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Abstract—This paper presents a procedure for the automatic
recognition of ground-based targets from high range resolution
(HRR) profile sequences that may be obtained from a synthetic
aperture radar (SAR) platform. The procedure incorporates an
adaptive target mask and uses a super-resolution algorithm to
identify the cross-range positions of target scattering centers.
These are used to generate a pseudo-image of the target whose
low-order discrete cosine transform coefficients form the rec-
ognizer feature vector. Within the recognizer, the states of a
hidden Markov model are used to represent the target orientation
and a Gaussian mixture model is used for the feature vector
distribution. In a closed-set identification experiment, the mis-
classification rate for ten MSTAR targets was 2.8%. The paper
also presents results from open-set experiments and investigates
the effect on recognizer performance of variations in feature
vector dimension, azimuth aperture and target variants.

Index Terms—Automatic Target Recognition, Synthetic Aper-
ture Radar, Hidden Markov Models, Super-Resolution, High
Range Resolution

I. INTRODUCTION

This paper addresses the automatic recognition of ground-
based targets from high range resolution (HRR) profile se-
quences such as those that may be obtained from a synthetic
aperture radar (SAR) platform. Our proposed procedure incor-
porates several novel features that result in high performance.

In conventional SAR processing [2], the target image is
obtained by taking the discrete Fourier transform of a sequence
of HRR profiles uniformly spaced in cross-range. Fig. 1(a),
taken from the MSTAR database [32], shows a sequence of
HRR profiles from a T72 tank and Fig. 1(b) shows the resultant
image obtained by taking the Fourier transform in the horizon-
tal, or cross-range, direction. At sufficiently short wavelengths,
the radar return from a target may be represented as arising
from a set of discrete scattering centers [19], [31] each of
which corresponds to a single cross-range complex spectral
component in the HRR profile sequence. In the recognition
algorithm described below, we identify these spectral com-
ponents using a super-resolution spectral analysis technique,
the MUSIC (multiple signal classification) algorithm [35]. The
use of a super-resolution peak-picking algorithm to identify
spectral components in the HRR sequence provides inherent
resistance to the low-level spectral noise arising from radar
clutter. We further improve the recognition of compact targets
by discarding any scattering centers that lie outside an adaptive
target mask, shown in Fig. 1(b) as the inner rectangle, which
we determine from the SAR image.

This work was supported by the UK Ministry of Defence through work
funded by the Defence Technology Center for Data and Information Fusion.
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Fig. 1. (a) A sequence of 100 HRR profiles from a T72 tank in the MSTAR
database and (b) the resultant SAR image. The solid lines in the SAR image
show the initial processing region and the broken horizontal lines show the
smaller adaptive mask. The vertical lines in the HRR profile image shows the
limit of the HRR sequence used for extraction of a single feature vector.

Rather than performing recognition directly on the list of
extracted target scattering centers, we instead use them to
create a pseudo-image of the target and use the low-order
discrete cosine transform coefficients of this pseudo-image
as our feature vector. This indirect procedure circumvents
problems arising from the ordering or incompleteness of
the scattering center list. An additional benefit is that the
cross-range resolution of the pseudo-image can be chosen
independently of the azimuth aperture of the HRR profile
sequence. Since any target motion during SAR data acquisition
will result in image blurring [30], basing each feature vector on
a reduced number of HRR profiles will reduce the sensitivity
to target motion. The solid vertical lines in Fig. 1(a) indicate
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the sequence of 2P + 1 profiles used to generate a single
feature vector.

Following a literature survey in Sec. II we present the
proposed feature extraction method in Sec. III. The recognition
architecture is described in Sec. IV and the experimental
results are presented in Sec. V. The method is tested using
the MSTAR database [32] and results are shown for closed-
set identification, varying feature vector size, different number
of hidden Markov Model (HMM) states, robustness of target
variants, feature vector aspect aperture and open-set identifi-
cation. The paper concludes in Sec. VI with a summary and
conclusions. An earlier version of the algorithm was described
in [7] and [8] which also investigated the use of shadow
features for recognition.

II. FEATURES FOR AUTOMATIC TARGET RECOGNITION

The reliable recognition of ground-based targets using SAR
data has been the subject of research for many years. The most
straightforward approach is to compare the observed SAR
image with a set of target templates in the image domain using
either real or complex pixel intensities. The comparison may
be based either on Euclidean distance [27] or on a likelihood
measure derived from an assumed stochastic model [11], [29].
In some cases images are transformed prior to the comparison
in order to make clutter distributions more Gaussian [12],
remove inter-pixel correlations [39] or to obtain features that
are invariant under rotations and/or translations [5], [20], [24].

