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We present a method for extracting information (or knowledge) about the
nature of a signal, this is achieved by employing recent developments in signal
characterisation for online analysis of the changes in signal modality. We show
that it is possible to use the fusion of the outputs of adaptive filters to produce
a single collaborative hybrid filter and that by tracking the dynamics of the
mixing parameter of this filter rather than the actual filter performance, a
clear indication as to the nature of the signal is given. Implementations of
the proposed hybrid filter in both the real R and complex C domains are
analysed and the potential of such a scheme for tracking signal nonlinearity
in both domains is highlighted. Simulations on linear and nonlinear signals in
a prediction configuration support the analysis; real world applications of the
approach have been illustrated on electroencephalogram (EEG), radar and
wind data.

1.1 Introduction

Signal modality characterisation is becoming an increasingly important area of
multidisciplinary research and large effort has been put into devising efficient
algorithms for this purpose. Research in this area started in physics in the
mid 1990s but its applications in machine learning and signal processing are
only recently becoming apparent. Before discussing characterisation of signal
modalities certain key properties for defining the nature of a signal should be
outlined [8, 21]:

1. Linear (strict definition) – a linear signal is generated by a linear time-
invariant system, driven by white Gaussian noise;

2. Linear (commonly adopted) – definition 1. is relaxed somewhat by allow-
ing the distribution of the signal to deviate from the Gaussian one, which
can be interpreted as a linear signal from 1. measured by a static (possibly
nonlinear) observation function;
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3. Nonlinear – a signal that cannot be generated in the above way is consid-
ered nonlinear;

4. Deterministic (predictable) – a signal is considered deterministic if it can
be precisely described by a set of equations;

5. Stochastic – a signal that is not deterministic.

Figure 1.1 (modified from [19]) illustrates the range of signals spanned by the
characteristics of nonlinearity and stochasticity. Whilst signals with certain
characteristics are well defined, for instance chaotic signals (nonlinear and
deterministic) or those produced by autoregressive moving average (ARMA)
models (linear and stochastic signals), these represent only the extremes in
signal nature and do not highlight the majority of signals which do not fit into
such classifications. Due to the presence of such factors as noise or uncertainty,
any real world signals are represented in the areas (a), (b), (c) or ’?’; these
are significant areas about which we know little or nothing. As changes in the
signal nature between linear and nonlinear and deterministic and stochastic
can reveal information (knowledge) which is critical in certain applications
(e.g. health conditions) the accurate characterisation of the nature of signals
is a key prerequisite prior to choosing a signal processing framework.
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Nonlinearity

Linearity

Chaos

ARMA
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? ?

?
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? ??

?

NARMA
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Fig. 1.1. Deterministic vs. stochastic nature or linear vs. nonlinear nature

The existing algorithms in this area are based on hypothesis testing [6, 7,
20] and describe the signal changes in a statistical manner. However, there are
very few online algorithms which are suitable for this purpose. The purpose
of the approach described in this chapter is to introduce a class of online
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algorithms which can be used not only to identify, but also to track changes
in the nature of the signal (signal modality detection).

One intuitive method to determine the nature of a signal has been to
present the signal as input to two adaptive filters with different characteristics,
one nonlinear and the other linear. By comparing the responses of each filter,
this can be used to identify whether the input signal is linear or not. Whilst
this is a very useful simple test for signal nonlinearity, it does not provide an
online solution. There are additional ambiguities due to the need to choose
many parameters of the corresponding filters and this approach does not rely
on the “synergy” between the filters considered.

