## **Imperial College** A Deep Dictionary Model to Preserve and Disentangle Key Features in a Signal London



# INTRODUCTION

A deep dictionary model [1] consists of multiple layers of analysis dictionaries  $\{\Omega_i\}_{i=1}^{L-1}$  interlaced with corresponding soft-thresholding operations  $\{S_{\lambda_i}(\cdot)\}_{i=1}^{L-1}$  and a single synthesis dictionary **D**.



### Objective:

• Learning interpretable linear transforms and non-linear operations.

## **O**VERVIEW

### 1. Analysis Thresholding

Analysis thresholding partitions the input space.



The soft-thresholding thresholds can not all be too large. There should be at least k analysis-thresholding pairs for information preserving if the input data spans a k dimensional subspace of the output data.

### 2. Information Preserving and Clustering

In order to not lose essential information, each analysis dictionary  $\Omega_i$  is designed to consist of two sub-dictionaries  $\Omega_i = [\Omega_{Ii}, \Omega_{Ci}]$ . • The information preserving analysis dictionary (IPAD) and threshold

- pair  $(\Omega_{Ii}, \lambda_{Ii})$  aims at passing key information from its previous layer.
- The clustering analysis dictionary (CAD) and threshold pair  $(\Omega_{Ci}, \lambda_{Ci})$ is to facilitate the separation of key feature in the signal.

# Jun-Jie Huang and Pier Luigi Dragotti Imperial College London, UK

#### **IPAD** Learning 1.

 $\Omega_{Ii}$  is a sparsifying analysis dictionary which is learned using an extension of the geometric analysis operator learning method [1] [2] with the input training data of this layer.



a row atom and the input data can be well characterized by an i.i.d. zero-mean Laplacian distribution. The soft-threshold for  $\Omega_{Ii}$  is then defined as:

$$\boldsymbol{\lambda}_{\mathbf{I}i} = \rho \big[ \frac{1}{\sigma_1}, \dots, \frac{1}{\sigma_n} \big]$$

The optimization for  $\rho$  is formulated as:

$$\delta = \operatorname{argmin} || Y - GS_{\rho\lambda}(A)$$

where  $\boldsymbol{\lambda} = [1/\sigma_1, ..., 1/\sigma_m]^T$ ,  $\boldsymbol{G} = \boldsymbol{Y}\boldsymbol{Z}^T(\boldsymbol{Z}\boldsymbol{Z}^T)$  $\rho$  belongs to a discrete set of values.

#### CAD Learning 2.

- Model the input training data as a Mixture of Gaussians
- CAD atoms and their thresholds identify data that belong to different Gaussians

### **Problem formulation:**



The histogram of  $|\omega^T x|$  for the data from LEGMs (blue) and from a HEGM (orange).

# 3. Synthesis Dictionary Learning

With the learned analysis dictionaries, the synthesis dictionary **D** which is to map  $Z_{L-1}$  to the HR patches Y can be obtained using least squares:  $\boldsymbol{D} = \boldsymbol{Y} \boldsymbol{Z}_{L-1}^T (\boldsymbol{Z}_{L-1} \boldsymbol{Z}_{L-1}^T)$ 



$$(\sigma_m]^T$$

 $(\mathbf{\Omega}_{\mathrm{I}i} \mathbf{Z}_{i-1})||_F^2$  ,

)<sup>-1</sup>, 
$$\mathbf{Z} = S_{\rho\lambda}(\mathbf{\Omega}_{\mathbf{I}i}\mathbf{Z}_{i-1})$$
 and

$$(-1)^{-1}$$

# **NUMERICAL RESULTS**

The standard 91 training images [3] are applied for training and Set 14 [4] is used for evaluation. For image super-resolution, the up-scaling factor is set to 2. The LR and HR patch size is  $3 \times 3$  and  $6 \times 6$ , respectively. The input LR feature is the raw pixel values with removed mean.

The deep dictionary model is set to have L = 4 layers. The dictionary size for  $\Omega_1$ , ...,  $\Omega_3$  and D is set to 16  $\times$  9, 36  $\times$  16, 144  $\times$  36, and 36  $\times$  144, respectively.

For comparison, DNNs with the same structure are learned using the same training data. Let us denote DNN-R and DNN-S as the DNN with ReLU non-linearity and soft-thresholding non-linearity, respectively.

### Learned Dictionaries





Figure 1. Learned analysis dictionaries. Each atom is displayed as a 2D patch. The atoms within red box are clustering atoms.

### **Evaluation Results**

| Image     | Bicubic | DNN-R | DNN-S | DDM   |
|-----------|---------|-------|-------|-------|
| baboon    | 24.86   | 25.46 | 25.48 | 25.42 |
| barbara   | 27.88   | 28.41 | 28.41 | 28.43 |
| bridge    | 26.62   | 27.37 | 27.45 | 27.40 |
| costguard | 29.26   | 30.17 | 30.21 | 30.17 |
| comic     | 24.63   | 27.28 | 28.45 | 27.19 |
| face      | 34.73   | 35.33 | 35.42 | 35.37 |
| flowers   | 30.20   | 31.72 | 31.97 | 31.73 |
| foreman   | 35.21   | 37.36 | 38.11 | 37.56 |
| lenna     | 34.57   | 35.87 | 36.04 | 35.86 |
| man       | 29.16   | 30.16 | 30.29 | 30.15 |
| monarch   | 32.77   | 35.12 | 35.67 | 35.25 |
| pepper    | 34.98   | 36.23 | 36.50 | 36.28 |
| ppt3      | 24.66   | 28.31 | 28.47 | 28.12 |
| zebra     | 28.03   | 32.61 | 32.84 | 32.59 |
| Average   | 29.83   | 31.53 | 31.74 | 31.54 |

Table I. PSNR (dB) by different methods evaluated on Set 14.

[1] J.-J. Huang and P. L. Dragotti, "A deep dictionary model for image super-resolution," in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'18). [2] S. Hawe, M. Kleinsteuber, and K. Diepold, "Analysis operator learning and its application to image reconstruction," IEEE Transactions on Image Processing, vol. 22, no. 6, pp. 2138–2150, 2013. [3] J. Yang, J. Wright, T. S. Huang, and Y. Ma, "Image super-resolution via sparse representation," IEEE transactions on image processing, vol. 19, no. 11, pp. 2861–2873, 2010. [4] R. Zeyde, M. Elad, and M. Protter, "On single image scale-up using sparse-representations," in International conference on curves and surfaces. Springer, 2010, pp. 711–730.







# REFERENCES