An alternative approach is to model the radar return as ema-
nating from a finite set of discrete scattering centers [19], [31].
Most commonly, these are treated as point scatterers but some
authors have used more sophisticated models [41], [14]. Iden-
tifying point scattering centers is most conveniently performed
in the frequency domain using super-resolution spectral anal-
ysis. Early workers generally used Prony’s method [16], [3]
but more recently, the RELAX [21] or MUSIC [15], [28]
algorithms have been preferred. An extensive survey of super-
resolution algorithms for SAR imaging is included in [9].

Advantages of the scattering center approach include im-
proved noise immunity, since only the peaks in the spectral
domain are modeled, and the opportunity to use compact
target models consisting only of a list of scattering centers. A
difficulty with the approach, however, is the need to compare
two unordered scattering center lists that may each contain
omissions or insertions. Methods of comparing such lists are
discussed in [1], [6], [36].

The recognition of moving targets from SAR images is
especially difficult since target motion during acquisition will
result in image blurring. In response, a number of workers have
proposed forming recognition features from individual HRR
profiles [22], [23]. The approach is robust to target motion but,
on static targets, performance is much worse than for SAR-
based approaches because an individual HRR profile gives no
information about the cross-range structure of the target.

Radar signatures can vary greatly with small changes in
target orientation (also known as aspect or pose). Template-
matching recognition systems generally cope with this by rep-
resenting azimuth intervals with templates covering between

1◦ and 30◦ in azimuth [17]. In situations where a sequence of
observations is available, such as with HRR-based recognizers,
it is possible to impose a smoothly changing target orientation
by modeling it with a Hidden Markov Model (HMM) [34],
[22].

III. TARGET SCATTERING CENTER FEATURES

In this section we present the feature extraction process
which consists of four stages: adaptive target mask formation,
scattering center extraction, pseudo-image construction and
feature vector calculation.

A. Definitions

The features that we use for target recognition are derived
from the sequence of complex-valued HRR profiles, x(n, k),
which may be obtained from a complex SAR image chip
by the procedure described in [22]. The profile index is
denoted by n ∈ {1, . . . , N} and the range-bin index by
k ∈ {1, . . . ,K}. Fig. 1(a) shows a typical plot of |x(n, k)| and
Fig. 1(b) shows the SAR image that results from windowing
x(n, k) and taking the DFT with respect to n. We do not
normally use all N HRR profiles to derive a single feature
vector. Instead we divide them into N − 2P overlapping sets
of 2P + 1 profiles and determine a feature vector from each
set. The feature vector centered on profile n is thus based on
the profile subset, xn(p, k), defined by

xn(p, k) = x(n+p, k) where p ∈ {−P, . . . , P}. (1)

We will frequently omit the subscript n when discussing the
processing associated with an individual feature vector. In
Fig. 1(a), the vertical lines indicate the range of profiles used
to derive a single feature vector when P = 25. Selecting a
small value for P will reduce the impact of target motion
and azimuth-dependent signature variation but will result in
increased coefficient noise; the effect of P on recognition
performance is evaluated in Sec. V-F.

B. Adaptive Mask Identification

We assume that the target recognition is carried out after
target detection. If the target detection procedure does not give
an accurate location of the target center or the target scattering
center region then an adaptive mask identification is necessary.
This is also the case for the MSTAR database. The solid lines
shown in the SAR image of Fig. 1(b) define the initial target
region-of-interest and it can be seen that the target lies within
this region but is offset slightly to the left. Using the procedure
described below, we determine the rectangular target mask that
is shown on the image using dashed lines. It can be seen that
this mask fits snugly around the target and includes all its true
scattering centers. This target mask is used to eliminate any
false scattering centers that may be identified from the clutter
region. The positions of the extracted target scattering centers
are compared with the mask and any centers that lie outside
the mask are assumed to arise from clutter and are discarded.

To identify the target mask shown with dashed lines in
Fig. 1(b), we first form an image from the HRR profiles. As
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described above, the number of profiles used to form each
feature vector is 2P +1 where P is a system parameter. These
2P +1 profiles are used to form an image of the target whose
central portion is shown in Fig. 2(a). To determine the target
mask, we segment the pixels of this image into target and
background classes using a maximum likelihood criterion and
we then define the target mask to be the smallest bounding
rectangle that encloses all pixels assigned to the target class.

To classify the pixels into a target class, ξ1, and a back-
ground class, ξ2, we assume that within either of these classes,
the complex valued pixels are taken from a complex Gaussian
distribution with zero mean and variance σ2

κ in both real and
imaginary parts. Thus the log-likelihood of the complex-valued
pixel x(i, j), conditioned on the class ξκ (κ = 1, 2), is given
by

`(x(i, j)|ξκ) = log
(
N (x<(i, j); 0, σ2

κ)
)

+ log
(
N (x=(i, j); 0, σ2

κ)
)

= − log(2πσ2
κ)− |x(i, j)|2

2σ2
κ

(2)

where N (x;µ, σ2
κ) is a Gaussian distribution with mean µ

and variance σ2
κ and x<(i, j) and x=(i, j) are the real and

imaginary parts respectively of the pixel x(i, j). We initialize
σ2

1 by computing the variance of a small window in the middle
of the target region and similarly we initialize σ2

2 from pixels
near the edge.