1.1.1 Previous Online Approaches

In [17] an online approach is considered which successfully tracks the degree of
nonlinearity of a signal using adaptive algorithms, but relies on a parametric
model to effectively model the system in order to provide a true indication
of the degree of nonlinearity. Figure 1.2 shows an implementation of this
method using a third order Volterra filter and the normalised least mean
square (NLMS) algorithm with a step size µ = 0.008 to update the system
parameters. The system input and output can be described by

u[k] =
I

∑

i=0

aix[k − i] where I =2 and a0 = 0.5, a1 = 0.25, a2 = 0.125

y[k] = F (u[k]; k) + η[k] (1.1)

where x[k] are i.i.d uniformly distributed over the range [−0.5, 0.5] and η[k] ∼
N (0, 0.0026). The function F (u[k]; k) varies with k,

F (u[k]; k) =







u3[k], for 10000 < k ≤ 20000
u2[k], for 30000 < k ≤ 40000
u[k], at all other times

(1.2)

The output y[k] can be seen in the first trace of Fig. 1.2, the second and third
traces show the residual estimation errors of the optimal linear system and
Volterra system respectively, the final trace is the estimated degree of signal
nonlinearity. Whilst these results show that this approach can detect changes
in nonlinearity and is not affected by the presence of noise, this may be largely
due to the nature of the input signal in question being particularly suited to
the Volterra model.

This type of method relies on the nature of the nonlinearity under obser-
vation being suited to the actual signal model; in real world situations it is
not always possible to know the nonlinearity in advance, therefore their ap-
plication is limited. To overcome these limitations we propose a much more
flexible method based on collaborative adaptive filtering.
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Fig. 1.2. Estimated degree of signal nonlinearity for an input alternating from linear
to nonlinear

1.1.2 Collaborative Adaptive Filters

Developing on the well established tracking capabilities of adaptive filters us-
ing combinations of adaptive subfilters in a more natural way produces a
single hybrid filter without the need for any knowledge of underlying sig-
nal generation models. Hybrid filters consist of multiple individual adaptive
subfilters operating in parallel and all feeding into a mixing algorithm which
produces the single output of the filter [4, 13]. The mixing algorithms are also
adaptive and combine the outputs of each subfilter based on the estimate of
their current performance on the input signal from their instantaneous output
error.

Many previous applications of hybrid filters have focused mainly on the
improved performance they can offer over the individual constituent filters.
Our aim is to focus on one additional effect of the mixing algorithm that is, to
show whether it can give an indication of which filter is currently responding to
the input signal most effectively. Therefore intuitively by selecting algorithms
which are particularly suited to one type of input signals, it is possible to
cause the mixing algorithm to adapt according to fundamental properties of
the input signal.

A simple form of mixing algorithm for two adaptive filters is a convex
combination. Convexity can be described as [5]

λx + (1 − λ)y where λ ∈ [0, 1] (1.3)

For x and y being two points on a line, as shown in Fig. 1.3, their convex
mixture (1.3) will lie on the same line between x and y.

For convex mixing of the outputs of adaptive filters, it is intuitively clear
that initially λ will adapt to favour the faster filter (that is the filter with
faster learning rate) and following convergence it will favour the filter with
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yλx + (1−  )yλx

Fig. 1.3. Convexity

better steady state properties1; should one of the subfilters fail to converge the
values of λ adapt such that the hybrid filter follows the stable subfilter [16].
The approach in this chapter focuses on observing the dynamics of mixing
parameter λ, to allow conclusions to be drawn about the current nature of
the input signal.

1.2 Derivation of The Hybrid Filter

Unlike the existing approaches to hybrid adaptive filters which focus on the
quantitative performance of such filters, in this case the design of the hybrid
filters is such that it should combine the characteristics of two distinctly dif-
ferent adaptive filters. Signal modality characterisation is achieved by making
the value of the “mixing” parameter λ adapt according to the fundamental
dynamics of the input signal. In this chapter we illustrate applications of this
method for characterisation of nonlinearity and complexity on both synthetic
and real world data, but this method can be equally well applied to any other
signal characteristics. With that in mind we start from the general derivation
of the convex hybrid filter before moving on to specific implementations.

