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Abstract—The theory of Finite Rate of Innovation (FRI) broadened the
traditional sampling paradigm to certain classes of parametric signals. In
this paper we review the ideal FRI sampling scheme and some techniques
to combat noise. We then present alternative and more effective denoising
methods for the case of exponential reproducing kernels.

I. INTRODUCTION

In [1] and [2] it was shown how certain classes of non-bandlimited
signals can be sampled and perfectly reconstructed. These signals
can be completely characterised by their rate of innovation. In
the presence of noise, the ideal approaches become unstable and
alternative methods are required [3]. This paper focuses on the
optimal use of exponential reproducing kernels introduced in [2] for
the noisy scenario.

II. SAMPLING SIGNALS WITH FRI

Consider a stream of K Diracs at locations tk, with amplitudes
ak and of duration τ seconds. If we sample the signal with an
exponential reproducing kernel ϕ
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we obtain the measurements

yn �
〈
xptq, ϕ

�
t
T
� n

�〉
, for n � 0, 1, . . . , N � 1. Here N is the

number of samples and we use a sampling period T � τ
N

.
An exponential reproducing kernel is any function ϕptq that satis-

fies
°
nPZ cm,0e

αmpn�tqϕpt� nq � 1 with αm P C for appropriate
coefficients cm,n � cm,0e

αmn. Equivalently we can write

cm,0

» 8

�8

e�αmtϕptqdt � 1. (1)

Furthermore, any composite function of the form ϕptq � γptq 

β~αP

ptq, where β~αP
ptq is an E-Spline [4], is able to reproduce the

set eαmt, m � 0, 1, . . . , P .
Reconstructing the input is a two step process [2]. First, the

samples yn are linearly combined to get the new measurements
sm �

°N�1
n�0 cm,nyn. These are equivalent to a power series

involving the locations tk and amplitudes ak for αm � α0 �mλ.
Second, the unknown parameters can be retrieved using the classical
Prony’s method. The key ingredient is the annihilating filter, for which
the following holds [3]:

Sh � 0 (2)

i.e. the Toeplitz matrix S is rank deficient. Note that we require
P ¥ 2K � 1.

III. WORKING IN THE PRESENCE OF NOISE

When the sampling process is not ideal we obtain a corrupted
version of the measurements ŷn � yn�εn. The Toeplitz matrix of (2)
then becomes Ŝ � S�B and is no longer rank deficient. When the
noise term B is additive white Gaussian (AWGN) it is reasonable
to look for a solution that minimises }Ŝh}2 s.t. }h} � 1 [3]. This
is a classical total-least-square (TLS) problem that can be solved
using singular value decomposition (SVD). The solution is further
improved by denoising Ŝ using, for instance, Cadzow algorithm.
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Modified TLS and E-Splines

For exponential reproducing kernels B is due to coloured noise.
In order for SVD to provide a reliable separation of the signal and
noise subspaces it becomes necessary to “pre-whiten” the noise. If we
know the covariance matrix of the noise R up to a constant factor λ,
we can factor it: R � λB�B � QTQ and recover the appropriate
subspaces by considering the SVD of Ŝ1 � ŜQ�1.

It is also possible to control the term B by designing an appropriate
sampling kernel. Consider the matrix C of size pP � 1q � N with
coefficients cm,n at locations pm,nq. If we want the noise to be white
we need the matrix C to have orthonormal rows. This is achieved
by making them orthogonal with αm � jωm � j 2πm

N
and then

orthonormal by setting |cm,0| � 1, which is achieved using (1):

|ϕ̂pωmq| � |γ̂pωmqβ̂~αP
pωmq| � 1, (3)

where ϕ̂p�q is the Fourier transform of ϕptq. Among the kernels satis-
fying (3), we are interested in the one with the shortest support. This
kernel can be formed as a linear combination of various derivatives of
the original E-Spline. It is a variation of the maximal-order minimal-
support kernels of [5] and is still able to reproduce exponentials.
Now, solving the problem in the Fourier domain we only need to
determine a polynomial that interpolates (ωm, |β̂~αP

pωmq|
�1q.

IV. SIMULATION RESULTS

Fig. 1 shows the modified E-Spline kernels (‘ME’) have the best
performance, which improves with increasing order P . The modified
Cadzow algorithm (‘MC’) marginally beats the original (‘C’).
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Figure 1. Retrieval of K � 2 Diracs in the presence of noise. We use τ � 1
seconds, N � 31 samples and average over 1000 realisations.
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