In the following expectation maximization [10] iterative
procedure both the partitioning of the image pixels and the two
variances, σ2

κ, are determined. We use (2) for the expectation
step. For the maximization step, we classify each image pixel
and recalculate the variances from that classification. The
classification is based on the smoothed log-likelihood

κ(i, j) = argmax
κ

(w(i, j) ∗ `(x(i, j)|ξκ)) (3)

where ∗ denotes 2-dimensional convolution and w(i, j) is
the impulse response of a smoothing filter which introduces
correlation into the classification of adjacent pixels. The choice
of w(i, j) is a compromise between the elimination of isolated
strong responses from the clutter region and the preservation
of small regions that truly belong to the target. In the results
described below, we have used a uniform 3 × 3 window for
the smoothing filter since it gives good correlation between
neighbouring pixels but maintains spatial sharpness for iso-
lated target pixels.

Using the partition defined by (3), we recalculate the class
variances, σ2

κ, and re-evaluate κ(i, j) for 10 iterations or until
the total expectation ∑

i,j

`
(
x(i, j)|ξκ(i,j)

)
(4)

ceases to increase.
Finally, we introduce class probabilities pκ satisfying p1 +

p2 = 1 and choose them so that the partition

κ′(i, j) = argmax
κ′

(
w(i, j) ∗ `(x(i, j)|ξκ′(i,j)) + log(pκ′)

)
(5)
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Fig. 2. (a) SAR image formed using 2P +1 = 51 HRR profiles and (b) the
pixels in the “target” class with the final target mask as a bounding rectangle.

maximizes the smoothed log likelihood summed over all
pixels.

Fig. 2(b) shows the resultant partitioning of the pixels
together with the bounding rectangle that is used as the final
target mask. It is clear that for this image the limits of the
target have been identified correctly.

C. Forming the Feature Vector

The first step in forming the feature vector is to identify
the target scattering centers within each range bin by means
of the super-resolution MUSIC algorithm [35]. It works on
the assumption that the signal comprises of a fixed number
of exponentials in the presence of noise and the algorithm
provides an estimate of the frequency location and magnitude
of these exponentials using eigenvalue decomposition of the
signal’s autocorrelation matrix. The signal model is given by

x(p, k) =
Mk∑

m=1

am,kejωm,kp + v(p, k) (6)

where k is the (constant) range-bin index, p ∈ {−P, . . . , P}
is the HRR profile index (the signal index), Mk is the number
of extracted scattering centers (exponentials) in the range
bin, am,k is the radar cross section (magnitude) of the mth

scattering center of the kth range bin, ωm,k corresponds to
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its azimuth (frequency) location and v(p, k) is assumed to be
white noise. The use of a super-resolution algorithm only in
azimuth reduces the computational complexity considerably
and avoids the need to modify the normal SAR data processing
stages.

Having identified the scattering centers in each range bin,
we now use them to construct a pseudo-image of the target. For
each range bin, k, we transform the list of extracted scattering
centers into one row of the pseudo-image by low-pass filtering
and sampling a signal in which each of the Mk scattering
centers is represented by an impulse according to

y(l, k) =
Mk∑

m=1

|am,k|2 h(l − θωm,k) (7)

where the low-pass filter response is given by

h(l) =
sin(πl)

πl
. (8)

The cross-range index is denoted by l and the scaling constant
θ given by θ = λ (4π∆φ∆r)−1 where λ is the wavelength, ∆φ
is the azimuth increment of the HRR profiles and where ∆r
is chosen to match the cross-range resolution of the pseudo-
image. The cross-range resolution is independent both of P
and of the original azimuth aperture and may be conveniently
chosen to match the range resolution.

Fig. 3 shows the reconstructed image both (a) with and (b)
without the use of the adaptive mask. Two of the pixels that
lie outside the mask are explicitly identified in Fig. 3(b) and
it can be seen that the corresponding impulses are missing
in Fig. 3(a). Also visible in this figure is the effect of the
cross range low-pass filter impulse response (8). The smearing
introduced by the filter is exaggerated by the log-intensity
scale of the figure.

Unfortunately, when the target mask is applied, it is possible
for some range bins to contain no valid scattering centers at
all. These “black lines” can occur in any of the range bins,
but most commonly arise in those range bins where there
is no target. The pixels in that range bin will be identically
zero whenever this happens and, because of the log operation
in (9) below, these pixels will dominate the feature vector
resulting in poor performance. To avoid this situation, we
detect any range bin, k, that is empty of scattering centers and,
if necessary, increase the sensitivity so that at least Mk = 1 (6)
scattering center is found that lies within the cross-range limits
of the target mask. The scattering centers that are introduced
are always of very low magnitude and we found that this
approach gave better recognition results than clipping the pixel
intensities to a lower bound.