Figure 1.4 shows the block diagram of a hybrid filter consisting of two
adaptive filters combined in a convex manner. At every time instant k, the
output of the hybrid filter, y(k), is an adaptive convex combination of the
output of the first subfilter y1(k) and the output of the second subfilter y2(k),
and is given by

y(k) = λ(k)y1(k) + (1 − λ(k)) y2(k), (1.4)

where y1(k) = xT (k)w1(k) and y2(k) = xT (k)w2(k) are the outputs of the two
subfilters with corresponding weight vectors w1(k) = [w1,1(k), . . . , w1,N (k)]T

and w2(k) = [w2,1(k), . . . , w2,N (k)]T which are dependent on the algorithms
used to train the subfilters based on the common input vector x(k) =
[x1(k), . . . , xN (k)]T for filters of length N .

To preserve the inherent characteristics of the subfilters, which are the
basis of our approach, the constituent subfilters are each updated by their
own errors e1(k) and e2(k), using a common desired signal d(k), whereas the
parameter λ is updated based on the overall error e(k). The convex mixing pa-
rameter λ(k) is updated based on minimisation of the quadratic cost function
E(k) = 1

2e2(k) using the following gradient adaptation

1 Unlike traditional search then converge approaches this method allows for poten-
tially nonstationary data.
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Fig. 1.4. Convex combination of adaptive filters (hybrid filter)

λ(k + 1) = λ(k) − µλ∇λE(k)|λ=λ(k), (1.5)

where µλ is the adaptation step-size. From (1.4) and (1.5), using an LMS type
adaptation, the λ update can be obtained as

λ(k + 1) = λ(k) −
µλ

2

∂e2(k)

∂λ(k)
= λ(k) + µλe(k)(y1(k) − y2(k)). (1.6)

To ensure the combination of adaptive filters remains a convex function,
it is critical λ remains within the range 0 ≤ λ(k) ≤ 1. In [4] the authors
obtained this through the use of a sigmoid function as a post-nonlinearity to
bound λ(k). Since, in order to determine the changes in the modality of a
signal, we are not interested in the overall performance of the filter but in the
dynamics of parameter λ, the use of a sigmoid function would interfere with
true values of λ(k) and was therefore not appropriate. In this case a hard limit
on the set of allowed values for λ(k) was therefore implemented.

1.3 Detection of the Nature of Signals - Nonlinearity

Implementations of the hybrid filter described above using the LMS algo-
rithm [23] to train one of the subfilters and the generalised normalised gradient
descent (GNGD) algorithm [15] for the other, have been used to distinguish
the linearity/nonlinearity of a signal [11]. The LMS algorithm was chosen as
it is widely used, known for its robustness and excellent steady state proper-
ties whereas the GNGD algorithm has a faster convergence speed and better
tracking capabilities. By exploiting these properties it is possible to show that
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due to the synergy and simultaneous mode of operation, the hybrid filter
has excellent tracking capabilities for signals with extrema in their inherent
linearity and nonlinearity characteristics.

The output of the LMS trained subfilter yLMS is generated from [23]

yLMS(k) = xT (k)wLMS(k)

eLMS(k) = d(k) − yLMS(k)

wLMS(k + 1) = wLMS(k) + µLMSeLMS(k)x(k) (1.7)

and yGNGD is the corresponding output of the GNGD trained subfilter given
by [15]

yGNGD(k) = xT (k)wGNGD(k) (1.8)

eGNGD(k) = d(k) − yGNGD(k)

wGNGD(k+1) = wGNGD(k) +
µGNGD

‖x(k)‖2
2 + ε(k)

eGNGD(k)x(k)

ε(k+1) = ε(k)−ρµGNGD
eGNGD(k)eGNGD(k−1)xT (k)x(k−1)

(‖x(k − 1)‖2
2 + ε(k − 1))

2

where the step-size parameters of the filters are µLMS and µGNGD, and in
the case of the GNGD ρ is the step-size adaptation parameter and ε the
regularisation term.

