we can apply our sequential algorithm.

1Jon Oñativia, Simon R. Schultz and Pier Luigi Dragotti. A finite rate of innovation algorithm for fast and
accurate spike detection from two-photon calcium imaging. to appear in Journal of Neural Engineering
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I We achieve 84 % detection rates with real data (calcium fluorescence sequence)
for electrophysiologically confirmed action potentials.

I We outperform state of the art real time spike train inference algorithms:
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Figure: Receiver operating characteristic (ROC) curves for various algorithms with surrogate
data (SNR = 10 dB).

I This technique can be used to monitor tens of neurons simultaneously since the
fluorsecence movie captures a volume that contains many neurons.

I The algorithm is fast enough to perform real-time spike inference:
I The current MATLAB implementation can process more than 80 datastreams in parallel

on a commercial laptop (2.5 GHz Intel Core i5 CPU).
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Jon Oñativia, Jose Antonio Urigüen and Pier Luigi Dragotti CSP group - Imperial College London 16/16


	Sampling Finite Rate of Innovation Signals
	Signals with Finite Rate of Innovation
	Sampling process

	Sequential algorithm
	Sampling an infinite sequence of Diracs
	The noisy scenario
	Application: neural activity detection