Fig. 3(a) shows the reconstructed target image before this
black line elimination procedure has been applied and it can be
seen that there are black lines visible at the top and bottom of
the image. In Fig. 3(c) additional scattering centers have been
allowed and each range bin now contains at least one scattering
center. The added scattering centers are by definition of low
intensity.

Following the image reconstruction process, the target fea-
ture vector is formed by taking the low frequency coefficients

(a)

(b)

(c)

Fig. 3. Reconstructed target images (a) with and (b) without the use of
a target mask. Two of the excluded scattering centers have been explicitly
identified in (b). Image (c) shows the reconstructed target image with an
added scattering centers in black lines.

of the 2-dimensional discrete cosine transform (DCT) of the
log of the pseudo-image yn(l, k),

fn(η, ζ) = (9)
K∑

k=0

L∑
l=0

αkβl log (yn(l, k)) cos(π(2η+1)k
2K ) cos(π(2ζ+1)l

2L ),

where αk = 1/
√

2 and βl = 1/
√

2 if k = 0 or l = 0,
respectively, but αk = βl = 1 otherwise. The low-order
coefficients of fn(η, ξ) are retained and used as a feature
vector uM (n).

IV. RECOGNITION ARCHITECTURE

As noted in Sec. III-A, a sequence of N HRR profiles
will result in N − 2P feature vectors which represent the
radar return from a sequence of viewpoints that necessarily
changes smoothly. In order to impose this constraint in the
recognizer, we use a Hidden Markov Model (HMM) whose
states represent the target orientation. Each of the S states
in the HMM corresponds to a contiguous range of target



5

orientations and hence a distinct target signature, since the
radar signature varies with orientation. Two successive feature
vectors may only correspond either to the same state or
to adjacent states. The parameters of the HMM specify a
statistical description of the target signature within each state
and also a set of inter-state transition probabilities. The number
of HMM states, S, must be chosen to be large enough to model
adequately the variation of target signature with orientation but
small enough to ensure that sufficient training observations
are available for each state. The angular resolution that is
required for the HMM may be estimated from the ratio of the
radar range resolution to the maximum target dimension. If,
for example, the range resolution is 1 m and the target extends
to a maximum of 10 m from its center, we would require an
angular resolution of about 6◦ to ensure that a scattering center
occupies only one range bin in any state. For ground-based or
sea-based targets whose rotation is restricted to a single axis,
a resolution of 6◦ would thus require S = 60 states in the
HMM.

To define the initial model parameters, we assume that
all the HMM states correspond to equal aspect ranges of
360◦S−1. For each HMM state we train a Gaussian mixture
model (GMM) using all available training data from the
corresponding range of aspects of a particular target. The
transition probabilities are initialized to the ratio of the azimuth
increment between successive feature vectors and the aspect
range of the states. Using these initial values, the HMM is
then trained using Baum-Welch training [10], [40] until the
HMM parameters converge.

The azimuth interval represented by an individual state can
change substantially during the training process according
to how rapidly the feature vector varies in azimuth. This
is demonstrated in Fig. 4(a) which shows the smoothed log
likelihood of test feature vectors as a function of azimuth
angle for each of three consecutive model states after training
is complete. The three model states were initially trained with
data from consecutive 6◦ azimuth intervals in the region of
60◦. We see from Fig. 4(a) that the log likelihood does indeed
peak at a target orientation of 60◦ and that there is a second
peak at around 250◦ due to target symmetry. An enlarged view
of the primary peak is shown in Fig. 4(b) which shows that
each state has retained clearly defined boundaries. State 10 is
however much broader than its initial width of 6◦ and now
covers about 10◦, state 11 covers a relatively narrow angular
extent about 2◦ and state 12 becomes broader again. The mean
target orientation corresponding to the center of a particular
state can be determined, if required, by taking the centroid of
the corresponding primary peak in Fig. 4(a).

V. EXPERIMENTAL EVALUATION

A. Database and Evaluation Methodology

The MSTAR data set was collected by the Sandia National
Laboratory (SNL) SAR sensor platform [32]. The collection
was jointly sponsored by US Defence Advanced Research
Projects Agency DARPA and Air Force Research Laboratory
as part of the Moving and Stationary Target Acquisition
and Recognition (MSTAR) program. SNL used an X-band
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Fig. 4. The log-likelihood of a target for state S = 10, S = 11, and S = 12
shown (a) from 0◦ to 360◦ and (b) from 25◦ to 100◦.

HRR 
profiles

Fig. 5. Procedure to convert SAR images to HRR profiles. The operations
are in cross-range.