By evaluating the resultant hybrid filter in an adaptive one step ahead
prediction setting with the length of the adaptive filters set to N = 10, it is
possible to illustrate the ability of the hybrid filter to identify the modality of
a signal of interest. The behaviour of λ has been investigated for benchmark
synthetic linear and nonlinear inputs. Values of λ were averaged over a set of
1000 independent simulation runs, for the inputs described by a stable linear
AR(4) process:

x(k) = 1.79x(k− 1)− 1.85x(k− 2)+1.27x(k− 3)− 0.41x(k− 4)+n(k) (1.9)

and a benchmark nonlinear signal [18]:

x(k + 1) =
x(k)

1 + x2(k)
+ n3(k) (1.10)

where n(k) is a zero mean, unit variance white Gaussian process. The values of
the step-sizes used were µLMS = 0.01 and µGNGD = 0.6. For the GNGD filter
ρ = 0.15 and the initial value of the regularisation parameter was ε(0) = 0.1.
Within the convex combination of the filters, filter 1 corresponds to the GNGD
trained subfilter and filter 2 to the LMS trained subfilter, the step-size for the
adaptation of λ(k) was µλ = 0.05 and the initial value2 of λ(0) = 1.

2 Since GNGD exhibits much faster convergence than LMS, it is natural to start
the adaptation with λ(0) = 1. This way, we avoid possible artefacts that may
arise due to the slow initial response to the changes in signal modality.
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From the curves shown in Fig. 1.5 it can be seen the value of λ(k) for both
inputs moves towards zero as the adaptation progresses. As expected, the
output of the convex combination of adaptive filters approaches the output
of the LMS filter yLMS predominately. This is due to the better steady state
properties of the LMS filter when compared to the GNGD filter, which due
to its constantly ’alert’ state does not settle in the steady state as well as the
LMS. In the early stages of adaptation the nonlinear input (1.10) adapts to
become dominated by the LMS filter much faster than the linear input and
rapidly converges, whereas the linear input (1.9) changes much more gradually
between the two filters3.
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Fig. 1.5. Comparison of the mixing parameter λ for linear and nonlinear inputs

1.3.1 Tracking Changes in Nonlinearity of Signals

It is also possible to use changes in λ along the adaptation to track the changes
in signal modality. Since the behaviour of λ as a response to the different inputs
is clearly distinct, especially in the earliest stages of adaptation, the convex
combination was presented with an input signal which alternated between
linear (1.9) and nonlinear (1.10). The input signal was alternated every 200
samples and the corresponding dynamics of the mixing parameter λ(k) are
shown in Fig. 1.6. From Fig. 1.6 it is clear that the value of λ(k) adapts in a
way which ensures that the output of the convex combination is dominated
by the filter most appropriate for the input signal characteristics.

To illustrate the discrimination ability of the proposed approach, the next
set of simulations show the results of the same experiment as in Fig. 1.6, but

3 Both filters perform well on a linear input and are competing along the adapta-
tion.
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Fig. 1.6. Evolution of the mixing parameter λ for input nature alternating every
200 samples

for a decreased number of samples between the alternating segments of data.
Figure 1.7 shows the response of λ(k) to the input signal alternating every
100 and 50 samples respectively. There is a small anomaly in the values of
λ immediately following the change in input signal from nonlinear to linear,
which can be clearly seen in Fig. 7(b) around sample numbers 100i, i =
1, 2, . . . , where the value of λ exhibits a small dip before it increases. This is
due to the fact that the input to both the current AR process (1.9) and the
tap inputs to both filters use previous nonlinear samples where we are in fact
predicting the first few “linear” samples. This does not become an issue when
alternations between the input signals occur less regularly or if there is a more
natural progression from “linear” to “nonlinear” in the the input signal.

