Introduction and Motivation

» Can we overcome the limitation of a camera and, given the pixels,
obtain a sharper image with increased resolution’?
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» Proposed to combine the stablility of Example-based SISR and the
adaptability of Self-example based SISR:

Example-based SISR
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Input LR image Self-examples generated by MR image
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SRHRF+: Self-Example Enhanced Single Image Super-Resolution Using

Hierarchical Random Forests

Imperial College London, UK
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» Learning LR-HR patch correspondences with a hierarchical
random forests (SRHRF). -

» Regression model fusion applied in 3680

random forests at each stage leading to =:°% SR
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» Hierarchical structure further boosts 580 2 3
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Self-Example Random Forests

» EXxploit non-local self-similar patterns using random forests.
» SRHRF generates a high quality middle-resolution (MR) image.
» The MR image Is rescaled by a factor s4z (> 1/s) to construct an

Image pyramid pair {IH I} } for self-example learning.

« Faithful similar structure, espeorally for large upscaling factor.
« Sufficient number of training samples.
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@ The MR image can be rescaled by a
factor larger than 1/s to generate the
self-example image pyramid
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Numerical Results

» QObjective comparisons:

Bicubic A+[1] RFL[2] SRHDT[3] SRCNN[4] SelfEx [5] SRHRF SRHRF+

2 PSNR 33.66 36.54 36.54 36.92 36.66 36.49 37.19 37.29

Sets SSIM  0.9299 0.9544 0.9537 0.9546 0.9542 0.9537 0.9568 0.9574
d PSNR 28.42 30.28 30.14 - 30.48 30.31 30.74 30.82

SSIM  0.8104 0.8603 0.8548 - 0.8628 0.8619 0.8706 0.8710

2 PSNR 30.24 32.28 32.26 32.67 32.42 32.22 32.85 3291

Set]4 SSIM  0.8683 0.9056 0.9040 0.9069 0.9063 0.9034 0.9097 0.9104
A PSNR 26.00 27.32 27.24 - 27.49 27.40 27.69 27.74

8 SSIM  0.7027 0.7491 0.7451 - 0.7503 0.7518 0.7574 0.7582

2 PSNR 26.86 29.20 29.11 29.75 29.50 29.54 30.13 30.77

Urban100 SSIM  0.8395 0.8938 0.8904 0.8985 0.8946 0.8967 0.9038 0.9110
4 PSNR  23.14 24.32 24.19 - 24.52 24.79 24.70 25.10

SSIM  0.6577 0.7183 0.7096 - 0.7221 0.7374 0.7305 0.7422

Table 1: PSNR (dB) and SSIM of different SISR methods on Set5, Set14 and Urbanl00 with upscaling factor 2 and 4.

» Subjective comparisons:

SelfEx [5] (30. 86dB) SRHRF (30 70dB) SRHRF+ (31.69dB)
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SelfEx [5] (17. 71dB) SRHRF (17. 45dB) SRHRF+ (18.26dB)
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