SAR sensor in 0.3 m resolution spotlight mode. The MSTAR
public-release dataset consists of 10 target classes whose
identification codes are listed in Table 1. The dataset contains
only a single example for most of the target classes but for
two of the classes, T72 and BMP2, it includes multiple variants
which differ in such details as antenna position or the presence
of fuel drums [32]. These target variants are distinguished
by suffices in Table III. Fig. 1 shows (a) a sequence of
HRR profiles and (b) a SAR image of the tank T72 at a
depression angle of 17◦ and azimuth angle of 91.7◦. The SAR
image is a 128× 128 pixel array representing a scene that is
approximately 38× 38 m2 with image resolution of 0.3 m in
both range (vertical) and cross range (horizontal) direction.

The final few stages of the image formation process must
be inverted to obtain the HRR profiles that are needed to form
the feature vector sequence. An image can be converted into
a sequence of about 100 aspect-dependent HRR profiles with
the procedure summarized in Fig. 5 [22]. The angular spacing
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of the HRR profiles is approximately 0.03◦ so a single image
covers 100× 0.03◦ = 3◦ in azimuth aperture.

Each image from the MSTAR database was converted into
a sequence of HRR profiles. The training set includes a total
of 2747 SAR images at 17◦ depression angle and is used to
train ten target models, with approximately 270 sequences per
target. For testing, we use a separate set of 2474 SAR images
at 15◦ depression angle, with about 250 for each target. We
do not apply any compensation for the slight mismatch in
depression angle.

Each target feature vector contains 54 elements that are
chosen from the low order coefficients of the DCT image that
satisfy 0 < η+ζ ≤ 10 in (9). For P = 25, each feature vector
is formed from a consecutive sequence of 51 HRR profiles
corresponding to an aperture of 1.5◦. For most test sequences,
the number of HRR profiles is N = 100 which corresponds to
an azimuth aperture of 3◦ and which results in N − 2P = 50
feature vectors. The maximum number of scattering centers,
M , is fixed at 10 for each range bin. The HMM contains
S = 60 states which, after training, correspond to different
target orientation ranges. Within each state, feature vector
distributions are represented by diagonal-covariance Gaussian
mixtures. Model training and recognition are performed using
the HTK recognition software [40].

We present the results of our evaluations for both closed-
set and open-set identification experiments. For the closed-set
identification experiments, we take each observation sequence,
use the HMM to determine the model with the highest
likelihood and characterize the performance in the form of
test set misclassification rate (MCR). For the open-set iden-
tification experiments, we classify an observation sequence
as an identified target if its log-likelihood with any target
model exceeds a given threshold. By varying the threshold,
we demonstrate the performance through the use of receiver
operating characteristic (ROC) curves [33].

We note that our recognizer also implicitly determines
the orientation of the target. The HMM state with highest
probability can be obtained directly from the recognizer. The
mapping between states and aspect angles is not uniform but
can be obtained during training by determining, for each state,
the centroid of the principal peak in the graph shown in
Fig. 4(a).

B. Closed-set experiments

In the closed-set experiments, we compare the performance
of different feature sets, demonstrate how varying the feature
vector dimension, the HMM parameters and the feature vector
aspect aperture affect the recognition performance and also
explore how robust the approach is to target variants.

We assess the choice of the MUSIC algorithm for deter-
mining the cross range position of the scattering centers by
comparing its identification performance with that obtained
when using the discrete Fourier transform (DFT) (uF ) or
autoregressive modeling (uA) for spectral estimation in cross
range after the adaptive mask operation. We denote the features
derived using the MUSIC algorithm as uM . The derivation of
uF and uA is explained below and illustrated in Fig. 6.

Feature 
vector 

uF

Feature 
vector 

uA

Fig. 6. Fourier transform and AR modelling-based feature extraction
procedure.

TABLE I
MISCLASSIFICATION RATE (%) FOR CLOSED-SET TARGET

IDENTIFICATION. THE TABLE COMPARES THE PERFORMANCE OF THREE
TARGET FEATURE SETS.

Target uF uA uM

BMP2 5.2 4.1 0.5
BRDM2 12.4 10.9 2.6
BTR60 4.2 3.6 0.5
BTR70 2.6 3.1 0.5

D7 1.5 1.5 5.8
T62 9.6 10.3 7.7
T72 0.0 0.5 1.5

ZIL131 3.7 1.8 4.4
ZSU234 3.7 2.9 1.1

2S1 18.7 15.7 1.5
MCR 6.5 5.8 2.8

To obtain uF , we window the HRR profile sequence in cross
range using a Taylor window wT (p) [2] and take the DFT in
each range bin lying within the target mask. The resultant
image is therefore defined as

yF (l, k) =|
P∑

p=−P

wT (p)x(p, k)e−j 2π
2P+1 pl | . (10)

We replace y(l, k) with yF (l, k) in (9) to obtain the low order
coefficients uF .