Real World Applications

To examine the usefulness of this approach for the processing of real world sig-
nals, a set of EEG signals has been analysed. Following the standard practice,
the EEG sensor signals were averaged across all the channels and any trends
in the data were removed. Figure 1.8 shows the response of λ when applied to
two different sets of EEG data from epileptic patients, both showing the onset
of a seizure as indicated by a sudden change in the value of λ. These results
show that the this approach can effectively detect changes in the nature of
the EEG signals which can be very difficult to achieve otherwise.
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Fig. 1.7. Evolution of the mixing parameter λ for a signal with input nature alter-
nating between linear to nonlinear

1.4 Detection of the Nature of Signals - Complex

Domain

For generality, building upon identification and tracking of nonlinearity in the
real domain R we shall extend this to the complex domain C. In order to
facilitate this, the update of λ (1.6) was extended to the complex domain,
resulting in

λ(k + 1) = λ(k) −
µλ

2

{

e(k)
∂e∗(k)

∂λ(k)
+ e∗(k)

∂e(k)

∂λ(k)

}

= λ(k) + µλℜ{e(k)(y1(k) − y2(k))∗} , (1.11)

where (·)∗ denotes the complex conjugation operator. For the complex ver-
sion of the hybrid convex combination, the subfilters previously discussed were
substituted with the complex NLMS and complex normalised nonlinear gra-
dient descent (NNGD) [14], in this case the normalised versions were used as
opposed to the standard complex LMS (CLMS) and NGD (CNGD) to over-
come problems with the convergence of the individual subfilters and hence
dependence on the combination of input signal statistics. The CLMS update
is given by [22]

wCLMS(k + 1) = wCLMS(k) + ηCLMS(k)eCLMS(k)x∗(k) (1.12)
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Fig. 1.8. Top panel: EEG signals for two patients showing epileptic seizures; Bottom
panel: corresponding adaptations of λ

where η denotes the learning rate which for the CLMS is ηCLMS(k)=µCLMS

and for the CNLMS and ηCLMS(k) = µCLMS/
(

‖x(k)‖2
2 + ε

)

.
The CNGD is described by

eCNGD(k) = d(k) − net(k)

net(k) = Φ
(

xT (k)wCNGD(k)
)

wCNGD(k + 1) = wCNGD(k) − ηCNGD(k)∇wE(k) (1.13)

where net(k) is the net input, Φ(·) denotes the complex nonlinearity and E(k)
is the cost function given by

E(k) =
1

2
|e(k)|2. (1.14)

Following the standard complex LMS derivation [22] for a fully complex non-
linear activation function, Φ, the weight update is expressed as

wCNGD(k+1) = wCNGD(k)+ ηCNGD(k)eCNGD(k) (Φ′ [net(k)])
∗
x∗(k) (1.15)
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where (·)′ denotes the complex differentiation operator and ηCNGD = µCNGD

for the CNGD and ηCNGD = µCNGD/
(

C + [Φ′(net(k))]2‖x‖2
2

)

for the CN-
NGD.

For the purposes of tracking changes in the nonlinearity of signals the
hybrid filter was again presented with an input signal alternating between
linear and nonlinear. The process n(k) in the linear AR(4) signal (1.9) was
replaced with a complex white Gaussian process again with zero mean and
unit variance,

n(k) = nr(k) + jni(k),

where the real and imaginary components of n are mutually independent
sequences having equal variances so that σ2

n = σ2
nr

+σ2
ni

. The complex bench-
mark nonlinear signal [18] was

x(k) =
x2(k − 1) (x(k − 1) + 2.5)

1 + x2(k − 1) + x2(k − 2)
+ n(k − 1) (1.16)

and the nonlinearity used was the sigmoid function

Φ(z) =
1

1 + e−z
, where z ∈ C (1.17)

Figure 1.9 shows the response of λ to the input signal alternating every 200 and
every 100 samples and again the hybrid filter was clearly capable of tracking
such changes in the nonlinearity of the input signal.

1.4.1 Split-Complex vs. Fully-Complex

Whilst being able to identify the nonlinearity of a signal is important and
can give key knowledge about the signal under observation, within nonlinear
adaptive filtering in C one of the biggest problems is the choice of nonlinear
complex activation function (AF). There are three main methods to deal with
this:-

• processing the real and imaginary components separately using a real non-
linearity;

• processing in the complex domain using a so called “split-complex” non-
linearity;

• or using a so called “fully-complex” nonlinearity.

