

Introduction and Motivation

 \succ Can we overcome the limitation of a camera and, given the pixels, obtain a sharper image with increased resolution?

Proposed to combine the stability of Example-based SISR and the adaptability of **Self-example based SISR**:

SRHRF+: Self-Example Enhanced Single Image Super-Resolution Using **Hierarchical Random Forests**

Imperial College London, UK

SR via Hierarchical Random Forests

- Learning LR-HR patch correspondences with a hierarchical random forests (SRHRF).
- Regression model fusion applied in random forests at each stage leading to 8 times more decision trees in a forest.
- > Hierarchical structure further boosts performance.

Self-Example Random Forests

- \succ Exploit non-local self-similar patterns using random forests.
- \succ SRHRF generates a high quality middle-resolution (MR) image.
- \succ The MR image is rescaled by a factor s_d (> 1/s) to construct an image pyramid pair $\{\hat{I}_{H_s}^i, \hat{I}_{L_s}^i\}_{i=1}^{N_d}$ for self-example learning.
- Faithful similar structure, especially for large upscaling factor.
- Sufficient number of training samples.

Jun-Jie Huang, 👩 Tianrui Liu, 🛜 Pier Luigi Dragotti, and 🙋 Tania Stathaki

Numerical Results

> Objective comparisons:

			Bicubic	A+[1]	RFL [2]	SRHDT [3]	SRCNN [4]	SelfEx [5]	SRHRF	SRHRF+
Set5	×2 -	PSNR	33.66	36.54	36.54	36.92	36.66	36.49	37.19	37.29
		SSIM	0.9299	0.9544	0.9537	0.9546	0.9542	0.9537	0.9568	0.9574
	×4	PSNR	28.42	30.28	30.14	-	30.48	30.31	30.74	30.82
		SSIM	0.8104	0.8603	0.8548	-	0.8628	0.8619	0.8706	0.8710
Set14	×2	PSNR	30.24	32.28	32.26	32.67	32.42	32.22	32.85	32.91
		SSIM	0.8683	0.9056	0.9040	0.9069	0.9063	0.9034	0.9097	0.9104
	×4	PSNR	26.00	27.32	27.24	-	27.49	27.40	27.69	27.74
		SSIM	0.7027	0.7491	0.7451	-	0.7503	0.7518	0.7574	0.7582
Urban100	×2 ·	PSNR	26.86	29.20	29.11	29.75	29.50	29.54	30.13	30.77
		SSIM	0.8395	0.8938	0.8904	0.8985	0.8946	0.8967	0.9038	0.9110
	×4 ·	PSNR	23.14	24.32	24.19	-	24.52	24.79	24.70	25.10
		SSIM	0.6577	0.7183	0.7096	-	0.7221	0.7374	0.7305	0.7422

Table 1: PSNR (dB) and SSIM of different SISR methods on Set5, Set14 and Urban100 with upscaling factor 2 and 4.

\succ Subjective comparisons:

References

[1] R. Timofte, V. De Smet, and L. Van Gool. A+: Adjusted anchored neighborhood regression for fast super-resolution, ACCV, pages 111–126, 2014. [2] S. Schulter, C. Leistner, and H. Bischof. Fast and accurate image upscaling with super-resolution forests. CVPR, pages 3791–3799, 2015. [3] J.-J. Huang and W.-C. Siu. Learning hierarchical decision trees for single image super-resolution. IEEE Trans. on Circ. and Sys. Video Tech., 2016. [4] C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep convolutional network for image super-resolution. ECCV, pages 184–199, 2014. [5] J.-B. Huang, A. Singh, and N. Ahuja. Single image superresolution from transformed self-exemplars. CVPR, pages 5197–5206, 2015.