To obtain uA, we apply autoregressive (AR) spectral esti-
mation using the model

x(p, k) = −
M∑

m=1

am(k)x(p−m, k) + v(p, k) (11)

where am(r) are complex AR coefficients and v(p, k) is a
white noise input of zero mean and unit variance. The AR
coefficients are estimated through the covariance method [18],
because it does not need windowing and, like MUSIC, pro-
vides super-resolution spectral estimates. We form a pseudo-
image by converting the AR coefficients am(r)M

m=1 to a
spectrum in the p direction

yA(p, k) =
1

|
∑M

m=1 am(k)e−j2πmp/M |
. (12)

which convert to a feature vector, uA, using (9).
Table I shows the misclassification rate (%) for a closed-set

identification tasks using 10 different targets for each of the
three feature sets. The table presents the target misclassifica-
tion rate for each target and the overall test set misclassification
rate (MCR). The MCR differs slightly from the average target
MCR because the number of test sequences is not the same
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TABLE II
CONFUSION MATRIX FOR THE CLOSED-SET TARGET IDENTIFICATION USING THE MUSIC DERIVED TARGET FEATURE SET (uM). THE TABLE ALSO

SHOWS THE INDIVIDUAL TARGET MISCLASSIFICATION RATE (MCR), TARGET MODEL MISTRUST RATE (MTR) AND THE TEST-SET MISCLASSIFICATION
RATE OF 2.8%.

Recognized as
Targets BMP2 BRDM2 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU234 2S1 MCR [%]
BMP2 193 0 1 0 0 0 0 0 0 0 0.5
BRDM2 0 189 1 2 2 0 0 0 0 0 2.6
BTR60 0 0 193 0 1 0 0 0 0 0 0.5
BTR70 0 1 0 191 0 0 0 0 0 0 0.5
D7 0 0 2 1 258 5 0 7 0 1 5.8
T62 1 4 3 7 0 253 0 1 4 1 7.7
T72 0 1 0 1 0 0 270 1 1 0 1.5
ZIL131 2 1 1 1 3 1 0 261 3 0 4.4
ZSU234 0 0 0 0 1 0 0 2 271 0 1.1
2S1 0 0 0 0 0 0 2 2 0 270 1.5
MTR [%] 1.5 3.6 4.0 5.9 2.6 2.3 0.7 4.7 2.9 0.7 2.8

for each target. We can see that the MUSIC derived feature
set (uM) performs better than the other two methods (uF and
uA) with an MCR of 2.8%. It is also substantially lower than
the 4.2% obtained from the target features without applying
the adaptive mask [8].

Table II shows the confusion matrix for the target identi-
fication experiment using the MUSIC derived target feature
set (uM). Each row shows how many test sequences from
an individual targets were classified. The last column shows
each target’s misclassification rate and the last row shows
the mistrust rate of each target model. For example, 1.5% of
T72 test sequences were wrongly classified and of all test
sequences classified as T72 only 0.7% were not that target.

The error rate of 2.8% can be compared with other re-
sults using the MSTAR database. Comparison can be made
between the error rate of 4.1% presented in the work of
Novak et. al. which used a super-resolution approach on the
SAR images with a 10-target identification task [26]. Another
super-resolution approach was presented by Cetin et. al. who
achieved a 0.85% error rate on a 3-target identification task [4].
An average error rate of 8.6% was achieved by Nilubol and
Mersereau using Radon transformed SAR images as inputs
to HMMs for a 7-target identification task [24]. The best
performance achieved when using HRR profiles directly were
17.6% [38] and 17.8% [22]. We note however that since these
techniques rely on individual HRR profiles, their methods
will be considerably less sensitive to target motion than our
technique unless the value of P is made very small.

C. Influence of HMM structure

Increasing the number of HMM states (S) and Gaussian
mixtures (w) results in a richer model that is better able to
model the target signature. However, if insufficient training
data is used, a richer model is likely to suffer from overtraining
and will fail to generalize well to unseen test data. Fig. 7
shows the test set misclassification rate for the 10-target
closed-set identification experiment using different number
of HMM states, S, and Gaussian mixture components, w.
When w = 1 the best performance is achieved with S = 60
and degrades for larger or smaller S due to overtraining or
undermodeling respectively. For the case w = 2, the optimum
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Fig. 7. MCR with S =120, 60, 40 and 30; w =1,2 and 3.

performance is slightly improved and occurs for S = 40.
When w = 3, overtraining is much more evident and the
optimum performance occurs for S ≤ 30. The benefit of using
additional mixtures with the training data available in MSTAR
is very small and in the remaining experiments we retrained
our initial configuration of S = 60 and w = 1.

D. Influence of the feature vector dimension

To investigate the influence of feature vector dimension, we
constructed the feature vector by choosing the coefficients,
fn(η, ζ) from (9) with the highest between-class to within-
class covariance matrix trace ratio. Here we define a “class” to
mean a single Gaussian mixture component in a particular state
of a particular target model [13, Chapter 3]. The between-class
covariance matrix is the covariance matrix of the class mean
vectors and the within-class covariance matrix is an average
of the class covariances. A coefficient fn(η, ζ) with a high
ratio can therefore discriminate better between the classes.