A fully-complex nonlinearity is a function f : C → C and are the most
efficient in using higher order statistics within a signal [12]. For a split-complex
function the real and imaginary components of the input are separated and
fed through the dual real valued activation function fR(x) = fI(x), x ∈ R. A
split complex AF can be represented as

Φsplit(z) = fR(zr) + jfI(z
i) = u(zr) + jv(zi) (1.18)
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Fig. 1.9. Evolution of the mixing parameter λ for a signal with input nature alter-
nating between linear to nonlinear

Whilst algorithms using split-complex AFs have been shown to give good
results, when the real and imaginary components of a signal are strongly
correlated algorithms using the split-complex AFs are not suitable as they
rely on the real and imaginary weight updates being mutually exclusive to
calculate the true gradient.

Consider the Ikeda map, a well known benchmark signal in chaos theory
[2], given by

x(k + 1) = 1 + u [x(k) cos t(k) − y(k) sin t(k)]

y(k + 1) = u [x(k) sin t(k) + y(k) cos t(k)] (1.19)

where u is a parameter and

t(k) = 0.4 −
6

1 + x2(k) + y2(k)
. (1.20)

Figure 10(a) illustrates that the hybrid filter can clearly identify the Ikeda map
as nonlinear when presented with it as an input. It is natural however to expect
that as the signal generation mechanism is in the form of coupled difference
equations, by representing the pair [x(n), y(n)] as a vector in C, the Ikeda
map (1.19) will represent a fully complex signal. This is indeed confirmed by
the simulation results shown in Fig. 10(b) where to test the application of the
hybrid filter method for detection of the nature of nonlinear complex signals,
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the hybrid filter consisted of a combination of a fully-complex and a split-
complex subfilter trained by the CNGD algorithm with λ = 1 corresponding to
the fully-complex subfilter. As expected (by design), from Fig. 1.10, the Ikeda
map is a nonlinear signal (Fig. 10(a)) which exhibits fully-complex nonlinear
properties (Fig. 10(b)).

To illustrate this further, Fig. 1.11 shows the performance of the complex
real time recurrent learning (CRTRL) algorithm [9] for both split- and fully-
complex learning on the prediction of the Ikeda map; observe that the split-
complex CRTRL did not respond as well as the fully complex version to
prediction of the Ikeda map.
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Fig. 1.10. Evolution of the mixing parameter λ for prediction of Ikeda map

Knowledge of the complex nonlinearity that describes a real-world complex
signal is critical, as it can help us to understand the nature of the dynamics
of the system under observation (radar, sonar, vector fields). To illustrate
the tracking capabilities of this hybrid filter, the filter was presented with
real world radar data. The radar data comes from a maritime radar (IPIX,
publicly available from [1]), for different sea states, “low” (calm sea) and
“high” (turbulent) states. Whilst there are off-line statistical tests for radar
data [10] and it has been shown that radar data is predominantly fully complex
in nature when the target is in the beam [8], on-line estimation algorithms are
lacking and it is clear that it is important to track the onset of changes in the
nature whilst recording. Figure 1.12 shows the evolution of λ when predicting
radar data that was alternated every 50 samples from the low sea state to
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Fig. 1.11. Learning curves for fully-complex vs. split-complex prediction of Ikeda
map

the high sea state. All the data sets were standardised so all the magnitudes
were in the range [−1, 1]. The initial weight vectors were set to zero and the
filter order N = 10. Figure 1.12 shows that the modality of the high sea
state was predominantly fully complex and similarly the low sea state was
predominantly split complex.