Fig. 8 plots the test set misclassification rate of the 10-
target closed-set identification experiment with the feature
vector dimension varying from 20 to 100. It can be seen that
feature sizes below 40 show an increased error rate because
of undermodeling and that feature sizes above 90 show some
signs of overtraining but that within these limits the size is not
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Fig. 8. MCR using different number of coefficients to form the feature
vector.

critical. In the remaining experiments we therefore retained
our original feature vector comprising a predefined set of 54
low-order DCT coefficients.

E. Robustness to target variants

The MSTAR public release dataset includes 11 variants of
the T72 tank and 3 variants of the BMP2 vehicle, manifested
by, for example, different configurations of fuel tanks and an-
tennae [32], [22]. To evaluate the robustness of the recognizer
to these variations, we train models on two BMP2 variants
and four T72 variants as well as the eight other targets, and
conduct recognition tests on all 22 targets in the database.
If the recognizer identifies an incorrect variant of the correct
tank model, it is counted as an error in the “Strict” column of
Table III but as a correct identification in the “Class” column.
The misclassification rate (MCR) is given separately for the
training-set targets and the unseen targets in rows 15 and 24
respectively.

The average class error rate for targets included in the
training set is 2.0% using test sequences covering 3◦ in
azimuth, as shown in the first pair of columns of Table III.
In most cases the system was able to identify the precise
variant of a particular target correctly. For the unseen variants
listed in the lower section of the table, the average class error
rate is 6.7% with over 70% of the errors arising from T72-
a64, T72-s7 and T72-812 (italic in table). The difference in
performance between the T72 variants can be explained by
their configurations as detailed in [37] which also defines
which variants are seen and unseen. The variants a62, a63, a64
and s7 are similarly configured but a62 is the only example
in the training set of its kind. This could explain the poor
performance of s7. The 812 variant includes structures not
found on any of the other vehicles [37] and this may explain
why it is not recognized as well as the others.

To evaluate the benefits of extended target observation, we
combine the results of two consecutive sequences covering
an overall azimuth aperture of 6◦ by adding their likelihoods.
We see in the second pair of columns that the classification

TABLE III
RECOGNITION ERROR RATE (%) FOR CLOSED-SET MSTAR TARGET

IDENTIFICATION. THE TABLE DEMONSTRATES THE ROBUSTNESS OF THE
PROPOSED APPROACH TO TARGET VARIANTS. SEEN VARIANTS ARE IN THE

UPPER PART OF THE TABLE AND UNSEEN IN THE LOWER. MAJORITY OF
ERRORS FOR UNSEEN VARIANTS ARISE FROM THREE TARGETS MARKED IN

ITALICS.

3◦ aperture 6◦ aperture
Target Strict Class Strict Class Class from [22]
BMP2-c21 16.0 1.5 9.8 0.0 6.1
BMP2-9563 15.5 1.6 11.4 0.5 7.0
BRDM2 7.3 - 1.5 - 8.6
BTR70 0.0 - 0.0 - 14.1
BTR60 2.6 - 1.0 - 13.7
D7 1.1 - 0.0 - 4.8
T62 5.1 - 1.1 - 9.0
T72-a04 11.7 1.1 4.7 0.4 2.9
T72-a10 10.3 0.4 4.1 0.0 3.4
T72-a62 12.8 1.1 5.8 0.0 3.9
T72-132 2.1 0.0 0.0 0.0 7.6
ZIL131 0.7 - 0.0 - 10.3
ZSU234 1.5 - 0.0 - 8.5
2S1 4.0 - 2.6 - 4.7
MCR 6.5 2.0 3.0 0.5 7.0
BMP2-9566 - 6.6 - 3.6 37.5
T72-a05 - 1.5 - 0.0 14.5
T72-a07 - 3.3 - 0.7 16.1
T72-a32 - 4.4 - 2.6 22.9
T72-a63 - 0.0 - 0.0 15.9
T72-a64 - 12.8 - 7.7 31.7
T72-s7 - 13.8 - 10.6 17.1
T72-812 - 10.9 - 9.3 29.6
MCR - 6.7 - 4.3 23.2

performance improves considerably. The average class error
rates for seen and unseen targets decrease to 0.5% and 4.3%
respectively.

The final column of Table III shows the “Class” error rates
obtained by Liao et. al. [22] for the same 6◦ azimuth aperture
task but basing recognition on individual HRR profiles with
0.1◦ azimuthal sampling. The increased error rates in this
approach represent the price paid for insensitivity to target-
motion. Another study by Novak et. al. [25] obtained an
average class error rate of 4.7% using SAR images for a 6-
target identification task against 10 models.

F. Influence of feature vector azimuth aperture

We now investigate the sensitivity of the recognition tech-
nique to the number of HRR profiles, 2P + 1, used to derive
each feature vector. In the experiments described above, P was
set to 25 corresponding to an azimuth aperture of 1.5◦. We
expect that smaller values of P will make the feature set less
sensitive to target motion but will give worse performance for
static targets due to increased coefficient noise. It is therefore
of interest to see how performance varies with the choice of
P . The maximum number of scattering centers, M , is chosen
to be b(2P + 1)/5c for each range bin. The total number of
HRR profiles, N , used for each test remains constant and so
the number of extracted feature vectors, N − 2P increases as
P is reduced. Fig. 9 shows how varying P affects the test set
misclassification rate of the closed-set 10-target identification
performance. We see that reducing P to 15 has very little effect
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vectors.

on performance and that reducing it still further to 5 results
in only a modest increase in error rate. We therefore expect
that our recognizer will perform well for targets moving at
moderate speeds.

G. Open-set experiments

The experiments represented above are based on closed-set
identification where the observation is assumed to be of one of
the known targets. It is also important that a recognizer should
be able to reject a confuser. As in the closed-set experiments,
a test sequence is compared against each of the 10 target
models to give a list of likelihoods but the observed sequence
will be rejected as a non-target if the highest likelihood falls
below a predefined threshold. Otherwise, the observation is
accepted as a genuine target, whose identity is that of the target
model having the highest likelihood. This procedure gives rise
to three performance measures that we present below: (1)
probability of detection which is the number of targets detected
out of number of targets tested; (2) probability of false alarm
which is the number of confusers detected out of the number
of confusers tested and (3) probability of correct classification
which is the number of targets correctly classified out of the
number of targets tested. The threshold can be set to achieve
a given trade-off between these measures.

The test and training sets followed the recommendations
of [33] with three “known” target types and two “confuser”
targets chosen for their similarity to the known targets. The
confuser vehicles were T62 and BTR60.

Fig. 10 shows the probability of detection as a function
of the probability of false alarm controlled by a particular
threshold for each of the two vehicle types. For both T72
and BMP2, probability of detection approaches 100% for a
probability of false alarm of 50%. This result can be compared
with results based on the same task which are reported in the
literature. Using approaches based on SAR images and with
a probability of false alarm of 50%, approximately 70% and
80% targets are detected in [32] and [42] respectively.

Fig. 11(a) and (b) plot the probability of correct classifi-
cation as a function of the probability of false alarm for the
two vehicle types. At a probability of false alarm of 50%,
the overall probability of correct classification is around 75%
with the BMP vehicles achieving slightly better performance.
These values are higher than those in [32] and comparable with
those in [42]. However, their technique is based on complete
SAR images while our technique uses a small number of HRR
profiles for each feature vector.

VI. SUMMARY AND CONCLUSIONS

This paper has presented a new feature extraction technique
for automatic target recognition based on a sequence of HRR
profiles, which achieves excellent performance on the MSTAR
databases. The technique characterizes the target scattering
centers in radar returns. First, a maximum likelihood adaptive
mask is used to exclude the spurious scattering centers arising
from the clutter adjacent to the target. Target scattering centers
are then determined using the super-resolution MUSIC algo-
rithm and the feature vector is constructed from the scattering
centers by converting the continuous displacements to discrete
values, taking the 2-dimensional DCT of the target image and
retaining only low-order coefficients. Although in this work,
we base recognition only on the extracted target scattering
centers, we note that for isolated targets on level ground,
the error rate can be reduced still further by the inclusion of
features that characterize the shape of the radar shadow that
is visible above the target in Fig. 1(a) [8].

The method was tested for various different automatic target
recognition configurations. In the closed-set experiments, a
test set misclassification rate of 2.8% is achieved on a 10-
target identification task. We assessed how robust the method
is to the choice of feature vector size and showed how the
performance is affected by the number of HMM states and
the number of Gaussian mixture components. The robust-
ness to target variants was also tested. Unseen variants were
misclassified 6.7% of the time where we found that most
of the errors arose from three vehicles whose configuration
was significantly different to the seen variants (e.g. extra fuel
tank and antenna position). In the open-set target identification
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Fig. 10. The relationship between the probability of detection and the
probability of false alarm for the T72 and BMP2 targets.
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Fig. 11. The ROC curve for (a) the T72 target and (b) the BMP target

experiments using three targets and two confusers, all the
targets are detected and approximately 75% are recognized
correctly with a probability of false alarm of 50%. An impor-
tant design decision is the choice of aspect aperture for each
feature vector, P . The experiments showed that for stationary
targets, the performance is only slightly decreased as the aspect
aperture is reduced. These results are very encouraging for
recognition of moving targets where using fewer HRR profiles
is expected to improve performance.
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