1.4.2 Complex Nature of Wind

Wind modelling is an illustration for the need for complex valued techniques;
Fig. 13(a) represents a wind rose plot of direction versus magnitude and shows
the need for wind to be modelled based on both direction and speed. Wind
is normally measured either as a bivariate process of these measurements [3]
or, despite the clear interdependence between the components, only the speed
component in taken into account. From Fig. 13(b) it is clear that wind could
also be represented as a vector of speed and direction components in the
North – East coordinate system. Following this, the wind vector v(k) can be
represented in the complex domain C, as

v(k) = |v(k)|ejθ(k) = vE(k) + jvN (k) (1.21)

where v is the speed component and θ the direction, modelled as a single
complex quantity.
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Fig. 1.12. Evolution of the mixing parameter λ for alternating blocks of 400 data
samples of radar data from the “low” to “high” sea state

N

E

Wind

speed

Wind

direction

(a) Wind vector representation

  5

  10

  15

  20

30

210

60

240

90

270

120

300

150

330

180 0

(b) Wind rose representation
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Complex Surrogate Data Testing for the Nature of Wind

Following the approach from [8], to support the complex-valued modelling of
wind we first employ a statistical test for the complex nature of wind. The
test is based on the complex-valued surrogate data analysis and is set within
the framework of hypothesis testing and the statistical testing methodology
from [7] is adopted. The signals are characterised by the Delay Vector Variance
(DVV) method and the null hypothesis was that the original signal is complex-
valued. Figure 1.14 shows the results of this test indicating there is a significant
component dependence within the complex-valued wind signal representation.
This is indicated by the rejection ratio of the null hypothesis of fully complex
wind data being significantly greater than zero.

The results from Fig. 1.14 show the proposed test repeated 100 times,
with the number of times the null hypothesis was rejected computed. The
wind signal was averaged over either one hour intervals or six hour intervals
and as can be seen from the rejection ratios the signal averaged over one
hour showed a stronger indication of having a complex nature than those
averaged over six hours. Therefore the components of complex-valued wind
signals become more dual univariate and linear when averaged over longer
intervals, this is in line with results from probability theory where a random
signal becomes more Gaussian (and therefore linear) with the increase in the
degree of averaging.
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Fig. 1.14. Complex valued surrogate data test for the complex nature of wind signal
[speed and direction]
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Tracking Modality of Wind Data

As it has been shown that wind can be considered a complex valued quantity
and that it is possible to track the nature of complex signals using the hy-
brid filter combination of a fully complex and a split complex adaptive filter,
the hybrid filter was used to predict a set of wind data. The data used was
measurements of the wind in an urban area over one day. The filter length
was set to N = 10, the learning rates of the split and fully complex NGD
algorithms were µsplit = 0.01 and µfully = 0.01 and the step size of the learn-
ing parameter was µλ = 0.5. The results of this can be seen in Fig. 1.15,
as for the majority of the time the value of λ is around 0.9 the wind signal
can be considered mainly fully complex. It is also clear that the first and
last measurements are more unstable in nature as λ oscillated in the range
[0.5, 0.9], this indicates the intermittent wind nature was mainly fully complex
but does at times become more split complex. Since these measurements were
taken from a 24 hour period starting from 14:00 these sections correspond to
the recordings taken between 14:00–18:00 and 08:00–14:00 the next day, this
is to be expected as during these times the wind is changing rapidly compared
to the “calm” period in the late evening and the early morning.

1.5 Conclusions

We have proposed a novel approach to identify changes in the modality of a
signal. This is achieved by a convex combination of two adaptive filters for
which the transient responses are significantly different. By training the two
filters with different algorithms, it is possible to exploit the difference in the
performance capabilities of each. The evolution of the adaptive convex mixing
parameter λ, helps determine which filter is more suited to the current input
signal dynamics, and thereby gain information about the nature of the signal.
This way, information fusion is achieved by collaborative modular learning,
suitable for the online mode of operation. The analysis and simulations illus-
trate that there is significant potential for the use of this method for online
tracking of some fundamental properties of the input signal. Both synthetic
and real world examples on EEG, radar and wind data support the analy-
sis. The extension to the simultaneous tracking of several parameters follows
naturally; this can be achieved by a hierarchical and distributed structure of
hybrid filters.
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